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Abstract: Carbonic anhydrase (CA, EC 4.2.1.1) is a zinc containing metalloenzyme that 

catalyzes the rapid and reversible conversion of carbon dioxide (CO2) and water (H2O) into 

a proton (H+) and bicarbonate (HCO3
–) ion. On the other hand, capsaicin is the main 

component in hot chili peppers and is used extensively used in spices, food additives and 

drugs; it is responsible for their spicy flavor and pungent taste. There are sixteen known 

CA isoforms in humans. Human CA isoenzymes I, and II (hCA I and hCA II) are 

ubiquitous cytosolic isoforms. In this study, the inhibition properties of capsaicin against 

the slow cytosolic isoform hCA I, and the ubiquitous and dominant rapid cytosolic 

isozymes hCA II were studied. Both CA isozymes were inhibited by capsaicin in the 

micromolar range. This naturally bioactive compound has a Ki of 696.15 µM against hCA I, 

and of 208.37 µM against hCA II. 

Keywords: capsaicin; carbonic anhydrase; enzyme purification; enzyme inhibition; 

affinity chromatography 

 

1. Introduction 

Carbonic anhydrase (CA) enzymes are virtually ubiquitous in all living systems and have important 

roles in pH regulation, carboxylation reactions, fluid balance, bone resorption, tumorigenicity, calcification, 

the synthesis of bicarbonate and in many other pathological and physiological processes [1–4]. CA 
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catalyzes the reversible hydration of carbon dioxide (CO2) and water (H2O) to bicarbonate (HCO3
−) 

and a proton (H+) [5–9]. COଶ +	HଶO	 ⟺ HଶCOଷ ⟺ HCOଷି + Hା 

An enzyme inhibitor is a molecule that binds to an enzyme and decreases its activity. An inhibitor 

can prevent a substrate from entering the active site of the enzyme or hindering catalysis. It was well 

known that carbonic anhydrase inhibitors (CAIs) bind to a catalytic Zn2+ ion in the active site of CA 

isoenzymes and block their activity [10–15]. CAIs are clinically used to treat glaucoma, and as 

anticonvulsant agents [15], diuretics [6] and antiobesity drugs [16]. Additionally, they have recently 

been used in the management of hypoxic tumors [17]. The first aromatic and heterocyclic 

sulfonamides were clinically used derivatives of acetazolamide [18]. As seen in Scheme 1, to 

regenerate the basic form of the enzyme, a proton is transferred from the active site to the solvent. This 

proton transfer may be assisted by active site residues or by buffers present in the medium. The fourth 

position is occupied by H2O at acidic pH, and is catalytically inactive. At higher pH, the water 

molecule binds to Zn2+ within the CA active site, and the proton transfer reaction transfers a proton to 

the solvent, leaving an -OH [11,14]. 

Scheme 1. Schematic presentation of the catalytic inhibition mechanism for the CA 

catalyzed CO2 hydration. 
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Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) comes from the plants of genus Capsicum and 

is a pungent constituent of capsicum fruits, which are used extensively in condiments in Asian, 

African, and Latin American countries [19]. It is also used in a number of over-the-counter weight loss 

products because of its potential role in increasing metabolic activity [20]. It is the active and pungent 

ingredient in a wide variety of red peppers [21]. Because of its characteristic smell and taste, capsaicin 

is one of the most heavily consumed additives throughout the world [22]. 

Capsaicin is a naturally occurring alkaloid obtained from red peppers. It is generally isolated from 

Capsicum annuum and is responsible for the spiciness hotness of chili. Capsaicin and related 

compounds are referred to as capsaicinoids and are produced as secondary metabolites by red peppers [23]. 

The total intake of capsaicinoid compounds in Asian countries is estimated to be 25–200 mg/day per 

person given that as capsaicin accounts for 80% of the content of capsicum fruits [24]. In this study, we 

identify the potential inhibition profile and mechanism for human CA isoenzymes I, and II (hCA I, and II), 

which are widely used in the food and pharmaceutical industries. 

