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Physiological outcomes of calming 
behaviors support the resilience 
hypothesis in horses
Chiara Scopa1, Elisabetta Palagi2, Claudio Sighieri3 & Paolo Baragli   3

To manage a stressful stimulus animals react both behaviorally and physiologically to restore the 
homeostasis. In stable horses, a stressful stimulus can be represented by social separation, riding 
discomfort or the presence of novel objects in their environment. Although Heart Rate Variability is a 
common indicator of stress levels in horses, the behavioral mechanisms concurrently occurring under 
stressful conditions are still unknown. The sudden inflation of a balloon was administered to 33 horses. 
Video-recording of self-directed behaviors (snore, vacuum chewing, snort, head/body shaking) and 
monitoring of heart activity (HR and SDRR) were conducted for five minutes before (Pre-test) and 
after the stimulus administration (Stress-test). During the Stress-test, only snore and vacuum chewing 
increased and a significant increase was also recorded in both HR and SDRR. Moreover, the snore 
variation between the two conditions showed a significant correlation with the variation of both HR and 
SDRR. With the snore acting as stress-releasing behavior to restore basal condition, the homeostasis 
recovered via the enactment of such behavior could be physiologically expressed by an increasing vagal 
activity. Hence, the capacity to maintain homeostasis (resilience) could correspond to a prevalence of 
parasympathetic control on heart activity, intervening when certain behaviors are performed.

To face a potentially stressful situation an animal can engage in different behaviors. Whatever the reaction, the 
behavior guiding the animal far from the negative stimulus is strictly linked to specific physiological reactions 
which are driven by a change in autonomic and neuroendocrine activities1. Stress was originally defined as a 
general non-specific response of the body to any noxious stimulus2. Later, Koolhaas and colleagues3 underlined 
that the stress condition could be restricted to those circumstances where an environmental demand exceeds 
the natural regulatory capacity of an organism, in particular situations that include unpredictability and uncon-
trollability. Besides, the definition of stress was extended by differentiating between the stressor (i.e. the stimulus 
that threatens the homeostasis) and the stress response which corresponds to the body reaction that restores the 
homeostasis4. Hence, stress response may be defined in general as nonspecific modification of body function-
ing not depending on the situation itself, but rather on the negative interpretation that the animal makes of the 
situation5. For example, thanks to different previous experiences and individual plasticity, different subjects can 
respond in different ways to the same stimulus6.

During a stress response an activation of the Sympathetic Nervous System (SNS) occurs, thus promoting fast 
responding mechanisms to handle a wide range of functions (e.g., respiratory, endocrine, and cardiovascular 
response). During the activation of these processes, Heart Rate (HR) increases. On the other side of the scale, 
Parasympathetic Nervous System (PNS) activity slows the heart activity (HR) down, generally regulating bodily 
function while the animal is at rest7. Many different specific stressors may induce a switch of this high sensitive 
autonomic set of scales towards a prevalent sympathetic or parasympathetic control8–10. As a matter of fact, the 
best way to monitor and measure the balance between these nervous strategies is Heart Rate Variability (HRV), 
representing the quantitative marker of autonomic system11. HRV reflects the fine-tuning of cardiac activity to 
cope with situational demands12 and it has been associated to the emotional regulation ability (i.e. the capacity to 
process emotional stimuli)13,14. In this perspective, HRV has been used for emotional states recognition, reflect-
ing all conditions characterized by high-arousal state, even though it fails to distinguish the valence (positive or 
negative) of the situation itself15. A reduction of some parameters accounting for HRV (such as SDRR or RMSSD) 
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has been often associated to stressful situations or poor health conditions in both human and non-human ani-
mals16–19. Such reduction indicates a correspondent reduction in dynamic complexity of HRV itself and a reduc-
tion in parasympathetic control of cardiac activity. However, all those decreasing parameters refers to more 
regular HRV series, which are markers of higher sympathetic activity11,20,21.

