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Abstract: Theoretical reactivity indices based on the conceptual Density Functional Theory (DFT)
have become a powerful tool for the semiquantitative study of organic reactivity. A large number of
reactivity indices have been proposed in the literature. Herein, global quantities like the electronic
chemical potential µ, the electrophilicityω and the nucleophilicity N indices, and local condensed
indices like the electrophilic P`k and nucleophilic P´k Parr functions, as the most relevant indices for
the study of organic reactivity, are discussed.
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1. Introduction

Since the introduction of the chemical bond concept by Lewis at the beginning of the 20th
century [1], two quantum-chemical theories, namely, the Valence Bond (VB) theory [2–4] and the
Molecular Orbital (MO) theory [5] based on Schrödinger’s equation [6], have been developed.
In the 60s of the last century, based on the Hohenberg and Kohn theorems, a new quantum-chemical
theory to study the structure of matter, known as the Density Functional Theory (DFT) [7], in which
the ground state energy of a non-degenerate N-electron system is a unique functional of the density
ρ(r), was established:

E rρ prqs “
w
ρ prq v prq dr ` F rρ prqs (1)

F[ρ(r)] is the universal functional of Hohenberg-Kohn given by the sum of the kinetic energy
functional, T[ρ(r)], and the electron–electron interaction energy functional, Vee[ρ(r)], and v(r) is
the “external one electron potential”, i.e., the electron nucleus Coulomb interaction. This theorem
constitutes the rigorous theoretical foundation of the DFT. Within the DFT framework, the electron
density can be expressed as the functional derivative of the energy with respect to the external potential,
the number of electrons being kept constant:

ρ prq “
ˆ

δE
δν prq

˙

N
(2)

Thus, DFT calculations imply the construction of an expression of the electron density. Similar
to the quantum-chemical theory based on Schrödinger’s equation, the resolution of the functional of
the electron density ρ(r) for a complex system neither is computationally feasible. The mathematical
problem is the definition of each term of the functional F[ρ]. As an approximation, the Kohn-Sham
formalism [8] was introduced in analogy to the Hartree-Fock equation. In the last decades, a series
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of empiric DFT functionals, such as B3LYP [9,10], MPWB1K [11] and, more recently, M06 and related
functionals [12], which provide accurate energies, have been developed, making the study of organic
reactions with a computational demand similar to MO calculations possible.

The development of the topological analysis of the Electron Localisation Function [13] (ELF) at the
end of the 20th century allowed understanding a rigorous quantum-chemical analysis of the molecular
electron density in terms of non-bonding and bonding molecular regions. This analysis makes the
creation of a molecular picture that can be related to the Lewis bonding pattern possible.

The ELF topological analysis of the bonding changes along a reaction path has allowed establishing
the molecular mechanism of most organic reactions. Numerous studies of organic reactions involving
C–C bond formation processes have enabled the establishment of a reactivity model in which these
bonds are formed through the C-to-C coupling of two pseudoradical centers [14] generated along the
reaction path [15]. Interestingly, non-polar, polar and ionic reactions involving C–C double bonds
show this pattern. In non-polar reactions, the energy demanded for the rupture of the C–C double
bonds, which is required to reach the pseudoradical structures, accounts for the high activation energies
associated with non-polar processes. It is noteworthy that these high activation energies decrease
with the increase of the polar character of the reaction. In this sense, Domingo proved that the Global
Electron Density Transfer [15] (GEDT) taking place in polar processes favours the changes in electron
density demanded for the C–C single bond formations.

These findings have recently made it possible to establish the Molecular Electron Density
Theory [16] (MEDT), which states that “while the electron density distribution at the ground state is
responsible for physical and chemical molecular properties, as proposed DFT [7], the capability for changes in
electron density, and not molecular orbital interactions, is responsible for molecular reactivity” [15]. Indeed,
it was Parr who established that the electron density distribution at the ground state is responsible for
the chemical properties of molecules and, accordingly, MEDT proposes that the reactivity in organic
chemistry should be studied analysing the electron density reorganisation along a chemical reaction.

Within DFT, a series of chemical molecular properties derived from the exchange of electron
density at the ground state of the molecules have been developed, becoming powerful tools for an
earlier study of the molecular reactivity in polar processes, which are characterised by the flux of
GEDT from electron donor molecules (nucleophiles) to electron acceptor molecules (electrophiles).

2. Conceptual DFT

One of the most relevant traits of the density functional language is its suitability for defining
and elucidating important chemical concepts of molecular structure and reactivity. Parallel to the
development of quantum-chemical models to approach the Hohenberg-Kohn equation [7], Parr
developed the so-called “conceptual DFT” in the late 1970s and early 1980s [17]. Conceptual DFT is a
DFT-subfield in which one tries to extract from the electron density relevant concepts and principles that
make it possible to understand and predict the chemical behaviour of a molecule. Parr and co-workers,
and later a large community of theoretical chemists, have been able to give precise definitions for
chemical concepts which had already been known and used for many years in various branches of
chemistry, electronegativity as the most noticeable example, thus providing their calculations with
a quantitative use. Herein, the most relevant indices defined within the conceptual DFT [18] for the
study of the organic reactivity are discussed.