2. Results and Discussion  

Capsaicin is a monophenolic compound with an amide and lipophilic carbon chain on one end and a 

hydrophilic ring on the other. It is an amide derivative of vanillylamine and trans-8-methylnon-6-enoic 

acid. The vanillylamine moiety of capsaicin is biologically synthesized from phenylalanine. The fatty 

acid moiety at the other end is derived from valine [21]. Capsaicin is employed as an agricultural 

repellent and as an additive or colorant in the cosmetic, food and pharmaceutical industries. It has 

multiple pharmacological activities, including anti-inflammatory, anticancer [21], genotoxic and 

chemopreventive [25], antifungal and analgesic [26], neuroprotective [27], antiobesity [28],  

anti-apoptotic [29], and anti-epileptic effects and antioxidant activities [30]. Capsaicin is also useful in 

combating liver and duodenal cancers [31]. Previous research studies have shown that capsaicin 

induces apoptosis and cell-cycle arrest and inhibits cell proliferation in a variety of cancer cells [32]. 

Furthermore, it stimulates apoptotic cell death in rat trigeminal primary neurons when administered 

during the neonatal period [33]. 

It works to speed up the body’s metabolism by activation of the sympathetic nervous system [34]. It 

has been shown that, in comparison to a control capsaicin supplementation control during a negative 

energy balance counteracts the normal decrease in energy expenditure. Moreover, the consumption of 

capsaicin promotes fat oxidation in negative energy balance and does not significantly increase blood 

pressure [35]. The chemical structure of capsaicin is shown in Figure 1, as well as an estimated binding 

model of capsaicin to the active site of CA. A second hydrogen bond has been modeled between the 

oxygen atom of phenol moiety of capsaicin and the amide NH of Thr199, an amino acid residue that is 

universally conserved in CAs. Thus, by binding in a non-classical way to CAs, phenols and their 

derivatives provide interesting leads for identifying novel types of CAIs. Capsaicin has three classical 

structural characteristics in one molecule, an amide with a lipophilic carbon chain on one end and a 

hydrophilic ring on the other. There are a large number of capsaicin analogs that contain the same 

basic functional groups but possess variations in one or more of the three structural characteristics [36]. 
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Figure 1. The proposed binding model of capsaicin to CA by anchoring to the Zn2+ 

coordinated water/hydroxide ion (-OH). 
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both the Ki and IC50 parameters of the capsaicin were determined in this study. As shown in Table 1, 

Figures 2 and 3, the Ki values for capsaicin were found, and the corresponding IC50 values were 

calculated for each CA isoenzyme. For the cytosolic isoenzyme hCA I capsaicin had an IC50 values of 

428.04 µM and Ki values of 696.15 ± 59.37 µM (Table 1). For the physiologically predominant CA II, 

capsaicin had IC50 values of 316.01 µM and Ki values of 208.37 ± 14.38 µM. Many studies have 

shown that the inhibition of CA II is brought about by an inhibitor’s ability to bind to catalytic Zn2+ in 

the CA’s active site and mimic to tetrahedral transition state [6,11,14]. Thus, in Figure 1, we illustrate 

a binding model between capsaicin and the enzyme’s active site. There are important differences in 

inhibition between the two isoenzymes. The main difference in the active site architectures of two 

isozymes is due to the presence of more histidine residues in the CA I isoform [14]. In addition to the 

Zn2+ ligands (His 94, His 96, and His 119), discussed in the introduction, His 64 of CA I plays an 

important role in catalysis. 

Figure 2. Determination of Ki values of capsaicin for human erythrocyte carbonic 

anhydrase I (A), and II (B) isoenzymes (hCA I, and II) by Lineweaver-Burk plots. 

(A) (B) 

 

Figure 3. The effects of different concentrations of capsaicin on human erythrocyte 

carbonic anhydrase I (A), and II (B) isoenzymes (hCA I, and II). 
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Table 1. The inhibition profile of capsaicin on purified hCA I, and hCA II from human 

erythrocytes by Sepharose-4B-L-tyrosine-sulfanilamide affinity chromatography. 

Kinetic Parameters hCA I hCA II 

IC50 (µM) 428.04 316.01 
Ki (µM) 696.15 ± 59.37 208.37 ± 14.38 
Inhibition type Uncompetitive Uncompetitive 

Another important difference between the two isozymes is that CA II contains a histidine cluster, 

consisting of the following residues: His 64, His 4 His 3, His 10, His 15, and His 17 which is absent in 

CA I. Hence, these two isozymes exhibit different affinities for the inhibitors. In general, CA II has a 

higher affinity for the inhibitor than CA I [14]. 

hCA I is highly abundant in red blood cells and found in many tissues although its precise 

physiological function is unknown. CA I is associated with cerebral and retinal edema, and the 

inhibition of CA I inhibition may be a valuable tool for fighting these conditions. The physiologically 

predominant cytosolic isoform hCA II is ubiquitous and associated with several diseases including 

epilepsy, edema, glaucoma, and altitude sickness [17,48]. 