In horses the measure of HRV has been employed to monitor stress levels in several studies22,23. The physiolog-
ical and behavioral stress response is an adaptive mechanism specifically shaped to cope with noxious situations, 
such as predator attacks, storms, disease, starvation, transportation, and others24–27. For example, stable horses 
may suffer some physical and psychological stress induced by specific activities or by fear and anxiety for novel 
stimuli, social separation, transportation, pain and discomfort28. Due to the broad variety of sports, therapies and 
recreational activities involving horses, many studies tried to provide a sort of guidelines to make caretakers aware 
of frustration or stress condition in this species. Moreover, the intimate relationship developed between horses 
and humans during centuries fostered a flourishing number of studies on the topic.

As it has been already pointed out, a reductionist approach of relying on the measurement of a single biolog-
ical response as an indicator of stress can be misleading29 and, at present, it is known that, in a stressful context, 
hormonal and behavioral strategies are strictly related to how the horse perceives the stimulus30. The behavioral 
manifestation of frustration should be explored concomitantly with the variation of the physiological parameters 
in order to reach a holistic interpretation of the internal state of the animal. In horses data are not exhaustive yet; 
nevertheless some behaviors have been correlated with frustration or motivational conflict in several studies. The 
snort, defined as a loud exhalation through the nostrils, seems to express horses’ restlessness31 and frustration32. 
On the other hand, snort has been lately suggested to be a reliable indicator of positive emotions since its pro-
duction is associated with positive contexts (in pasture, while feeding) and it is less frequent in horses showing 
an altered welfare33. In horses and in other mammalian species the vacuum chewing (i.e. chewing without any-
thing in the mouth34) is considered a displacement activity performed in stressful situations32,35–37. However, this 
behavior has been also associated to emotions, which have a positive valence, regardless of the arousal level of 
individuals38. Among non-vocal sounds produced via the passage of the air through the nostrils, there is also the 
snore which is defined as a very short raspy inhalation sound produced in a low alert context, such investigating 
a novel object or obstacle33. Finally, head/body shaking is considered a stress-related behavior when the rhythmic 
motion of the head or body occurs repetitively39.

Here, in a familiar environment, we administrated a sudden, unfamiliar and unpredictable stimulus to horses 
and measured the distribution of each of the selected behaviors over time (minute by minute) in order to define a 
time-window in which the behaviors were statistically more frequent compared to a control period. If the behav-
iors that significantly varied after the administration of the stimulus (criterion 1) also match with the variation of 
the sympathetic/parasympathetic control over cardiac activity (criterion 2), those specific patterns could be more 
reliable than others as indicator of stress in horses. To verify the second criterion, we checked for a possible corre-
lation between the entity of the variation of each tested behavior (e.g., behaviorexperimental minus behaviorcontrol) and 
the shifting of physiological parameters over cardiac control.

Methods
Tested Animals.  The experimental design was based on Baragli et al.40 study, in which any further informa-
tion about tested animals, experimental design and parameters collected in the present work can be found. From 
the original sample, we collected data from 33 horses, aged 6–24 from four different stables (for a complete list 
of the animals considered see Supplementary Table S1). We included in the analysis those animals whose tests 
presented the same time duration in both control and experimental phases and whose video were recorded. Since 
it was recently suggested that not only breed but also individual stabling conditions may influence temperament 
and emotions in horses41, animals tested in our study had to fit specific stabling criteria40.