Conceptual DFT essentially relies on the fact that the ground state energy of an N-electron system
as given by the Hohenberg-Kohn theorem (Equation (1)) can be considered as depending upon the
number of electrons N and the external potential v(r), which are themselves determined solely by the
density, in other words E[ρ(r)] = E[N;v(r)]. In this context, the responses of the system to changes of the
number of its electrons, of the external potential or of both, provide information about its reactivity.

The E[N;v(r)] derivatives with respect to N and v(r) constitute a first series of reactivity indicators,
the electronic chemical potential µ, which is the opposite of the electronegativity χ, the chemical
hardness η, the Fukui function f (r) and the two variables linear response function χ(r,r1), as shown
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in the diagram given in Figure 1. The left side properties in the diagram are global properties, i.e.,
their values are the same wherever the position they are calculated, whereas the right side ones are
local functions of one or two coordinate variables, i.e., their values depend on the position where they
are evaluated.
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Herein, the electronic chemical potential µ, the electronegativity χ, the chemical hardness η, the
electrophilicityω and nucleophilicity N indices, and the Fukui f (r) and Parr P(r) functions, as well as
their applications in the study of organic chemical reactivity, will be discussed. Non-local response
functions such as X(r,r1) are out of the scope of this review.

2.1. Electronic Chemical Potential µ and Mulliken Electronegativity χ

In 1983, Parr defined the electronic chemical potential µ as the energy changes of the system with
respect to the electron number N at a fixed external potential v(r), i.e., the potential created by the
nuclei (see Equation (3)) [19,20]. The electronic chemical potential µ is associated with the feasibility of
a system to exchange electron density with the environment at the ground state.

µ “

ˆ

BE
BN

˙

νprq
(3)

Applying the finite difference approximation, the following simple expression is obtained:

µ « ´
pI ` Aq

2
(4)

where I and A are the ionisation potential and the electron affinity of an atom or molecule, respectively.
Although a large number of experimental I values for organic molecules can be obtained, a very small
number of experimental A values can be found. Using Koopmans theorem [21] and Kohn–Sham
formalism [8] within the DFT, these energies can be approached by the frontier HOMO and LUMO
energies as I by ´EHOMO and A by ´ELUMO. Consequently, the electronic chemical potential µ can be
expressed as:

µ «
pEHOMO ` ELUMOq

2
(5)

The electronic chemical potential µ of some reagents involved in Diels-Alder reactions is given
in Table 1. In this short series, while reagents such as tetracyanoethylene 1a, µ = ´7.04 eV, located
at the top of Table 1, will act as strong electron-acceptor molecules, reagents located at the bottom
such as dimethylvinyl amine 1j, µ = ´1.85 eV, will act as strong electron-donor molecules. As can be
seen, butadiene 1f, µ = ´3.46 eV, and cyclopentadiene 1h, µ = ´3.01 eV, present a similar electronic
chemical potential µ as ethylene 1g, µ = ´3.37 eV. Consequently, it is expected that the Diels-Alder
reactions of dienes 1f or 1h with ethylene 1g will present a low polar character [22]. The increase of
the electron-withdrawing character of the substituent present in ethylene 1g, –CHO < –CN < –NO2,
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decreases the electronic chemical potential µ of the corresponding ethylene derivative, 1e < 1d < 1c,
thus increasing the polar character of the reactions towards dienes 1f or 1h.

Table 1. B3LYP/6-31G(d) electronic chemical potential µ, in eV, of some reagents involved in
cycloaddition reactions.

Entry Molecule µ

1a (CN)2C=C(CN)2 ´7.04
1b CH2=C(CN)2 ´5.64
1c CH2=CHNO2 ´5.33
1d CH2=CHCN ´4.70
1e CH2=CHCHO ´4.38
1f CH2=CH–CH=CH2 ´3.46
1g CH2=CH2 ´3.37
1h Cyclopentadiene ´3.01
1i CH2=CHOCH3 ´2.43
1j CH2=CHN(CH3)2 ´1.85

The identification of the electronic chemical potential µ with the negative of Mulliken
electronegativity, ´χ, which is a measure of the resistance to electron density loss, offers a way
to calculate electronegativity values for atoms and molecules. In this sense, it was an important step
forward, as there was not a systematic way to evaluate electronegativities for atoms and molecules
with the existing scales established by Pauling [23,24].

