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Abstract: The central dogma of molecular biology explains how genetic information is 

converted into its end product, proteins, which are responsible for the phenotypic state of 

the cell. Along with the protein type, the phenotypic state depends on the protein copy 

number. Therefore, quantification of the protein expression in a single cell is critical for 

quantitative characterization of the phenotypic states. Protein expression is typically a 

dynamic and stochastic phenomenon that cannot be well described by standard experimental 

methods. As an alternative, fluorescence imaging is being explored for the study of protein 

expression, because of its high sensitivity and high throughput. Here we review key recent 

progresses in fluorescence imaging-based methods and discuss their application to proteome 

analysis at the single cell level. 
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1. Introduction 

Gene expression describes how the genome sequence is decoded into proteins via an intermediate 

product, mRNA. Despite the relationship between genes, RNA, and proteins, their copy numbers show 

significant differences. The copy number of the genome in a single cell is constant: at the G1 phase, 

one haploid has one copy and one diploid has two. In contrast, the copy numbers of mRNAs and 

proteins fluctuate with time and vary from cell to cell, including even isogenic cell populations, owing 

to stochastic molecular reactions during gene expressions, such as the stochastic binding of RNA 
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polymerases to the genome and ribosomes to the mRNA [1]. Thus, a single genome sequence can 

cause a variety of cellular phenotypes by generating different mRNA and protein copy numbers. 

Although a stochastic mechanism for gene expression may intuitively seem detrimental to cell 

stability, this property is thought crucial for many biological processes, such as differentiation and 

evolution [2,3]. One approach to studying this stochasticity and its impact on cell function is single cell 

gene expression analysis methods. 

Because of their numbers, quantifying how many molecules are in a single cell is a tremendous 

challenge. Single cell transcriptome analysis techniques based on mRNA sequencing and cDNA 

microarray have made great inroads on this goal [4,5]. Single cell proteome analysis, however, has 

proven more difficult. Nevertheless, increasing improvements in the sensitivity of techniques such as 

mass spectroscopy have made this task more achievable [6,7]. 

Another approach gaining popularity for the characterization of protein expressions in a single cell 

is fluorescence imaging [1,8–12]. Here, the protein amount can be quantified by imaging proteins that 

are efficiently labeled with a fluorescent protein. Fluorescence-based methods enable time-lapse 

measurements [8], because it is not necessary to decompose the observed cell for analysis, which is 

unlike the case in mass spectroscopy. In addition, fluorescence imaging can measure the localization of 

the proteins with high resolution at the micrometer level and realize single molecule sensitivity [9,10]. 

Thus, it offers molecular counting in a single cell with precise quantification of the stochastic gene 

expression. Currently, the number of protein types that can be imaged at the same time is limited, but 

several methods for system-wide characterization have been proposed [11,12]. In this review, we 

highlight recent methods for single cell protein expression analysis based on fluorescence imaging. 

2. Significance of Single Cell Protein Expression Analyses 

For genome-wide analyses in a single-cell, gene expression is routinely determined by measuring 

mRNA. Recent advances in amplification techniques have greatly aided the detection and quantification of 

mRNA compared with proteins. Because protein levels are predominantly determined by corresponding 

mRNA levels, mRNA measuring techniques have been used to estimate protein levels. In fact, this 

correlation is common across taxa, from bacteria to mammals [13].  

However, at the same time, several reports have suggested that the protein copy number is 

determined more by translational control than by transcriptional control, arguing these indirect 

observations of protein abundance can be misleading. Schwanhäusser et al., calculated the copy 

numbers and half-lives of mRNA and proteins for over 5000 genes simultaneously in mouse fibroblast 

cells by pulse labelling followed by mass spectrometry and RNA-sequencing [14]. By combining the 

measured concentrations and degradation rates of the mRNA and proteins into a mathematical model, 

they predicted the rates of transcription and translation. The authors concluded that the protein level 

was controlled more by the translation rate than the transcription rate, demonstrating the importance of 

measuring not just the transcriptome, but also the proteome when studying cell function.  

