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Abstract: Quantitative structure–activity relationship (QSAR) studies were performed in 

order to identify molecular features responsible for the antileishmanial activity of 61 

adenosine analogues acting as inhibitors of the enzyme glyceraldehyde 3-phosphate 

dehydrogenase of Leishmania mexicana (LmGAPDH). Density functional theory (DFT) 

was employed to calculate quantum-chemical descriptors, while several structural 

descriptors were generated with Dragon 5.4. Variable selection was undertaken with the 

ordered predictor selection (OPS) algorithm, which provided a set with the most relevant 

descriptors to perform PLS, PCR and MLR regressions. Reliable and predictive models 

were obtained, as attested by their high correlation coefficients, as well as the agreement 

between predicted and experimental values for an external test set. Additional validation 
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procedures were carried out, demonstrating that robust models were developed, providing 

helpful tools for the optimization of the antileishmanial activity of adenosine compounds. 

Keywords: adenosine compounds; antileishmanial activity; glyceraldehyde 3-phosphate 

dehydrogenase; DFT; multivariate regression 
 

1. Introduction 

Leishmaniases are diseases caused by the intracellular protozoan parasite Leishmania. There are an 

estimated 1.5–2 million new cases per year, of which up to 500,000 are visceral leishmaniasis (VL), 

the fatal version of the disease. Left untreated, it causes a global annual mortality estimated at 59,000 [1]. 

According to disease burden estimates, leishmaniasis ranks third in disease burden in disability-adjusted 

life years caused by neglected tropical diseases and is the second cause of parasite-related deaths after 

malaria [2]. For a variety of reasons, it is not receiving the deserved attention given its high occurrence [3]. 

The first-line treatments for VL since the 1930s are the pentavalent antimonials, although these 

compounds are toxic and resistance has been an increasing problem in India [4]. While significant 

progress has been made in the last 10 years, with the approval of amphotericin B, miltefosine and 

paromomycin, these new and safer chemotherapy alternatives remain out of reach for the affected rural 

population who are most in need [5]. Moreover, the use of poor-quality drugs can be life-threatening 

for vulnerable patients and also have a devastating impact on public health and elimination 

programmes targeting the disease [6]. 

The glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) has been considered 

as a target for the inhibition of protozoan parasites [7,8]. GAPDH from the pathogenic 

trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania mexicana are quite similar 

to each other, but have sufficient structural differences, when compared to the human enzyme, making 

possible the structure-based design of compounds that selectively inhibit all three trypanosomatid 

enzymes, but not the human homologue [7]. 

By exploiting the differences in the structure of the parasitic and human GAPDH, adenosine 

analogs with substitutions on N-6 of the adenine ring and on the 2′ position of the ribose moiety were 

designed, synthesized and tested for inhibition of trypanosomatid GAPDHs, and two crystal structures 

of L. mexicana GAPDH (LmGAPDH) complexed with high-affinity inhibitors that also block parasite 

growth were solved [9]. Induced fit of the LmGAPDH backbone upon binding of the inhibitor may 

enlarge a cavity at the binding site to accommodate the inhibitor. The extensive hydrophobic 

interactions between the protein and the two substituents on the adenine scaffold of the inhibitor  

TND (N-1,2,3,4-tetrahydronaphth-1-yl-2′-[3,5-dimethoxybenzamido]-2′-deoxyadenosine), as shown in 

Figure 1, provide a plausible explanation for the high affinity of these inhibitors for trypanosomatid 

GAPDHs [9]. 
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Figure 1. Interactions between key aminoacid residues of LmGAPDH and inhibitor TND 

(image generated with PoseView [10], from crystallographic coordinates extracted from 

Protein Data Bank, code: 1I33). 

 

In order to enhance the knowledge on structural requirements for the adenosine binding to 

LmGAPDH, structure-activity relationship studies were carried out employing different molecular 

modeling techniques [11,12]. In this work we have performed the calculation of a large amount of 

electronic, geometrical and topological descriptors with the aim to select the most relevant ones to the 

biological activity of adenosine compounds as inhibitors of LmGAPDH, employing the recently 

developed variable selection algorithm OPS (Ordered Predictor Selection) [13]. By employing this 

strategy in conjunction with a protocol described previously [14,15], we have been able to construct a 

predictive model of the quantitative structure-activity relationships for the inhibition of LmGAPDH by 

adenosine compounds. 