χ “ ´µ «
pI ` Aq

2
(6)

Electronegativity Equalisation Principle

According to the electronegativity equalisation principle, primarily formulated by
Sanderson [25–28], “when two or more atoms initially different in electronegativity combine
chemically, their electronegativities become equalised in the molecule”. The correctness of Sanderson’s
principle immediately comes from the fact that the electronic chemical potential µ is a property of an
equilibrium state. Consequently, when two atoms A and B, with uA < uB, approach one another, there
is a flux of electron density from B, the less electronegative atom, towards A, the more electronegative
one, to equilibrate the electronic chemical potential uAB in the new interacting system.

Accordingly, the electronic chemical potential µ allows the establishment of the flux direction of
the GEDT [15] along a polar reaction. Likewise, in a polar reaction involving two molecules, A and
B, with uA < uB, the electron density flux will take place from molecule B, which has the higher µ,
towards molecule A, which has the lower µ. Therefore, along a polar process, while A will act as the
electron-acceptor, i.e., the electrophile, B will act as the electron-donor, i.e., the nucleophile. The larger
the electronic chemical potential difference, ∆µ, the larger the GEDT.

2.2. Chemical Hardness η and Softness S

In 1963, Pearson established a classification of Lewis acids and bases into hard and soft [29–31].
He proposed that in an acid/base reaction, the most favourable interactions take place between
hard/hard or soft/soft pairs, the hard and soft acids and bases (HSAB) principle. Within the conceptual
DFT, Parr defined, in 1983, a quantitative expression for the chemical hardness η, which can be
expressed as the changes of the electronic chemical potential µ of the system with respect to the
electron number N at a fixed external potential v(r) [19]:

η “

ˆ

Bu
BN

˙

νprq
“

ˆ

B2E
BN2

˙

νprq
(7)
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The chemical hardness η can be thought as a resistance of a molecule to exchange electron density
with the environment.

Applying the finite difference approximation, the following simple expression is obtained:

η «
pI ´ Aq

2
(8)

which by substitution of I by ´EHOMO and A by ´ELUMO can be expressed as:

η «
pELUMO ´ EHOMOq

2
(9)

Usually, the term 1/2 is neglected, so that the chemical hardness η is expressed as:

η « pELUMO ´ EHOMOq (10)

On the other hand, the chemical softness S was introduced as the inverse of the chemical
hardness η:

S “
1
η

(11)

The HSAB Principle and the Maximum Hardness Principle (MHP)

On the basis of a variety of experimental data, Pearson [29,30] presented a classification of
Lewis acids and bases and later provided the HSAB principle [31–33], which states that “among
the potential partners of same electronegativity, hard likes hard and soft likes soft”. On the other
hand, it was established that there exists a relationship between energy and hardness variations [19].
This relationship is based on the MHP that establishes that, in any chemical process, the systems
evolve toward an electronic state where its chemical hardness is a maximum [19]. When combined
with the minimum energy criterion that characterises stability, the MHP entails that, for a chemical
process characterised by a negative (stabilising) energy change, the change in chemical hardness will
always be positive.

2.3. The Fukui Functions f(r)

In 1984, in a short communication entitled “Density Functional Approach to the Frontier-Electron
Theory of Chemical Reactivity”, Parr [34] proposed the f (r) function, named frontier function or Fukui
function, for a molecule, which was defined as:

f prq “
ˆ

Bρ prq
BN

˙

νprq
(12)

The Fukui function f (r) represents the changes in electron density at a point r with respect to the
variation of the number of electrons N at a fixed external potential v(r).

Parr assumed that the preferred direction for the approach of a reagent towards the other is the
one for which the initial variation of the electronic chemical potential µ for a species is a maximum, and
the one with the largest f (r) is situated at the reaction site [34]. Using the frozen core approximation, in
which δρ = δρVALENCE, Parr proposed:

f´ prq « ρHOMO prq for electrophilic attacks (13)

and
f` prq « ρLUMO prq for nucleophilic attacks (14)

Although, in principle, the electron density of a neutral or N0˘1electron molecule contains all
the information needed for the evaluation of the Fukui function f (r), most studies in the literature
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have been carried out in the so-called finite difference method, in which the Fukui functions f (r) are
approximated as [35]:

f´ prq « ρNo prq ´ ρN´1 prq for electrophilic attacks (15)

and
f` prq « ρN`1 prq ´ ρNo prq for nucleophilic attacks (16)

where ρNo, ρNo´1and ρNo`1are the atomic charges in the neutral, cationic and anionic species.

2.4. The Electrophilicityω Index

In 1999, Parr defined the electrophilicity ω index [36], which gives a measure of the energy
stabilisation of a molecule when it acquires an additional amount of electron density, ∆N, from the
environment. The electrophilicityω index is given by the simple expression:

ω “
µ2

2η
(17)

The electrophilicity ω index encompasses the tendency of an electrophile to acquire an extra
amount of electron density, given by µ, and the resistance of a molecule to exchange electron density
with the environment, given by η. Thus, a good electrophile is a species characterised by a high |µ|
value and a low η value.