Accumulating data also suggest that protein concentrations generally cover a higher dynamic range 

than mRNA concentrations across organisms (Figure 1a). For example, in E. coli, protein copy numbers 

range from 10−1 to 104 per cell, while mRNA copy numbers range far less, from 10−3 to 101 per cell [12]. In 

baker’s yeast, cells were seen to contain 101 to 105 copies of protein, but approximately only 10−1 to 
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102 copies of mRNA [15]. Similarly, in mouse fibroblasts, the copy numbers of protein and mRNA 

were measured as 102 to 108 and 1 to 104, respectively [14]. The difference in the dynamic range of 

protein and mRNA copy numbers indicates there exists an amplification step post-transcription.  

Figure 1. (a) Relationship between proteins and mRNA levels across organisms. Data for 

E. coli, S. cerevisiae, and mouse fibroblast were adapted from references 12, 15, and 14, 

respectively. (b) Correlation plot of mRNA and protein levels of a TufA gene tagged with 

YFP in single E. coli cells. (c) Among the 129 genes that were high copy and analyzed, no 

correlation was observed between mRNA and protein levels in a single E. coli cell. Data 

taken from [12].  

 

Those studies compared protein and mRNA abundances from the same gene in the same species. 

Others have examined orthologs across diverse species. Comparisons of nematode and fly showed that 

the protein abundances of orthologous genes correlate better than do the protein abundance and mRNA 

abundance within the same organism or the mRNA abundances across organisms [16]. Similar results 

have been obtained by comparing the protein and mRNA abundances of orthologs across seven 

organisms that range from bacteria to human [17]. In addition, a recent report indicated that the protein 

levels in the lymphoblastoid cells of three different primates (human, chimpanzee, and rhesus 

macaque) are more conserved than are the mRNA levels [18]. That report further suggested that 

protein expression levels evolve under greater constraints than respective mRNA levels.  

The above studies measured mRNA and protein abundances using bulk measurements. On the other 

hand, Taniguchi et al. quantified the abundances simultaneously in a single-cell. They conducted 

fluorescence in situ hybridization (to detect mRNA) in combination with single molecule fluorescence 
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microscopy to measure an E. coli fluorescent-protein tagged protein library. They measured 129 highly 

expressed genes (an example of a correlation plot is shown in Figure 1b) and showed that protein and 

mRNA copy numbers are uncorrelated at the single-cell level (Figure 1c) [12]. The absence of 

correlation between protein and mRNA copy numbers in a single-cell can be explained by the different 

lifetimes of the proteins and mRNAs, as bacterial mRNAs are short-lived (0.6–36 min), whereas their 

proteins have a long lifetime exceeding cell division (~150 min). Therefore, the abundances of mRNA 

can only reflect gene expression states over a short period of no more than half an hour, while that of 

proteins can reflect the accumulated results of gene expression for a period that goes beyond the 

duration of the cell cycle. This result offers a cautionary note for single-cell transcriptome analysis and 

suggests the importance of single cell proteome analysis. 

3. Stochastic Nature in Gene Expression 

Stochasticity in gene expression is often dominated by “bursting”, a phenomenon that describes 

how multiple gene expression products are generated during intermittent active periods that are 

separated by inactive periods. According to the central dogma, two types of bursts exist, transcriptional 

bursts and translational bursts. Regarding transcriptional bursts, many mRNA molecules are produced 

in a short period rather than with a constant probability per unit time. On the other hand, in 

translational bursts, many protein molecules are produced from a single mRNA when the rate of 

protein translation is greater than that of mRNA degradation. 

Experimentally, transcriptional bursts have been observed in single E. coli cells (Figure 2a) [19,20], 

eukaryotes [21], and other higher eukaryotes [22]. Real-time observation of mRNA expression in 

living cells has demonstrated that genes are transcribed in a discontinuous fashion. To visualize mRNA 

molecules, the MS2 system has been used [19–22]. This approach exploits the specific interactions 

between the MS2 hairpin RNA and a complex that includes a fluorescent protein and the MS2 capsid 

protein. Additionally, luminescence imaging has revealed the transcription kinetics of the short-lived 

luciferase reporter system [23], and RNA FISH experiments allow us to analyze variations in the number 

of mRNA molecules that result from transcriptional bursts without the use of a genetic tag [24–27].  