Experimental Design.  In accordance with Désiré et al.42, the general characteristics of the stress response 
test were defined a priori as the sudden appearance of an unfamiliar, unpredictable and intrinsically unpleas-
ant stimulus designed to induce an avoidance reaction. Using a remote-control device, a balloon was suddenly 
inflated (visual and auditory stimulus) in the horse’s customary environment (its own stall), without the direct 
intervention of the experimenter. Indeed, when animals respond to situations/stimuli, they experience specific 
emotional states. Emotions may be defined by two fundamental dimensions: the valence (emotional experiences 
perceived as negative or positive, rewarding or punishing) and the level of arousal15,43. Therefore, emotional 
responses are activated following potentially rewarding or punishing stimuli, which determine the emotional 
valence44,45. Considering this, we may assume that the appearance of an inflated balloon in the familiar envi-
ronment could elicit a high-arousal response in horses and it represents a negative situation. To record data on 
HRV, a Polar RS800 model heart rate monitor (Polar, Kempele, Finland) was fastened to the horse by an elastic 
chest belt. The heart rate monitor and webcam were synchronized with a chronometer, after which the horse was 
left alone for 5 mins to become accustomed to the presence of the apparatus in the stall (Pre-Test). The operator 
then opened the compressed air valve, inflating the balloon, which opened the flaps on the device. The balloon 
suddenly appeared in the horse’s stall, remaining inflated for 5 mins (Stress Test). Video and heart rate variability 
recording began at the start of the Pre-Test and lasted for the entire Stress Test40.

Parameters collected and Data Analysis.  We analyzed Pre-Test and Stress-Test videos and collected 
the frequency (number of times in which the behavior was displayed during the test) of all relevant behaviors 
performed. By paying particular attention to those patterns considered as indicators of frustration we focused on 
Snorts (SNT), Snore (SN), Vacuum Chewing (VC), Head/Body Shaking (HBSH) and Avoidance/Flee attempts (for 
detailed definition see Table 1).
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Regarding physiological parameters, in addition to the mean value of Heart Rate (beats/min), the heart rate 
variability (HRV) in time domain was collected40. Some of those variables referring to HRV are specifically linked 
to the transition toward sympathetic control of cardiac activity (standard deviation of the beat-to-beat inter-
vals, SDRR and the square root of the mean squared differences of successive beat-to-beat intervals, RMSSD46). 
According to a general rule in HRV collection, we obtained a unique value for each of the HRV parameters (such 
as SDRR and RMSSD) over 5 minutes11.

To verify the presence of any possible variation in physiological parameters, a comparison of physiological 
variables between Pre-Test and Stress-Test has been made. Since these data were collected in a time domain of 
5 minutes, a measure of the variability of changing features was needed. In this regard, specific formula has been 
elaborated in order to obtain a unique value for each physiological variable comparing their trend during the 
control and experimental conditions (Pre-Test versus Stress-Test).

∆ = −Value of the parameter during the Value of the parameter during thePhysiological Parameter Stress Test PreTest

Same formula was applied for the frequency of those behaviors which were found to vary between the two 
tests.

∆ = °
− °
N of time the behavior was displayed during the

N of time the behavior was displayed during the
Behavior StressTest

PreTest

All data generated or analyzed during this study are included (see Supplementary Information) while original 
videos are available from the corresponding author on reasonable request.

Non-parametric statistics was applied to those data that did not follow a normal distribution (KS; p < 0.05). 
The frequency of behaviors in Pre-Test and Stress-Test was compared via the Exact Wilcoxon’s Signed Rank Test. 
The Friedman Test was used to investigate the variation of behaviors, in terms of frequency, across the different 
minutes during the Stress-Test. The Dunnett post-hoc Test was applied to detect in which minutes the frequency 
of behaviors significantly differed. To check for a potential correlation between behavioral and physiological data 
the Spearman Test was used. Finally, via the Paired Samples T Test we compared physiological data recorded 
during the Pre-Test and the Stress-Test.

Ethical statement.  This study was carried out in accordance with the EU Directive 2010/63/EU for animal 
experiments (adopted by the Italian Animal Care Act, decree Law 26/2014). The Ethical Committee on Animal 
Experimentation of the University of Pisa approved the experimental design (Prot. N. 0033937/2018). Consent to 
participation in the test was signed by each horse owner.

Snort (SNT)

Operational definition
A snort is a forceful exhalation through the nostrils and 
characterized by an audible flutter pulsation31. It has been mostly 
associated with a hygienic function of clearing the nostrils of 
phlegm, flies or other irritants47.