Besides, the maximum number of electrons that an electrophile can acquire is given by the
expression [36]:

∆Nmax “ ´
µ

η
(18)

The electrophilicity ω index has become a powerful tool for the study of the reactivity of organic
molecules participating in polar reactions [37]. A comprehensive study carried out in 2002 on the
electrophilicity of a series of reagents involved in Diels-Alder reactions allowed establishing a single
electrophilicity ω scale (see Table 2) [38]. In 2003, the three-atom-components (TACs) participating
in [3+2] cycloaddition (32CA) reactions were studied using the electrophilicity ω index, allowing
a rationalisation of their reactivity in polar processes [39]. The electrophilicity ω scale allowed the
classification of organic molecules as strong electrophiles with ω > 1.5 eV, moderate electrophiles
with 0.8 <ω < 1.5 eV and marginal electrophiles withω < 0.8 eV [38].

Table 2. B3LYP/6-31G(d) electrophilicity ω index, in eV, of some common reagents involved in
Diels-Alder reactions.

Entry Molecules ω

Strong electrophiles

2a CH2=N+(CH3)2 8.25
2b (CN)2C=C(CN)2 5.96
2c CH2=CHCHO:BH3 3.20
2d CH2=C(CN)2 2.82
2e CH2=CHNO2 2.61
2f CH2=CHCHO 1.84
2g CH2=CHCN 1.74
2h CH2=CHCOCH3 1.65
2i CH2=CHCO2CH3 1.51

Moderate electrophiles

2j CH2=CH–CH=CH2 1.05
2k CH2=CH(CH3)–CH=CH2 0.94
2l Cycleopentadiene C5H6 0.83
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Table 2. Cont.

Entry Molecules ω

Marginal electrophiles (Nucleophiles)

2m CH3O–CH=CH–CH=CH2 0.77
2n CH2=CH2 0.73
2o (CH3)2N–CH=CH–CH=CH2 0.57
2p CH”CH 0.54
2q CH2=CHOCH3 0.42
2r CH2=CHN(CH3)2 0.27

Strong electrophiles such as 1,1-dicyanoethylene 2d,ω = 2.82 eV, and nitroethylene 2e,ω = 2.61 eV,
presenting an electrophilicity ω index higher than 2.0 eV, participate easily in polar Diels-Alder
reactions [40]. Ethylene 2n,ω = 0.73 eV, is a marginal electrophile that is not able to participate in polar
processes. Substitution of a hydrogen atom of ethylene 2n by an electron-withdrawing carbonyl group
increases the electrophilicityω index of acrolein 2f to 1.84 eV. Although acrolein is classified as a strong
electrophile, it needs an additional electrophilic activation to participate in polar processes under mild
conditions. Thus, even the coordination of a weak Lewis acid such as BH3 to the carbonyl oxygen atom
of acrolein 2f notably increases the electrophilicityω index of the acrolein:BH3 complex 2c to 3.20 eV.
This electrophilic activation of acrolein in the complex accounts for the role of Lewis acid catalysts in
organic reactions favouring the reactions to take place via a more polar process [40]. Cationic species
such as N-dimethylmethyleneammonium cation 2a, ω = 8.25 eV, are the most electrophilic organic
species, participating in ionic organic reactions [41].

Species such as ethylene 2n, ω = 0.73 eV, methyl vinyl ether 2q, ω = 0.42 eV or
dimethylvinylamine 2r,ω = 0.27 eV, with an electrophilicityω index below 0.80 eV, are classified as
marginal electrophiles. Interestingly, diene species such as N,N1-dimethyl-1,3-buta-1,3-dien-1-amine 2o,
or ethylenes such as N,N1-dimethyl-vinylamine 2r, participate in polar reactions as good nucleophiles.
Consequently, for the short series of simple marginal electrophiles given in Table 2, a good correlation
between the inverse of the electrophilicityω index and the nucleophilicity was established; for these
marginal electrophilic species, the less electrophilic they are, the more nucleophilic they are.

Nitrobenzofuroxans such as 4,6-dinitrobenzofuroxan A1 and 4-aza-6-nitrobenzofuroxan A2 (see
Scheme 1) are compounds with a high susceptibility to undergo nucleophilic addition or substitution
processes with very weak nucleophiles [42]. Terrier studied the high reactivity of these species,
classifying them as superelectrophiles [43]. Thus, neutral species such as 4,6-dinitrobenzofuroxan A1,
ω = 5.56 eV, and 4-aza-6-nitrobenzofuroxan A2, ω = 4.81 eV, presenting an electrophilicity ω index
higher than 4.00 eV, are superelectrophiles showing high reactivity in polar reactions [44]. Note that
superelectrophilic species do not react in ionic reactions; the ionic character of an organic reaction is
determined by the participation of cationic or anionic species throughout the reaction [41].
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Scheme 1. Nitrobenzofuroxans A1 and A2.