There are several possible mechanisms that explain the transcription burst phenomena [28]. One is 

promoter on/off switching. The binding and unbinding of regulatory molecules, such as histones and 

transcription factors, may also be a cause. A recent in vitro assay has indicated that DNA supercoiling 

in the promoter region may also be responsible [29]. In addition, global factors that affect gene 

activities at the whole gene level, such as cell-cycle-dependent regulation of the promoter activity and 

the cooperative recruitment of RNA polymerases, are also considered possible causes [28]. 

Similarly, the observation of translational bursts has been reported. One study monitored the 

production of single proteins in single E. coli cells by imaging newly synthesized fluorescent-fused 

proteins under the control of the lac promoter (Figure 2b) [10]. The same study demonstrated that 

proteins were generated in bursts from a single mRNA, with each burst generating an average of  

4.2 proteins. The same lab acquired similar results when applying the enzymatic amplification method 

on the same lac promoter and another reporter gene, β-galactosidase, in S. cerevisiae [9].  
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Figure 2. Stochastic gene expression. (a) Experimental observations of transcriptional 

bursts. Expressions of mRNA molecules in single E. coli cells are visualized in real-time 

by labeling the MS2-GFP system [19]. Each green spot consists of one or more mRNA 

molecules (left). Time trace of mRNA expression in single cells (right). (b) Experimental 

observations of translational bursts. The expression of proteins labeled with Venus in 

single E. coli cells are visualized in real-time. Venus molecules are photobleached 

immediately after the image acquisition so that only newly synthesized proteins are imaged 

each time [10]. Each yellow spot represents single protein molecules (top). Corresponding 

time courses (bottom). (c) Model for stochastic gene expression. The promoter transitions 

between an inactive ‘off’ state and an active “on” state with rates kon and koff. During the 

on state, mRNAs are transcribed at the rate of k1, and proteins are translated at the rate k2. 

mRNAs and proteins are degraded at the rates γ1 and γ2, respectively. The states of 

degraded mRNAs and proteins are indicated as ϕ. Images are taken from [10,19]. 

 

Bursting behaviors can be described with a simple kinetic model, where transcription, translation, 

promoter switching, and the degradation of mRNA and proteins, are assumed as first-order reactions 

(Figure 2c). This model was first introduced by Peccoud and Ycart [30] and is now broadly used to 

understand quantitative gene expression at the single molecule level. The rates of transition between 

the on and off states are indicated in the figure as kon and koff, respectively. The rate of transcription in 

the on state is described as k1, and the rate of translation as k2. The rates of degradation for mRNA and 

protein are defined as γ1 and γ2, respectively. Transcriptional bursting occurs during the on state. The 

number of mRNAs produced in a single transcriptional burst, or transcriptional burst size, is given by 

k1/koff. The transcriptional burst frequency changes with the duration of the inactive period (kon). In 

contrast, the translational burst size, which denotes the number of proteins per single mRNA, is given 

by k2/γ1. This means that bursts of protein expression occur when k2 is greater than γ1, which is the 

case for most genes in budding yeast [31]. 
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Because γ1 is much greater than γ2, the steady-state distribution of mRNA and protein copy 

numbers among a cell population can be given by solving the master equations for this model [31]. 

The probability density function of having m mRNAs at steady-state is: 

Pm = ms
meିms

m! ∙ Γ൫ζon + m൯Γ൫ζon + ζoff൯
Γ൫ζon + ζoff + m൯Γ൫ζon൯ ∙ F1 1 ൫ζoff, ζon + ζoff + m;ms൯ 

where ms = k1/γ1, ξon = kon/γ1, and ξoff = koff/γ1. 1F1(a,b;z) is the confluent hypergeometric function of 

the first kind. In contrast, the probability of having n proteins is given by: 

Pn = Γ(α+ n)Γ(β+ n)Γ(kon + koff)
Γ(n + 1)Γ(α)Γ(β)Γ(kon + koff + n) ∙ ( b

1 + b
)n ∙ (1 − b

1 + b
)α∙ F2 1 ൬α+ n, kon + koff − β, kon + koff + n; b

1 + b
൰ 

where a = k1/γ2, b = k2/γ1, α = (1/2)(a + kon + koff + ϕ), β = (1/2)(a + kon + koff − ϕ) and ϕ = (a + kon + 

koff)
2 − 4akon. 2F1(a,b,c;z) is the Gaussian hypergeometric function. Assuming that DNA is always 

active at steady state (koff → 0), this equation becomes a negative binomial distribution [32]. 