Acetazolamide is a well-known example of a clinically established carbonic anhydrase inhibitor [49,50] 

and in recent years we have reported on the strong inhibition of both human cytosolic CA I, and II. CA 

inhibitory effects are also exhibited by a wide spectrum of phenolic compounds including melatonin [9], 

morphine [51], vitamin E [52], CAPE [50], antioxidant phenols [47], phenolic acids [41], natural product 

polyphenols and phenolic acids [43], natural phenolic compounds [10], antioxidant polyphenol 

products [45,46], (3,4-dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and its derivatives [13], 

natural and synthetic bromophenols [53], novel sulfonamide derivatives of aminoindanes and 

aminotetralins [7], novel phenolic sulfamides [54], novel phenolic benzylamine derivatives [5], novel 

sulfamide analogues of dopamine related compounds [3], new benzotropone derivatives [11], 

brominated diphenylmethanone and its derivatives [55] and novel sulfamides and sulfonamides 

incorporating tetralin scaffold [4] have been reported. These extensive studies indicate the importance 

of CA I, and II isoenzyme inhibitors. 

3. Experimental 

Biochemistry 

Both of the CA isoenzymes were purified by Sepharose-4B-L tyrosine-sulphanilamide affinity 

chromatography [51] accordance to previous studies [52,56]. For purification, the lysate was adjusted 

to pH 8.7 with Tris. Then, an aliquot of the lysate was applied to the affinity column and proteins content 

in the eluates was observed spectrophotometrically at 280 nm. Sodium dodecyl sulphate-polyacrylamide 

gel electrophoresis (SDS-PAGE) was performed after purification of the enzymes. The isoenzymes 

purities were determined by SDS-PAGE and a single band was observed for each CA isoenzyme [57]. 

This method has been described previously [58] and was performed using acrylamide in the running 

(10%) and the stacking gel (3%) with SDS (0.1%) [59,60]. 

Both CA isoenzyme activities were determined according to Verpoorte et al. [61] as described 

previously [62,63]. The absorbance change at 348 nm was observed over a period of 3 min at room 
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temperature (25 °C) using a spectrophotometer (UVmini-1240 UV-VIS spectrophotometer, Shimadzu, 

Kyoto, Japan), before and after adding the sample. One unit of enzyme activity was expressed as 1 mol/L 

of released p-nitrophenol per minute at 25 °C [64]. The quantity of protein was spectrophotometrically 

determined at 595 nm during purification the Bradford method [65] and bovine serum albumin (BSA) 

was used as the standard protein [66–68]. 

The inhibition effect of capsaicin on CA isoenzymes was measured the hydrolysis of p-nitrophenyl 

acetate (PNA) by CA to p-nitrophenol; p-nitrophenol can be quantified spectrophotometrically [12]. 

The CA-catalysed reaction of CO2 hydration was first observed in the absence of capsaicin; the rates 

were measured and used as a control for the CA isoenzymes. Then the same reaction was measured in 

the presence of capsaicin. The percent inhibition was determined with (%) = [100 − (ATC/AC) × 100]; 

ATC is the absorbance of the sample containing capsaicin and AC is the absorbance of the control 

sample. Activity (%)-[capsaicin] graphs were drawn and the half maximal inhibitory concentration (IC50) 

values of capsaicin exhibiting more than 50% inhibition of CA were calculated after suitable dilutions. 

IC50 is a measure of the potency of capsaicin in inhibiting CA isoenzyme activity. In addition to these 

values, the Ki values for capsaicin were determined for each isoenzyme. To determine the Ki values, 

capsaicin was tested at three different concentrations. Ki is the binding affinity constant of the 

inhibitor. In these experiments, NPA was used as the substrate at five different concentrations and 

Lineweaver-Burk curves were drawn [69] in detail as described previously [70–73]. 

4. Conclusions 

Capsaicin exhibited unique inhibition profiles against both CA isoform I, and II. These results 

indicate that, despite the high homology between these two CAs, they do not display similar activity. 

The logic of working with capsaicin was first to identify a potent CA inhibitor because phenolic 

compounds with aromatic rings have been previously identified as inhibitors of CA. In this study, 

micromolar levels of Ki and IC50 values in the micromolar range were observed for capsaicin. We show 

that capsaicin is a selective inhibitor of both cytosolic CA isoenzymes. These results clearly indicate the 

potential use for bioactive phenolic capsaicin in identifying more CA inhibitors and for eventually 

targeting additional isoforms. 
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