In 2009, Domingo studied the Diels-Alder reactions of cyclopentadiene 2l with twelve ethylenes
of increased electrophilicity [40]. For this short series, a good correlation between the computed
activation energies and the electrophilicity ω index of these ethylene derivatives was found (R2 = 0.92)
(see Figure 2).
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In 2009, Domingo studied the Diels-Alder reactions of cyclopentadiene 2l with twelve ethylenes 
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Figure 2. Plot of the activation barriers, ∆E‰, versus the electrophilicityω index of a series of ethylenes
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As commented, in the short series of simple molecules participating in Diels-Alder reactions
given in Table 2, a good correlation between the inverse of the electrophilicity ω index of the
marginal electrophiles and its expected nucleophilicity was found. In a polar reaction, the more
electrophilic a reagent is and more nucleophilic the other is, the higher the GEDT that usually takes
place. This behaviour accelerates polar reactions through more zwitterionic TSs. In this first study
involving simple molecules, a good correlation between the difference of the electrophilicity of the
two reagents, ∆ω, and the polar character of the reaction was established. Thus, it is expected that
the Diels-Alder reaction between a pair of reagents located at the extreme positions of Table 1 and
presenting a ∆ω higher than 3.00 eV takes place easily via a highly polar reaction.

∆ω “ ωelectrophile ´ ωnucleophile (19)

However, this prediction fails for more complex molecules such as captodative ethylenes B (see
Scheme 2), which display concurrently both electrophilic and nucleophilic behaviours (see later). For
these species having two or more functional groups of a different electron demand, the value of the
electrophilicityω index does not correlate well with their expected nucleophilicity.
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2.5. The Nucleophilicity N Index

While for the electrophilicityω index only one expression has been established, several approaches
for the nucleophilicity index have been gaven. In 1998, Roy [45] proposed the “relative electrophilicity”
(S`k

+/S´k ) and the “relative nucleophilicity” (S´k /S`k ) descriptors for a k atom, as a way to locate the
preferable electrophilic and nucleophilic reactive sites for the study of the intermolecular reactivity.
The electrophilic and nucleophilic local softness S`k and S´k [45] are given by the following equations:

S`k “ S¨ f`k (20)
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S´k
´
“ S¨ f´k (21)

where S is the chemical softness and f`k and f´k are the electrophilic and nucleophilic Fukui functions.
In 2003, Chattaraj proposed three generalised philicityωα

k (α = +, ´ or o) indices to identify the
most electrophilic, nucleophilic and radical sites in reactivity and regioselectivity studies [46]. The
condensed (or local) electrophilicityω`k and nucleophilicityω´k indices were related to the Parr global
electrophilicityω index and the corresponding Fukui functions by Equations (22) and (23).

ω`k “ ω¨ f`k (22)

ω´k “ ω¨ f´k (23)

In 2003, Contreras described a method to estimate the relative nucleophilicity for a series
of neutral and charged electron-donor species from their solution phase ionisation potential, Is

(Equation (24)) [47].
N “ ´Is (24)

A very good correlation between Mayr’s experimental nucleophilicity N+ [48] and the predicted
solution nucleophilicity obtained by Equation (24) at the IPCM-MP2/6-311G(d,p) level for a series of
first-row electron donors was found (see Figure 3).Molecules 2016, 21, 748 9 of 21 
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In 2007, Gázquez introduced the concepts of the electroaccepting,ω+, and electrodonating,ω´,
powers as [49]:

ω` “
A2

2 pI ´ Aq
(25)

ω´ “
I2

2 pI ´ Aq
(26)

where ω+ represents a measure of the propensity of a given system to accept electron density,
whileω´ represents the propensity of this system to donate electron density.

In 2008, we proposed an empirical (relative) nucleophilicity N index for closed-shell organic
molecules based on the HOMO energies, EHOMO, obtained within the Kohn-Sham scheme as an
approach to the gas phase I, and defined as [50]:

N “ EHOMO pNucleophileq ´ EHOMO pTCEq (27)
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The nucleophilicity N index is referred to tetracyanoethylene (TCE) 2b, which is the most
electrophilic neutral species in Table 2, i.e., the expected least nucleophilic neutral species. This
choice allowed convenient handling of a nucleophilicity scale of positive values.

An analysis of a series of common nucleophilic species participating in polar organic reactions
allowed a further classification of organic molecules as strong nucleophiles with N > 3.0 eV, moderate
nucleophiles with 2.0 ď N ď 3.0 eV and marginal nucleophiles with N < 2.0 eV (see Table 3) [51].

Table 3. B3LYP/6-31G(d) nucleophilicity N index, in eV, of some inorganic and organic
nucleophilic reagents.