2. Results and Discussion 

2.1. Statistical Results 

The OPS variable selection algorithm selected nine descriptors as the most relevant for the analysis: 

volume, EHOMO, HATS4e, HATS3u, H7m, Mor23v, BELp1, JGI2, E1v (see Table 1 for the meanings 

of each descriptor). 

Table 1. Symbols, types and definitions of the selected descriptors. 

Descriptor Type Definition 
Volume Geometric Solvent-accessible surface-bounded molecular volume 
EHOMO Electronic Energy of the highest occupied molecular orbital 
HATS4e GETAWAY Leverage-weighted autocorrelation of lag 4/weighted by atomic Sanderson 

electronegativities 
HATS3u GETAWAY Leverage-weighted autocorrelation of lag 3/unweighted 
H7m GETAWAY H autocorrelation of lag 2/weighted by atomic masses 
Mor23v 3D-MoRSE 3D-MoRSE-signal 23/weighted by atomic van der Waals volumes 
BELp1 BCUT Lowest eigenvalue n.1 of Burden matrix/weighted by atomic polarizabilities 
JGI2 Galvez topological 

charge indices 
Mean topological charge index of order 2 

E1v WHIM 1st component accessibility directional WHIM index, weighted by atomic 
van der Waals volumes 
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The PLS regression models obtained with these descriptors have resulted in the statistical 

parameters presented in Table 2. In order to reassure the suitability of the selected descriptors for 

building QSAR models for the compounds under study, other two techniques were also employed: 

Principal Component Regression (PCR) and Multiple Linear Regression (MLR). Statistical results for 

these techniques are also displayed in Table 2. There, it is possible to observe that the optimum 

number of latent variables for PLS is 1, while the optimal number of principal components for PCR is 

2, since those are the ones presenting lowest SEV (standard error of validation) and PRESS  

(cross-validation predicted residual error sum of squares) values.  

Then, applying leave-one-out (LOO) cross-validation, the best PLS model presents correlation 

coefficients of ݍைை
ଶ  = 0.852 and r2 = 0.874, whereas in the best PCR models these values are  

ைைݍ
ଶ  = 0.873 and r2 = 0.852, indicating good internal consistency for both models. Leave-N-out 

(LNO) cross-validation results show that the models continue to present significant correlation 

coefficients (ݍேை
ଶ  = 0.850 and 0.854 for PLS and PCR, respectively) even when 30% of the samples 

are left out for prediction, which indicates that robust models were obtained. 

Table 2. Statistical parameters for the PLS, PCR and MLR models based on the 9 selected descriptors. 

PLS models PCR models 

Factors SEV PRESS r2 ࡻࡻࡸ
 ࡻࡺࡸ 

 * PCs SEV PRESS r2 ࡻࡻࡸ
 ࡻࡺࡸ 

 *
1 0.389 7.105 0.874 0.852 0.850 1 0.389 7.112 0.869 0.852  
2 0.401 7.571 0.885 0.843  2 0.388 7.092 0.873 0.852 0.854 
3 0.409 7.877 0.891 0.837  3 0.396 7.364 0.873 0.847  
4 0.402 7.580 0.897 0.843  4 0.407 7.804 0.877 0.838  
5 0.402 7.599 0.899 0.843  5 0.402 7.602 0.883 0.842  
6 0.398 7.450 0.899 0.845  6 0.409 7.881 0.883 0.837  
7 0.398 7.431 0.899 0.846  7 0.418 8.231 0.884 0.829  
8 0.397 7.421 0.899 0.846  8 0.443 9.234 0.884 0.810  
9 0.397 7.416 0.899 0.846  9 0.397 7.416 0.899 0.846  

MLR model 

  r2 0.899 ࡻࡻࡸ
 ࡻࡺࡸ 0.845 

 * 0.842 RMSE 0.397   

* Average value of N ranging from 2 to 14. 

2.2. External Model Validation and Y-Randomization Tests 

External validation tests were applied in order to evaluate the predictive power of the QSAR models 

constructed. A plot of experimental versus predicted pIC50 values comparing the compounds in both 

training and test sets, using the three regression techniques employed here, is shown in Figure 2. The 

good agreement between the experimental and calculated values indicates that predictive models were 

obtained, since good values of external validation correlation coefficients (ݍ௫௧ଶ ሻ and standard errors of 

prediction (SEP) were achieved (see Table 3). These results indicate that the QSAR models constructed 

can be used to accurately predict the biological activity of other compounds within this structural class. 