Moreover, assuming a continuous variable for n leads to a gamma distribution [33], which has been 

used to analyze the distributions of protein concentrations (but not protein copy numbers) in single  

E. coli cells, and minimizes any effects on the analysis caused by abrupt changes in protein numbers 

before and after cell division [12]. In fact, it has been shown that in E. coli the distribution of almost all 

protein concentrations can be described by a gamma distribution. 

In the above equation, the protein noise, defined by η2 = <n2>/<n>2, satisfies: 

η2 = 1〈n〉 + γ2

γ1

1〈m〉 + γ2

γ2 + kon + koff
ηD

2  

where <m> and <n> are the mean numbers of mRNA and protein, respectively, and ηD
2 is the noise 

when DNA is in its active state and equals koff/kon. This equation demonstrates that the noise in protein 

expression levels can be influenced by any rates of translation, transcription or promoter switching, 

which is consistent with an expanded model [34]. 

The above model attributes intrinsic noise in protein copy numbers to the stochasticity inherent in 

gene expression. Additionally, a previous work has shown the existence of another noise source, 

extrinsic noise, due to fluctuations in other cellular components [1]. Subsequent work has indicated 

that extrinsic noise is inherited over a timescale of about one cell cycle, while intrinsic noise decays 

rapidly [8]. Extrinsic noise can be modeled in the above simple kinetic model by adding static or 

slowly varying heterogeneities in individual rate constants among cells [12]. In the E. coli case where 

the intrinsic noise distribution is described as a gamma distribution with two adjustable parameters, 

Pn(aE, bE), the total noise distribution can be expressed as: 

Pntotal
= නන Pn(aE, bE)f(aE)g(bE)daEdbE

∞

0

∞

0

 

where it is assumed that aE and bE exist with distributions of f(aE) and g(bE), respectively. Thus, the 

noise, ηtotal
2, is given by: 
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ηtotal
2 = 〈b〉 + 〈b〉ηb

2〈n〉 + ηa
2 + ηa

2ηb
2 + ηb

2 

where ηa
2 = <aE

2>/<aE>2 and ηb
2 = <bE

2>/<bE>2. The extrinsic noise in the last three terms predicts the 

existence of an unavoidable, global noise floor independent of the mean protein abundance, <n>, 

which is consistent with previously reported experimental observations [12]. 

Taken together, adding to the simple kinetic model described in Figure 2 the assumption of static 

heterogeneities in kinetic rate constants among cells can describe both intrinsic and extrinsic noise at 

the single cell level. These mathematical descriptions quantitatively connect the steady-state 

distributions of mRNA and protein copy numbers among cells with fluctuations of mRNA and protein 

copy numbers over time within a cell lineage. More importantly, the models are conducive for 

understanding the complexity of gene expression behaviors at the single cell level. 

4. Single Molecule Detection of Protein Expression  

As noted above, fluorescence imaging can provide quantitative measurements of protein expression 

levels in single cells, which are essential to understanding cell dynamics and cell heterogeneity. One 

common approach to quantifying protein copy numbers in a single living cell is the use of a genetic 

tag. Typically, the coding sequence of a fluorescent protein is genetically inserted downstream of a 

promoter or is fused to or replaced with an open reading frame of the protein of interest so that the 

target promoter or protein expression coincides with the expression of the fluorescent protein. Protein 

expression levels can thus be monitored in real-time with fluorescence microscopy by evaluating 

integrated intensities within the cells. An alternative way to study protein expression levels is to label 

proteins with fluorescence antibodies in fixed cells. This method, unfortunately, does not perform  

real-time monitoring of protein levels and is highly affected by the recognition ability of the antibody. 

However, it also has no need for a priori genetic manipulation and causes no artifactual perturbation in 

the genetic tagging, which makes it suitable for many purposes in both scientific research and  

clinical diagnosis.  