Entry Molecule N

Strong nucleophiles

3a CH2=CHN(CH3)2 4.28
3b C6H5NH2 3.72
3c NH2NH2 3.65
3d CH2=C(OCH3)2 3.51
3e N(CH3)3 3.48
3f (CH3)2C=C(CH3)2 3.35
3g NH(CH3)2 3.26
3h C6H5OH 3.16
3i NH2CH3 3.03

Moderate nucleophiles

3j CH2=CH–CH=CH2 2.98
3k C6H5CH3 2.71
3l CH2=C(CH3)2 2.60

3m CH3C”CCH3 2.57
3n C6H6 2.42
3o H2O2 2.41
3p C6H5COCH3 2.39
3q CH2=CHCH3 2.32
3r NH3 2.25
3s NH2OH 2.19
3t C6H5CHO 2.17
3u C6H5CO2H 2.03

Marginal nucleophiles

3v CH3OH 1.92
3x CH2=CH2 1.86
3y C6H5NO2 1.53
3z H2O 1.20

As can be seen, while water, 3z, N = 1.20 eV, is the poorest nucleophile of this series, hydrazine 3c,
N = 3.65 eV, is one of the best nucleophilic species. Alkyl substitution on the marginal nucleophilic
ethylene 3x increases its nucleophilicity N index from 1.86 eV to 3.35 eV in tetramethylethylene 3f,
being classified as a strong nucleophile. Table 3 also shows that the nucleophilicity N index predicts
correctly the activation/deactivation of benzene with the substitution. Finally, while ethylene 2n is
a marginal electrophile, ω = 0.73 eV (see Table 2), and a marginal nucleophile, 3x, N = 1.86 eV (see
Table 3), 1,3-butadiene 2j is a moderate electrophile,ω = 1.05 eV (see Table 2), and on the borderline of
strong nucleophiles, 3j, N = 2.89 eV (see Table 3). Consequently, while ethylene 3x cannot participate
in polar Diels-Alder reactions, butadiene 3j participates as a very good nucleophile. These results
completely agree with the experimental observation that while the non-polar Diels-Alder reaction
between butadiene and ethylene is one of the most unfavourable ones, only the electrophilic activation
of ethylene makes the reaction feasible [40].

Several theoretical and experimental studies have evidenced the capability of the nucleophilicity
N index to predict the nucleophilic behaviour of organic molecules. Figure 4 shows a good correlation
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(R2 = 0.89) between the experimental Ln k for the reactions of a series of 5-substituted indoles C with a
benzhydryl cation [52] and the nucleophilicity N index of the former [53].
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Regarding Chattaraj’s philicityωα
k indices, a greaterω`k value corresponds to a better capability

of accepting electron density, whereas a smaller value of ω´k of a system makes it a better donor
of electron density. In order to equalise with the general notion that “more is better”, in 2010, Roy
proposed the nucleophilicity N1 index as the inverse of Gázquez’s electrodonating ω´ power [54].
Moreover, since the nucleophilicity N1 index obtained as the inverse ofω´ was below 1, the authors
later defined the nucleophilicity N1 index as:

N1 “
10
ω´

(28)

To validate the nucleophilicity N1 index, the nucleophilicity values of sixty-nine commonly used
arenes and heteroarenes were calculated and the corresponding values were compared with the
Hammett σ and σp values [55,56]. In each case, an excellent correlation with the experimental results
was obtained. It is interesting to remark that the selected arenes and heteroarenes series are simple
molecules having only one functional group, for which, similar to the simple molecules given in
Table 1, the inverse of the Parr electrophilicityω index also gives good correlations [54].

In order to test the nucleophilicity N and N1 indices, (i) the series of captodative ethylenes B given
in Scheme 2 and (ii) the series of 2,5-disubstituted bicyclic[2.2.1]hepta-2,5-dienes D given in Scheme 3,
which display concurrently electrophilic and nucleophilic behaviours, were considered [53].
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Scheme 3. TS associated with the nucleophilic attack of hepta-2,5-dienes D on 1,1-dicyanoethylene E.

While the two indices account well for the nucleophilic behaviour of organic molecules having
only one substitution, the nucleophilicity N index works better for more complex molecules presenting
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a dual reactivity, but the N1 index fails. Thus, captodative ethylene 4b, having one of the most
electron-withdrawing groups, the nitroso –NO one, and one of the most electron-releasing groups,
the amino –N(CH3)2 one, presents a high electrophilicity ω index, 2.52 eV, being classified as a strong
electrophile, and a high nucleophilicity N index, 3.29 eV, also being classified as a strong nucleophile,
in clear agreement with its expected dual reactivity (see Table 4). However, the nucleophilicity N1

index affords a low value, N1 = 1.89 eV, for this species. A similar behaviour was found for captodative
ethylene 4a. For captodative ethylenes 4c–d, both nucleophilicity N and N1 indices yield similar values.