Chance correlations between the dependent variable and the selected descriptors were verified 

employing the y-randomization validation. In this test, the pIC50 values are scrambled and the r2 and q2 

values are calculated. If low values for both parameters are found, then one can be sure that a true 

correlation of the descriptors with the response variable exists in the data set [16,17]. In the 20  
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y-randomizations performed for our data, only low values of r2 and q2 were obtained (see Table 3). So, 

this indicates that the descriptors selected by the OPS algorithm possess a true correlation with the 

dependent variable, attesting that our statistical results are not a chance correlation result. 

Figure 2. Experimental versus predicted pIC50 values of the training and test set compounds. 

PLS PCR 

MLR 

Table 3. Statistical parameters of external validation and y-randomization tests. 

Model ࢚࢞ࢋ
  SEP ࢊࢇ࢘ିࢅ࢘

 * ࢊࢇ࢘ିࢅ
 * 

PLS 0.900 0.317 0.097 0.155 
PCR 0.904 0.312 0.143  0.055 
MLR 0.875 0.346 0.236  0.248 

* Average value of 20 Y-randomizations. 

The models obtained were ranked according to the methodology proposed by Karoly et al. [18,19], 

where ranks are compared with random numbers. The sum of ranking differences (SRD) arranges the 

models in such a way that low values of SRD are related to better models, while similar SRD values 

indicates the similarity of the models. Furthermore, the discrete distribution for a small number of 

objects (n < 14) is calculated, whereas the normal distribution is used as a reasonable approximation if 

the number of objects is large. This theoretical distribution is visualized for random numbers and can 

be used to identify SRD values for models that are far from being random, a procedure named as 

Comparison of Ranks by Random Numbers (CRNN). 
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The results for the ranking procedure are presented in Table 4 for training and test sets, while Figure 

3 shows the SRD distributions (data matrices are provided as supplemental material S2). These results 

indicate that for both training and test sets the models obtained are better (or similarly) ranked than the 

experimental values, and that the SRD values for models are not random. 

Table 4. SRD ranking of models and experimental values, p% interval and percentiles 

output for training and test sets. 

Training set Test set 

Ranking results p% Ranking results p% 
Name SRD x < SRD > = x Name SRD x < SRD > =x 

V1 * 92 1.05 10−18 1.48 10−18 V2 6 1.19 10−5 3.08 10−5 
V2 94 1.48 10−18 1.91 10−18 V4 6 1.19 10−5 3.08 10−5 
V3 108 9.18 10−18 1.10 10−17 V1 8 3.08 10−5 7.45 10−5 
V4 140 5.75 10−16 7.00 10−16 V3 12 1.73 10−4 3.88 10−4 

XX1 618 4.80 5.06 XX1 46 4.61 5.47 
Q1 684 24.67 25.64 Q1 58 24.45 27.12 

Med 732 49.24 50.40 Med 66 48.78 52.08 
Q3 778 74.96 75.88 Q3 74 73.59 76.22 

XX19 846 94.79 95.10 XX19 84 94.77 95.59 

* (V1 = PLS model, V2 = PCR model, V3 = MLR model, and V4 = experimental values). 

Figure 3. SRD-CRRN test results for (a) training and (b) test sets. 

 

(a) (b) 

2.3. Applicability Domain 

The applicability domain was defined here in terms of leverage and Studentized residuals for all 

samples in the training set. Leverage (h) is a quantity that represents a sample’s distance to the centroid 

of the training set. For the ith sample, ݄ ൌ ݔሺ்ܺܺሻିଵݔ
்  (i = 1, …, m), where ݔ  is the descriptor  

row-vector for compound i, m is the number of query compounds, ܺ is the n ൈ k training set matrix, k 

is the number of model descriptors and n is the number of samples in the training set. A leverage value 

greater than a certain critical value for a training set sample, defined here on the basis of 95% 

confidence level, means that the sample has a high influence in the model. 
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Concerning Y outliers, the simple examination of raw y residuals can be misleading due to the effect 

of leverage. A sample with an extreme y value pulls the model towards itself, decreasing the difference 

between its experimental and fitted y values. In contrast, a sample with a y value lying close to the y 

mean value, having little leverage, do not greatly influence the model so its y residual tends to be 

higher. In order to have a more realistic picture, the Studentized residual, ri, can be applied, since it 

takes leverage into account. ri is derived from the root mean squared y residual for the training set 

(RMSE), and is given by Equation (1): 

ݎ ൌ
݂

ሺ1ܧܵܯܴ െ ݄ሻଵ/ଶ
  (1)

Since it is assumed that ri is normally distributed, a t test can determine whether a sample’s 