Functions suggested

It is used defensively and aggressively and is in equestrian contexts 
associated with exercise and conflict during restraint66. Snorts 
appear to be a displacement activity and seem to express the 
horses’ restlessness31. and frustration32. On the other hand, snort 
appears as a possible reliable indicator of positive emotions since 
its production is associated with positive contexts (in pasture, while 
feeding) and states and it is less frequent in horses showing an 
altered welfare33.

Snore (SN)

Operational definition Snores are non-voiced sounds that seem incidental to inhalation, 
especially under specific circumstances47.

Functions suggested

The snore that is a broadband inhalation sound can be heard when 
the horse inhales to emit an alarm blow or has dyspnea lasting 
0.3–0.5 seconds31. It probably serves as a preparatory or sensitizing 
cue for the subsequent alarm blow. The second situation is during 
the labored breathing of a recumbent horse, in which case the 
sound lasts 1.0–1.8 seconds.

Vacuum chewing (VC)

Operational definition Chewing with nothing in the mouth34.

Functions suggested
Vacuum chewing indicates frustration in horses32,37. It is considered 
as a displacement behavior in stressful situation in other species35,36. 
This behavior has been also associated to emotions, which have a 
positive valence, regardless of the arousal level of individuals38.

Head and body shaking 
(HBSH)

Operational definition Rapid rhythmic rotation of the head, neck and upper body along 
the long axis while standing with feet planted.

Functions suggested Stress-related head shaking is characterized by repeated rhythmic 
flipping motions of the head39.

Avoidance/Flee attempt
Operational definition The head is usually held low and ears turned back. The retreat can 

be at any gait but typically occurs at the trot67.

Functions suggested The horse moves away from a general stressor40.

Table 1.  Description of the behavioral patterns monitored and collected during both the Pre-Test and the 
Stress-Test.
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Results
Regarding the avoidance/attempt to flee pattern, 28 out of 33 horses showed at least one avoidance or attempt to 
flee immediately after the administration of the stimulus (inflated balloon).

Differences in frequency of behaviors between Pre-Test and Stress-Test.  To investigate the var-
iability of behaviors, in terms of frequency of appearance for each one of them, we collected the onset of all 
behaviors, one per time, for all animals comparing the Pre-Test and Stress-Test. The distribution of snore behav-
ior significantly differed between Pre-Test and Stress-Test (SnorePre-Test mean ± SD 0.63 ± 1.08; SnoreStress-Test 
mean ± SD 4.18 ± 5.91; Exact Wilcoxon’s Signed Rank Test, TSN = 42.50, ties = 5, n = 33, p = 0.0001) with a higher 
frequency of snore in the Stress-Test when compared to the Pre-Test. No differences were found between Pre-Test 
and Stress-Test regarding the frequency of snorts (SnortPre-Test mean ± SD 0.27 ± 0.51; SnortStress-Test mean ± SD 
0.21 ± 0.59; Exact Wilcoxon’s Signed Rank Test, TSNT = 37.00, ties = 20, n = 33, p = 0.523). The performance 
of vacuum chewing significantly differed between Pre-Test and Stress-Test (Vacuum chewingPre-Test mean ± SD 
0.36 ± 0.89; Vacuum chewingStress-Test mean ± SD 0.90 ± 1.10; Exact Wilcoxon’s Signed Rank Test, TVC = 27.00, 
ties = 16, n = 33, p = 0.017), with a higher frequency of the behavior during the Stress-Test. No differences were 
found between Pre-Test and Stress-Test regarding the frequency of head/body shaking (Head/body shakingPre-Test 
mean ± SD 0.66 ± 1.65; Head/body shakingStress-Test mean ± SD 0.81 ± 2.33; Exact Wilcoxon’s Signed Rank Test, 
THBSH = 32.00, ties = 22, n = 33, p = 0.928).