Table 4. B3LYP/6-31G(d) electrophilicity (ω) and nucleophilicity (N) and Roy’s nucleophilicity (N1)
values of some captodative ethylenes 4a–f (see Scheme 2).

Entry A D ω N N1

4a –NO –PhOCH3 3.00 3.26 1.81
4b –NO –N(CH3)2 2.52 3.29 1.89
4c –COMe –OCOPh 1.85 2.12 2.13
4d –COOMe –OCOPh 1.73 2.15 2.20
4e –COMe –OCOMe 1.72 2.15 2.21
4f –CN –N(CH3)2 1.08 3.53 2.92

A plot of the nucleophilicity N1 index versus our nucleophilicity N index for the series of
captodative ethylenes 4a–f given in Table 4 shows that there is no lineal relation, R2 = 0.01 (see
Figure 5). The nucleophilicity N1 index fails to predict the nucleophilic character of captodative
ethylenes B presenting both strong electron-drawing and strong electron-donating substituents. In
these ambiphilic species, while the electrophilicity ω is well reproduced, the nucleophilicity N is
underestimated by the N1 index.Molecules 2016, 21, 748 12 of 21 
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Figure 5. Plot of Roy’s nucleophilicity N' index, in eV, versus the nucleophilicity N index (Equation (27))
for the series of captodative ethylenes 4a–f.

A comparative analysis of the nucleophilicity N and N1 indices of twelve
2-substituted-6-methoxy-bicyclic[2.2.1]hepta-2,5-dienes D versus the computed activation energy
associated with the nucleophilic attack on 1,1-dicyanoethylene E (see Scheme 3) showed that
the nucleophilicity N index yields a better correlation, R2 = 0.99, than the N1 one, R2 = 0.85 (see
Figure 6) [53].
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These comparative studies asserted that the simple nucleophilicity N index derived from EHOMO

as an approach of I is an adequate and effective measure of the nucleophilicity of simple and complex
organic molecules displaying concurrently electrophilic and nucleophilic behaviours [53].

2.6. Local Electrophilicityωk and Nucleophilicity Nk Indices

Similar to the local softness Sk [45] and the philicity ωα
k [46] indices, the local electrophilicity

ωk [57] and the local nucleophilicity Nk [58] indices, which permit the distribution of the global
electrophilicityω and nucleophilicity N indices at the atomic sites k, were defined as:

ωk “ ω¨ f`k (29)

Nk “ N¨ f´k (30)

Analysis of the local electrophilicityωk and local nucleophilicity Nk indices in an organic molecule
allows for the characterisation of the most electrophilic and nucleophilic centers in the molecule. A great
deal of theoretical work devoted to the study of molecular mechanisms of polar reactions involving
non-symmetric reagents has shown that the most favourable reactive channel is that associated
with the two-center interaction between the most electrophilic center of a molecule and the most
nucleophilic center of the other molecule [15]. Consequently, local electrophilicity ωk and local
nucleophilicity Nk indices are able to predict the regio- and chemoselectivity in polar reactions.
Numerous experimental and theoretical studies have proven the feasibility of these local descriptors to
study regio- and chemoselectivities.

2.7. The Parr Functions P(r)

ELF topological analysis by way of a large number of studies devoted to the characterisation of the
molecular mechanism of different organic reactions involving the participation of C–C double bonds
made it possible to establish that in non-polar, polar and ionic reactions the formation of C–C single
bonds usually takes place within the short range of 2.0–1.9 Å by a C-to-C coupling of two pseudoradical
centers [14] generated along the reaction (see Figure 7) [15]. In polar and ionic reactions, the formation
of these pseudoradical centers is favoured by the GEDT that takes place from the nucleophile to the
electrophile. In non-symmetric molecules, a non-symmetric electron density distribution takes place
during the GEDT process. Thus, while in the nucleophilic species some atoms lose less electron density,
in the electrophilic species some atoms gather more electron density. These relevant atoms correspond
to the most nucleophilic and most electrophilic centers of the reactant molecules. Note that the larger
the GEDT at the TS, the larger asynchronicity in the C–C single bond formation.
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Figure 7. Most relevant data of pseudodiradical species involved in the C–C bond formation in
non-polar, polar and ionic DA reactions of cyclopentadiene with styrene, dicyanoethylene and
N-dimethylmethyleneammonium cation. The blue arrows indicate the direction of the GEDT.

In case an amount equivalent to one electron is transferred, the nucleophile becomes a radical
cation, while the electrophile becomes a radical anion. Interestingly, analysis of the atomic spin
density (ASD) at the radical cation and the radical anion gives a picture of the distribution of the
electron density in the electrophile and the nucleophile when they approach each other along the
reaction progress.