Studentized residual is large enough to classify such sample as a Y outlier. Here, a critical value for ri 

was computed at a 95% probability level, based on the n training set samples. Finally, the plots of hi 

versus ri for the best PLS, PCR and MLR models were examined in order to determine the 

applicability domain of these models. Results are shown in Figure 4, where is possible to verify that 

none of the compounds from the training set can be considered as a response outlier, since all of them 

present low combined values of hi and ri. Although compound 25, in all models, and compound 42 in 

PLS and PCR present high Y residuals, both of them have extremely low leverage values, meaning 

that this outcome does not significantly influence the model. Meanwhile, compounds with relatively 

high leverage values (1, 41, 43–47 in PLS; 35, 38, 45–47 in PCR; and 40, 42, 46 and 47 in MLR) are 

inside the applicability domains of their respective models, since they are within the thresholds of ri. 

2.4. Molecular Implications for Ligand Design 

Since reliable QSAR models were obtained, the regression vectors can be used to analyze the 

selected molecular features and to suggest structural modifications that can be able to improve the 

biological activity of molecules similar to the ones studied here. The contributions of each descriptor 

to the regression vector for the best models obtained are displayed in Figure 5. 

Figure 4. Plots of leverage versus Studentized residuals for the regression models 

constructed. Blue lines indicate the thresholds representing a probability level of 95%. 
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Figure 4. Cont. 

Figure 5. Contribution of each descriptor to the regression vector. 
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ligands to biological receptors. For efficient and specific binding, the receptor cavity must be filled 

with the interacting ligand in the most optimal geometry [21]. Additionally, in this case, EHOMO must 

also have a high value, which indicates that a highly active molecule must be the one with a high 

ionization potential, meaning that it would easily donate an electron in a charge transfer mechanism [22]. 

Geometry, Topology and Atom-Weight Assembly (GETAWAY) descriptors such as H7m try to 

match 3D-molecular geometry provided by the molecular influence matrix and molecular topology 

with chemical information by using different atomic weightings (atomic mass, polarizability, van der 

Waals volume, and electronegativity) [23]. The information provided by the H7m descriptor in our 

PLS model is weighted by atomic masses, having a positive influence on the biological activity. 

BELp1 is also a 2D descriptor from the class of BCUT descriptors, which accounts for the first 

eight lowest absolute eigenvalues for the modified Burden adjacency matrix, where p refers to atomic 

polarizability and 1 is the eigenvalue rank. The ordered sequence of the lowest eigenvalues reflects the 

relevant aspects of molecular structure, which are useful for similarity searching [24]. JGI2 belongs to 

GALVEZ descriptors, which are the Galvez topological charge indices, and have their origin in the 

first 10 eigenvalues of the polynomial of corrected adjacency matrix of the compounds. JGI2 

represents the mean topological charge index of order 2 [25]. 

On the other hand, from the negative signs of regression coefficients of HATS4e, HATS3u, Mor23v 

and E1v, it is evident that these descriptors contribute negatively to the biological activity of adenosine 

compounds. Thus, lower values of these descriptors are required in order to obtain high activity 

compounds. HATS4e and HATS3u also belong to the class of GETAWAY descriptors. The HATS 

prefix means leverage-weighted autocorrelation, 4 and 3 are the lag numbers, and while HATS4e is 

weighted by atomic Sanderson electronegativities, HATS3u is unweighted [26]. The selection of the 

3D descriptors Mor23v can be related to the importance of molecular conformation of adenosine 

analogues for the interaction with key amino acids from the binding site of GAPDH [27]. E1v belongs 

to the class of Weighted Holistic Invariant Molecular (WHIM) descriptors, which contain 3D 

information calculated from the x,y,z-coordinates. E1v is the 1st component accessibility directional 

WHIM index, weighted by atomic van der Waals volumes [28].  

On the basis of the foregoing considerations, it is possible to observe a balance between steric and 

electrostatic properties influencing the affinity of adenosines to LmGAPDH, which is in agreement 

with the findings of Guido et al. [11]. Steric molecular features are represented by volume, H7m, E1v, 

and Mor23v, while descriptors EHOMO, HATS4e, BELp1, and JGI2 account for electronic aspects. 

3. Experimental 

3.1. Data Sets 

The 61 adenosine derivatives employed in this study were selected from the literature [7,29–32]. 