Concentrated efforts on new technologies have led to the detection of single molecules in single 

cells by single-molecule fluorescence microscopy. Such sensitivity promises new insights on gene 

expression, including the ability to detect the copy numbers of proteins, which can then be used to 

characterize protein localization and diffusion with high spatiotemporal resolution. For example,  

Choi et al., monitored stochastic phenotype switching in the carbohydrate metabolism of single E. coli 

cells [35]. Below we introduce several methods for single molecule detection. 

Yu et al., visualized gene expressions of single living E. coli cells at the single-molecule level 

(Figure 3a) [10], finding they occur in bursts. To investigate the expression of the lac promoter, a 

complex that includes the membrane protein Tsr and YFP-variant fluorescence protein Venus [36] was 

inserted downstream. Tsr was used to localize the fluorescence probe to the membrane, as otherwise 

the complex could diffuse into the cytoplasm leaving its signal to be overwhelmed by the 

autofluorescence of the cell. Venus was included for several reasons. First, the maturation time of 

Venus to emit fluorescence (~7 min) is much faster than the cell division time (about 150 min in 

typical E. coli cells in minimal media). Second, the brightness of Venus is sufficient to detect single 
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molecules. Third, the relatively higher wavelength of excitation for Venus (514 nm, cf. 488 nm for 

GFP) can minimize photo-excitation caused by cellular autofluorescence. 

Figure 3. Selected methods for single cell protein expression analysis. (a) Single molecule 

detection of protein expression at the membrane. The inclusion of a membrane protein 

(Tsr) into the gene assures the protein of interest will be localized at the membrane, while 

the inclusion of a fluorescent protein (Venus) into the gene assures detection of the 

membrane localization [10]. (b) Stroboscopic detection of single fluorescent proteins in 

single E. coli cells [37]. (c) Counting the number of FliM-Dendra2 in a E. coli cell with 

PALM/STORM. Bright-field image, super-resolution Flim-Dendra2 overlay image and 

diffraction-limited Flim-Dendra2 image are shown [41]. (d) Microfluidic system for 

monitoring single reporter molecules with the enzymatic assay. Schematic diagram of 

fluorogenic enzymatic reactions is shown on the bottom [9]. (e) Single-cell analysis chip. 

Schematic diagram of the molecule detection section illuminated by a focused excitation laser 

is shown on the top right. Examples of recorded frames are shown on the bottom right [43]. 

Images are taken from [9,10,37,41] and [43]. 

 

However, the inclusion of Tsr or any other membrane protein is a problem if one is interested in 

protein localization. As an alternative, Elf et al., have proposed a stroboscopic method (Figure 3b) [37]. 

(c)

(b)(a)

(d)

(e)
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This method uses short laser pulses (~1 ms) to excite the Venus probe. Because of the short lifetime of 

the pulse, even diffusing fluorescent protein molecules can be visualized as spots because the diffusion 

is nearly within the diffraction limit of light. Using this method, they characterized the diffusion states 

of the lac repressor interacting with the lac operator in living E. coli cells. 

When quantifying gene expression noise, i.e., measuring the distributions of protein copy numbers 

in a cell population, the above techniques are suitable only when investigating low copy numbers. For 

high copy numbers, a different strategy should be considered, because the many resulting fluorescent 

spots are likely to overlap with one another, which compromises the measurement. Taniguchi et al., 

designed a technique that quantifies gene expression noise for any protein abundance [12]. In this 

method, distributions of the number of fluorescent probes can be analyzed by deconvolving the 

measured fluorescence from the cell autofluorescence. 

However, even that approach does not allow for the investigation of high protein abundance at the 

single cell level. Recently, methods based on superresolution microscopy, such as photoactivated 

localization microscopy (PALM) [38] or stochastic optical reconstruction microscopy (STORM) [39], 

have been proposed for this purpose (Figure 3c) [40–42]. Here, the protein of interest is genetically tagged 

with a photo-activatable protein such as Dendra2 or mMaple3. The advantage of photo-activatable 

proteins is that they can be activated incrementally under a weak photoactivation condition, which 

allows them to be counted individually. One drawback of superresolution microscopy, however, is that 

it is not suitable for living cell analysis because of the relatively high risk of photodamage due to the 

long acquisition time. Still, it is arguably the most effective technique for counting proteins in 

individual cells.  

Fluorescence imaging can be used to study copy numbers without the use of exogenous 

fluorescence proteins as well, which reduces the risk of both phototoxicity and autofluorescence.  