Trends of variation in Snore and Vacuum Chewing.  In order to have an integrating perspective of the 
tendency shown by snore and vacuum chewing across the stress condition, we developed a graphical model of 
their performance in which the variation of frequency of both snore and vacuum chewing is shown, minute by 
minute during the Stress-Test (Fig. 1). The ∆ formula employed here accounts for the rate of both behaviors dur-
ing the 5 minutes Stress-Test, revealing a slight difference between their patterns: the snore occurrence shows in 
fact a distinct peak in the first couple of minutes of the experiment and then it gradually wanes; on the other hand, 
the vacuum chewing frequency seems to permeate the entire test with its mild incidence, constantly affecting the 
whole duration of the trial. Even though these behaviors were the only ones whose frequency differed between the 
Pre-Test and the Stress-Test, when it came to look at the dissimilarity between each minute of the Stress-Test, a 
significant variation may be seen within the frequency of snore behavior (Friedman Test, χ2 = 41.5, df = 4, n = 33, 
p = 0.0001), while no significant differences have been found in the variation of vacuum chewing (Friedman Test, 
χ2 = 5.4, df = 4, n = 33, p = 0.245).

Moreover, the Dunnett post-hoc Test confirmed the strong discrepancy between the ∆snore in the 1′ and 
the 2′ minute of Stress-Test (p = 0.01), likewise the 2′ and the 3′ minute (p = 0.05). No differences were found 
between the 3′ and the 4′ minute (p = 1.00), or the 4′ and the 5′ ones (p = 1.00).

Behavioral data and physiological variables.  Before verifying whether the difference between the 
Pre-Test and the Stress-Test in terms of frequency of behaviors would have had a correspondence in physiological 
cardiac activity, a direct comparison between the physiological parameters values across the control and experi-
mental conditions needed to be conducted in order to exclude from the comparison with behavioral data, those 
variables which remained basically unchanged during the Stress-Test.

The trend of all physiological parameters collected was compared between Pre-Test and Stress-Test. The Heart 
Rate (HR) and the standard deviation of the beat-to-beat intervals (SDRR) values are the only parameters which 
show significant difference between the Pre-Test (HR mean ± SD 45.70 ± 13.27; SDRR mean ± SD 121.25 ± 53.47; 
Paired Samples T Test, T = −2.613, n = 33, pHR = 0.014) and the Stress-Test (HR mean ± SD 49.09 ± 11.11; SDRR 
mean ± SD 196.70 ± 100.95; Paired Samples T Test, T = −4.470, n = 33, pSDRR = 0.0001), with a higher rate during 
the Stress-Test in both of them.

Once established which physiological parameters increased in the stressful experimental setting, the corre-
spondence between behavior and physiology needed to be verified. The correlation between increasing physi-
ological variables (HR and SDRR) and increasing behavioral frequency (snore and vacuum chewing) has been 
conducted using a specific ∆ formula (see 2.1) which contemplates changing values, thus measuring the varia-
tion. The test revealed a positive correlation between the ∆snore and the ∆HR (Spearman Correlation, r = 0.545, 
n = 33, p∆SN∆HR = 0.001; Fig. 2). In order to avoid a deceiving result due to the presence of an outlier, the test 
has been replicated by removing the outlier from the sample. The correlation remained statistically positive 
(Spearman Correlation, r = 0.500, n = 32, p∆SN∆HR = 0.004). A positive correlation has been also found between 
the ∆snore and the ∆SDRR (Spearman Correlation, r = 0.524, n = 33, p∆SN∆SDRR = 0.002; Fig. 3). Regarding 
∆vacuum chewing, no correlation has been found with the ∆HR (Spearman Correlation, r = 0.093, n = 33, 
p∆VC∆HR = 0.606), nor with ∆SDRR (Spearman Correlation, r = 0.294, n = 33, p∆VC∆SDRR = 0.096).