IC50 values, measured under the same experimental conditions, were converted to the corresponding 

pIC50 (-logIC50), and used as dependent variable in the regression analyses. Structures and pIC50 values 

for all compounds are displayed in Table 5. From the whole data set, 47 compounds were selected to 

constitute the training set, while 14 compounds were taken to compose a test set to be utilized in an 

external validation procedure. This selection was performed carefully in order to certify that the 
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structural diversity and the pIC50 distribution of the data set were well represented in both training and 

test sets. 

Table 5. Chemical structures and pIC50 values for training and test set compounds. 
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Table 5. Cont. 

Training set compounds 
Cpd Structure pIC50 Cpd Structure pIC50 
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Table 5. Cont. 

Training set compounds 
Cpd Structure pIC50 Cpd Structure pIC50 
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Table 5. Cont. 

Training set compounds 
Cpd Structure pIC50 Cpd Structure pIC50 
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3.2. Descriptor Calculation and Selection 

A pre-optimization of the geometries of all compounds were carried out with the semiempirical 

method PM3 [33,34]. A final optimization was performed with the density functional theory (DFT) 

using the B3LYP functional [35,36] along with the 6-311G** basis sets [37]. Several electronic 

descriptors were calculated using Gaussian 03 [37], and various structural descriptors were calculated 

with the QSAR module implemented in HyperChem 4.5 [34]. A set of 1,100 molecular descriptors, 

encoding information about molecular structure, connectivity and topology were also calculated with 

Dragon 5.4 [38]. All descriptors were autoscaled in order to give them the same weight in the analyses. 

With the aim to reduce the number of descriptors, the absolute values of correlation coefficients 

between each descriptor and pIC50 were calculated. Descriptors with coefficients lower than 0.3 were 

eliminated from the analysis, and so 72 descriptors remained. From this subset of descriptors, the ones 

presenting a non-uniform distribution related to the pIC50 were also eliminated, leaving 35 descriptors 

in the analysis. Then, the Ordered Predictor Selection (OPS) algorithm [13] was employed to perform 

a variable selection. The basic idea of this algorithm is to attribute an importance to each descriptor 

based on an informative vector. The columns of the matrix are rearranged in such a way that the most 

important descriptors are presented in the first columns. Afterwards, successive PLS regressions are 

performed with an increasing number of descriptors in order to find the best PLS model. In this 

analysis, the regression vector was used as an informative vector and the correlation coefficient of 

cross-validation, q2, as a criterion to select the best models. The suitability of the descriptors selected 

by this procedure was tested by performing Principal Component Regression (PCR) and Multiple 

Linear Regression (MLR). 

The best models were chosen on the basis of the cross-validation predicted residual error sum of 

squares (PRESS), being the optimal number of PLS or PCR components the one that minimizes 
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PRESS. Model quality was verified mainly by the correlation coefficients r2 and q2 and also by the 

prediction residuals, which are indications that the model can be used for making predictions of the 

biological properties of unknown compounds, which are structurally similar. Model robustness and 

sensitiveness were additionally evaluated by applying leave-N-out (LNO) cross-validation and  

y-randomization tests. It is important to mention that the model validation is a very crucial step in 

QSAR studies [39–42]. In the LNO cross-validation procedure, N compounds (N varying from 1 to 20) 

were left out from the training set. For a particular N, the data were randomized 30 times, and the 

average and standard deviation values for q2 were used. In the y-randomization, the dependent 

variable-vector was scrambled 20 times in order to verify the occurrence of chance correlations 

between the dependent variable and the selected descriptors [16,17]. Applicability domain was defined 

through the examination of the plots of leverage versus Studentized residuals for the best PLS, PCR 

and MLR models. 

4. Conclusions 

The continuous search for new antileishmanial compounds is undoubtedly important for the 

researches in neglected diseases. In this context, QSAR models can play an important role in the 

discovery and optimization of new drug candidates. In this work, PLS, PCR and MLR models were 

developed to provide indications on relevant molecular features for the antileishmanial activity of 

adenosine compounds. A set of nine descriptors selected by the OPS approach have demonstrated to be 

suitable for the construction of QSAR models. The models constructed can be used by researchers 

interested in synthesizing new adenosine compounds. Once a new adenosine compound is designed, its 

structure can be submitted to the calculations performed in our work, i.e., the variables selected in our 

study can be calculated for this new compound. Then, the values of these variables can be inserted into 

the regression models in order to predict the pIC50 for this compound. So, our models can be helpful to 

decide which compounds should be synthesized, saving time and resources. The good statistical 

parameters, stability and robustness of the models obtained, as assured by the validation tests applied 

over our data, indicate that these models can be used to design other adenosine derivatives with 

improved antileishmanial activity. 
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