Cai et al., monitored protein expressions in single living cells using a microfluidic device and the  

β-galactosidase assay (Figure 3d) [9]. In this assay, a coding sequence of β-galactosidase is genetically 

inserted into the gene of interest. While β-galactosidase itself is not fluorescent, it hydrolyzes 

fluorogenic substrates to produce a fluorescent product. To monitor protein expressions in a single cell, 

single cells are trapped inside microfluidic chambers and their fluorescence levels are measured.  

Huang et al. developed a method for protein counting that needs no genetic tagging nor editing 

(Figure 3e) [43]. This method uses a microfluidic device that can capture a single cell, lyse it, label the 

proteins with fluorescently-labeled antibodies, and separate the cell content by electrophoresis. The 

protein number can be determined by counting the number of molecules during migration. The group 

measured the β2 adrenergic receptor with high counting efficiency, finding this protein can vary from 

just a few thousand to several tens of thousands in SF9 insect cells. Although this approach cannot 

analyze the dynamics of gene expression, it is well suited for diagnostic purposes. 

5. Platforms for System-Wide Characterization 

Because any given cell function can be controlled by the expression of thousands of genes,  

systems-wide characterization is needed. Such a task is not trivial for fluorescence-based methods, 

because the broad excitation/emission spectrum seen for many fluorescent probes limits the number of 

probe species that can be analyzed independently and consequently the number of molecule types that 
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can be analyzed. For mRNA analysis, Levsky et al. offered a solution by proposing combinatorial 

labeling, which labels each mRNA species with different combinations of several different dyes [44]. 

This barcoding strategy increases the number of unique fluorescence spectra, and is especially 

advantageous when using superresolution microscopy to discriminate individual mRNA  

molecules [45,46]. However, applying this strategy to protein analysis is much more challenging, 

because the copy number of most proteins is much higher and the proteins themselves are harder to 

discriminate due to them localizing at higher densities. 

Figure 4. High-throughput single molecule fluorescence microscopy. (a) Chromosomal 

YFP fusion E. coli library. In each library strain, a YFP is translationally fused to the  

C-terminus of a protein in its native chromosomal position. (b) Microfluidic chip for 

imaging 96 library strains. Each strain is immobilized on a polylysine-coated coverslip and 

is scanned with a single molecule fluorescence microscope. (c–e) Three examples from a 

library of E. coli strains are shown. Images to the left are representative fluorescent images 

overlaid on phase-contrast images; histograms to the right are the distribution of copy numbers. 

Lines are curve fits to gamma distributions with parameters a and b. Taken from [12].  

 

One standard strategy for system-wide quantification of protein expression levels based on 

fluorescence imaging is to use a cell strain library. A library is typically a collection of many recombinant 

cell strains, in which a fluorescent protein is chromosomally fused to different genes [47–49]. The cell 

strains are measured using a high-throughput system from which system-wide information can be 

acquired. This method cannot measure the proteome in the same single cell, but can take advantages of 

(d)
(b)

(c)(a)

(e)
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fluorescence microscopy, which means it can be used to analyze dynamics with single molecule 

sensitivity. Such cell strain libraries have been constructed for many organisms, including E. coli [12], 

S. cerevisiae [47,50], C. elegans [48], and human H1299 lung carcinoma cells [51]. Furthermore, 

correlation analysis of all gene pairs in the entire gene set can describe the entire gene network in a 

single cell.  

To perform high-throughput analysis of many cell strains, high-throughput flow cytometry is 

preferred, as this technology automates the delivery of cell strains to a flow cytometer via an autosampling 

device [11,52]. With this system, approximately seven strains at >50,000 cells per strain can be 

measured per minute. Newman et al. have successfully measured >2500 GFP-tagged yeast strains at 

single-cell resolution [11]. Unfortunately, the flow cytometry method is inferior in sensitivity and 

resolution compared to standard cellular imaging. An alternative approach is to use an automated 

microscope system. The system described above by Taniguchi et al. can measure about two strains  

per minute and ~4000 E. coli cells per strain [12] (Figure 4). Accordingly, it was used to measure, 

1018 Venus-tagged E. coli strains at single-cell resolution and single molecule sensitivity.  

A protein chip approach that does not need any gene recombination has also been proposed [53]. 