In order to be sure that those behavioral patterns that did not differ in frequency would have not been 
considered as indicator of frustration in horses, we also verify the potential correlation between ∆snorts and 
∆head/body shaking with physiological variation. Neither the snorts nor the head/body shaking correlated with 
any physiological parameters (Spearman Correlation, r = 0.133, n = 33, p∆SNTS∆HR = 0.462; r = −0.177, n = 33, 
p∆SNT∆SDRR = 0.325; r = 0.046, n = 33, p∆HBSH∆HR = 0.800; r = 0.144, n = 33, p∆ HBSH∆SDRR = 0.424). To exclude the 
possibility of a spurious result, a test was conducted to confirm the lack of correlation between the two physiolog-
ical parameters (Pearson Correlation, r = 0.218, n = 33, p∆SDRR∆HR = 0.223).
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Discussion
Our results show that the only behavioral pattern satisfying the two criteria postulated to consider a behavior as a 
reliable stress indicator was the snore. Snore frequency significantly increased in the Stress-Test (criterion 1) and 
its variation (snoreexperimental minus snorecontrol) correlated with the shifting of the physiological variables linked to 
heart activity (criterion 2). Vacuum chewing satisfied only the first criterion thus increasing after the administra-
tion of the stimulus, but it did not show correlation with any of the physiological parameters considered. Snort 
and head/body shaking did not satisfy either the first or the second criterion.

The function of snore in horses has been associated to fear for novel stimuli, probably used prior to non-vocal 
alarm sounds47. A scientific debate embraces the potential function of vacuum chewing, whose occurrence gen-
erally reveals a state of frustration in horses32,37 and it is considered as a displacement activity in some other 
species35,36.

Our results also show that the only physiological parameters that differed between the control and experimen-
tal conditions were the HR and the SDRR. The values of HR and the SDRR were higher during the Stress-Test 
compared to the Pre-Test. SDRR is a measure of the variability across the different R-R intervals, thus estimating 
the overall HRV and therefore including the contribution of both branches of the autonomic nervous system. 
Generally speaking, a reduction in SDRR indicates a transition toward sympathetic control over cardiac activity 
and, as a consequence, an increase of the stress level. It is worth noting that, contrary to what we have found, an 
overall decrease of SDRR should have been expected in a stressful situation.

Looking at the behavioral variation throughout the Stress-Test, a peak in ∆snore during the first couple of 
minutes appears conspicuous, probably due to the sudden appearance of the unfamiliar object, working as a sort 
of preparation to investigation. This immediate response is also confirmed by the heart rate (HR) in the Stress 
Test, which is indeed higher if compared with the Pre-Test. Unlike snore, Vacuum chewing, although the low 
frequency of performance (only 19 of 33 animals performed this behavior), is constantly enacted throughout the 
trial, thus minimizing the overall variation of the behavior itself during the 5-min time window. Taken together 
all these data suggest that snore and vacuum chewing are stress-releasing behaviors that, at the same time, indicate 
a stressful condition.

As in the case of self-grooming, scratching and yawning in human36 and non-human primates48, snore and 
vacuum chewing can be considered displacement activities. Such activities occur under circumstances in which 
they are apparently irrelevant to ongoing events and that seem to reflect the motivational ambivalence/frus-
tration coming from conflict situations35,49–51. There is a linkage between self-directed behaviors (displacement 
activities) and stress levels. For example, in monkeys Duboscq et al.52 demonstrated a strong connection between 
self-directed behaviors and stress-induced hormones. Moreover, in the minutes following aggression monkeys 
(Macaca spp.) experience an increase of HR and self-directed behaviors (scratching, in this case)53–55. Yawning in 
adult boobies (Sula granti) has been explained by the ‘arousal reduction hypothesis’, which claims that this species 

Figure 1.  Variation in frequency of snore (SN, black dot) and vacuum chewing (VC, white dot) during each 
minute of the Stress-Test. Variations were calculated via the ∆ formula accounting for the rate of both behaviors 
comparing the Pre-Test and the Stress-Test. A clear difference between the performances of the behaviors is 
observable, with a peak of snore occurring in the first couple of minutes of the experiment, and the vacuum 
chewing constantly performed during the test.
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yawns to down-regulate arousal, after external stressors disrupted its balance56. In a similar way, the ‘state chang-
ing hypothesis’ predicts that yawning in lemurs (Lemur catta) is a potential physiological enhancer associated to 
the transition from one behavior to another57. Both these hypotheses, which explicitly focus on the internal state 
of the animal, seem to fit with our results on self-directed behaviors in horses.