Shi et al. developed the single-cell barcode chip, which is a microfluidics system in which single cells 

are captured and lysed in 2 nL chambers and the released proteins are assayed using an array of 

antibodies patterned inside the chambers. With this chip, 11 different protein species associated with 

the phosphoinositide 3-kinase signaling pathway were quantified. 

6. Future Perspectives 

Single live cell analysis with genetic tagging provides information that cannot be acquired by 

studying ensemble cell populations. The ability to characterize the dynamics and heterogeneity of gene 

expression will be instrumental in correlating stochastic gene expressions with biological phenomena, 

as has already been seen in bacterial persisters [54] and the translocation of transcription factors [55]. 

Similarly, correlation analysis between a large number of genes in single cells is expected to illuminate 

the network pathways and modules of gene regulations [56].  

One critical obstacle in live cell analysis is the creation of chromosomal fusion cell strains, 

especially in higher eukaryote and mammalian cells that have low efficiency of homologous 

recombination. However, progress is already being made, as random integration via a retrovirus was 

used to create a chromosomal fusion strain library of human lung carcinoma cells [57]. For efficient 

genetic engineering, technologies that use site-specific engineered nucleases such as truncated 

transcription activator-like effector nucleases and clustered regularly interspaced short palindromic 

repeat RNA-guided Cas9 nuclease have been investigated [58]. It is expected that these technologies 

will accelerate the generation of complete sets of chromosomal fusion strains in mouse and human cells. 

Another obstacle is imaging thicker cells or tissues (E. coli, cf. 0.5 μm; yeast, 5 μm; mammals  

>10 μm). In these cases, 3D stacking of images is done using different focal positions. To reduce the 

strong out-of-focus background that prevents quantitative analyses, 3D sectioning of stacked images is 

recommended. Confocal microscopy may be one option for this purpose, but it has relatively low 

sensitivity and the out-of-focus exposure of the excitation laser causes higher photodamage to the 

sample. In this regard, sheet illumination microscopy may be preferred [59]. This method combines 
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light-sheet illumination with orthogonal camera-based detection to achieve selective plane illumination 

that minimizes the photodamage. Using similar systems, the imaging of single molecule fluorophores 

has been achieved in living mammalian cells and tissues [60,61].  

Meanwhile, developments in single-cell analytic methods not requiring genetic tags will greatly 

advance diagnostic and clinical work. To analyze protein levels and localizations with fluorescence 

imaging, fluorescent antibodies are commonly used to label the proteins because of their high 

specificity. Protein interactions in single cells can also be probed using fluorescent antibodies. For 

example, multiplex proximity ligation assay was used to analyze the co-existence of two proteins 

bound to different antibodies that were conjugated with unique tag sequences and rolling circle 

amplification [62]. These single-cell technologies can visualize protein molecules and complexes at a 

single-cell level in tissue sections and are sufficiently sensitive for clinical samples.  

Alternatively, mass spectroscopy may not be as sensitive as fluorescent-dependent systems, but it 

offers to simultaneously measure vast kinds of molecules with high spectral resolution. Recently, 

single-cell mass cytometry has been reported [63]. Here, cells labeled with antibodies coupled to 

transition element isotopes are nebulized into single cell droplets, and the metal tags are quantified by 

time-of-flight mass spectrometry. This method has been used to characterize human born marrow cells 

with as many as 34 parameters, which is far more parameters than other systems have reported [64]. 

The high sensitivity is especially advantageous when only having access to a minimal amount of 

samples from patients, such as biopsies and blood tests. These technologies are expected to reveal 

differences in phenotypic states of single cells. 

Considering the exponential progress in single cell proteomics over the last decade, it is easy to 

anticipate new innovations that will make currently impractical experiments feasible in the near future. 

This progress will result in large datasets that are built from single-cell resolution and single-molecule 

sensitivity imaging on a systems-wide scale. These datasets will present new challenges, as 

investigators will need appropriate tools to analyze their content. The accumulating information from 

these techniques is allowing scientists to reveal more and more about the mechanisms and general 

rules of single-cell gene expressions, which are the basis for heterogeneous single cell activities and 

complex biological behaviors. 
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