Snores, often followed by blows (which corresponds to a short very intense non-pulsed exhalation through the 
nostrils and is generally associated with vigilance/alarm postures33,47, indicate low alert context prior to the inves-
tigation of novel objects or obstacles, following the terminology proposed by Stomp et al.33. Snore, along with 
blowing, has been considered indicator of emotionality and fear in several studies58,59. Briefer and colleagues38 
suggested that the increased time spent in vacuum chewing during controlled positive situations, as compared 
to negative ones, could indicate positive emotions in horses triggered by the sight of their group mate(s) coming 
back to the stable, following the high-arousal negative emotion triggered by group mate(s) leaving. These inter-
pretations of snoring and vacuum chewing suggest a sort of transitional role of these behaviors, which appear to 
occur at the same time as the individual’s emotional state varies in order to adapt to a new condition.

The maintenance of “homeostasis” explains how the deviation from a specific set-point of a series of physio-
logical variables may be counteracted by physiological responses whose only purpose is to restore the basal level60. 
This ability, also called resilience, is strongly adaptive61. In this perspective, it is not only important how rapid and 
efficient the recovery could be (i.e. the modulation of resilience)62, but also which are the behavioral strategies 
contributing to such recovery. If we consider snore as a stress-releasing behavior mainly expressed in the first two 
minutes of the Stress-Test to restore a basal condition, the variation of SDRR values obtained across the 5-min 
window is not surprising. The homeostasis obtained via the enactment of such behaviors could be physiologically 
expressed in a proper sympato-vagal balance. Hence, in this case, resilience skills could correspond to a preva-
lence of parasympathetic control that can come into play in the last minutes of the Stress-Test thus increasing 
SDRR values. Furthermore, the horse is a vagotonic animal, meaning that its heart rate is under vagal inhibition 
up to 120–140 beats/min63,64 and, even though the HR increased during Stress-Test in our study, it never reached 
such peak frequency.

Conclusion
In conclusion, not all the self-directed behaviors considered can function as stress-releasing behaviors in horses, 
but only those which increased in frequency during the experimental test and whose variation correlates with the 
variation of specific physiological parameters. In particular, the variation of the snore was found to be modulated 
over time, contrary to the vacuum chewing, whose variation appears constant across the time-window considered. 
Then, we cannot exclude that some other behaviors could occur later, thus playing a role in stress-releasing at a 
delayed level.

In this study, we hypothesized that in horses the resilience ability is an adaptive strategy useful for managing 
everyday environmental and social challenges. The capacity to recognize specific frustration-related behaviors in 

Figure 2.  Correlation between the variation of the snore behavior (∆SNORE) and the variation of the heart rate 
(∆HR) between Pre-Test and Stress-Test (Spearman Correlation, r = 0.545, n = 33, p∆SN∆HR = 0.001).
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horses is crucial for riders, owners and caretakers to properly read and interpret the internal state of animals and, 
in turns, improve their welfare.

To effectively get all the benefits coming from the combination of behavioral and physiological signals, a 
promising goal would be the accomplishment of more accurate HRV detection in animals, as it has been already 
done for humans. Indeed, a new approach of data analysis and interpretation has recently allowed to record 
human HRV with an interval of 30 seconds46,65. Applying the same method to non-human animals, it would be 
possible to accurately link physiological parameters and behaviors in a shorter time domain.
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