Based on these observations, in 2014, Domingo proposed the Parr functions P(r) [59,60], which
are given by the following equations:

P´ prq “ ρrc
s prq for electrophilic attacks (31)

and
P` prq “ ρra

s prq for nucleophilic attacks (32)

where ρrc
s (r) is the ASD at the r atom of the radical cation of a considered molecule and ρra

s (r) is the ASD
at the r atom of the radical anion. Each ASD gathered at the different atoms of the radical cation and
the radical anion of a molecule provides the local nucleophilic P´k and electrophilic P`k Parr functions
of the neutral molecule.

Remarkably, prior to the Woodward-Hofmman proposal for the pericyclic mechanism, Woodward
proposed in 1942 a mechanism for Diels-Alder reactions in which, before the formation of the two C–C
single bonds in the final cycloadducts, an ion pair complex is formed by one electron transfer process
(see ion pair complex [A¨ ]+ [B¨ ]´ in Scheme 4) [61]. Woodward’s ion pair complex mechanism can be
seen as an earlier assertion of Domingo’s polar Diels-Alder mechanism [40] in which a zwitterionic
transition state is formed resulting from the GEDT. The analysis of the Parr functions can be seen as an
analysis of the ASD at the separated [A¨ ]+ and [B¨ ]´ fragments of Woodward’s ion pair complex.
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In Table 5, electrophilic P`k and nucleophilic P´k Parr functions, and electrophilic f`k and
nucleophilic f´k Parr and Yang [34] (PY) and Yang and Mortier [35] (YM) Fukui functions of four
ethylene derivatives are given. A detailed analysis of the three models shows that the YM Fukui
functions present some relevant errors. In spite of the fact that the three local functions are normalised,
the sum of the YM Fukui functions corresponding to heavy atoms is below 1.0, in discrepancy with the
sum of the Parr and the PY Fukui functions, which is closer to 1.0. As can be seen, electrophilic f`k
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PY and YM Fukui functions give the N and O atoms of nitroso ethylene 5a as the most electrophilic
center, while electrophilic P`k Parr functions correctly predict the C1 carbon as the most electrophilic
center of this electron-deficient ethylene. Similarly, for nitroethylene 5b, electrophilic f`k PY and YM
Fukui functions at the N and O atoms are higher than those at the C1 carbon atom, while again,
electrophilic P`k Parr functions correctly predict the C1 carbon as the most electrophilic center. For the
electron-rich vinyl ether 5d, nucleophilic f´k YM Fukui functions give the O3 oxygen atom slightly
more nucleophilic than the carbon C1, while nucleophilic P´k Parr functions correctly predict the C1
carbon as the most nucleophilic center. For a more comprehensive discussion see reference [59].

Table 5. Electrophilic P`k and nucleophilic P´k Parr functions, and electrophilic f`k and nucleophilic
f´k PY and YM Fukui functions of four common ethylene derivatives.
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Entry
PY YM

P`k P´k f`k f´k f`k f´k
5a 1 C 0.41 ´0.09 0.29 0.01 0.11 0.10

2 C ´0.06 0.08 0.04 0.09 ´0.01 0.01
3 N 0.31 0.30 0.35 0.34 0.21 0.20
4 O 0.38 0.68 0.33 0.54 0.26 0.34

5b 1 C 0.44 ´0.01 0.28 0.01 0.11 0.07
2 C 0.01 0.01 0.08 0.01 0.03 0.02
3 N 0.23 ´0.05 0.23 0.02 0.07 0.04
4 O 0.22 0.83 0.22 0.52 0.22 0.37
5 O 0.16 0.20 0.19 0.43 0.20 0.21

5c 1 C 0.63 0.44 0.47 0.37 0.13 0.14
2 C 0.20 0.27 0.27 0.27 0.11 0.11
3 C 0.03 ´0.07 0.09 0.09 0.14 0.18
4 N 0.22 0.41 0.18 0.28 0.17 0.19

5d 1 C 0.48 0.58 0.44 0.47 0.13 0.16
2 C 0.50 0.07 0.46 0.20 0.16 0.06
3 O 0.00 0.36 0.05 0.28 0.03 0.17

Despite the similar electrophilic and nucleophilic local activations given by Parr and PY Fukui
functions for the short series of compounds given in Table 5, there are two reasons by which the
use of the Parr functions, instead of the PY Fukui ones, is recommended: (i) both functions are
conceptually different. The electrophilic f`k PY condensed Fukui functions are obtained from the
LUMO electron density (see Equation (14)) as an approximation from the FMO theory. ELF bonding
analyses concerning polar reactions involving the participation of C–C double bonds indicate that the
C–C single bonds are formed through the C-to-C coupling of two pseudoradical centers [15] instead of a
HOMO–LUMO donation process as suggested by the FMO theory [62]. Consequently, the LUMO of
electrophiles does not participate in the bond formation process; and (ii) Parr functions, obtained by
performing simple unrestricted calculations at the radical anion and the radical cation of a molecule,
are easier to obtain than PY condensed Fukui functions, which are obtained from the HOMO and
LUMO coefficients and the corresponding overlapping integrals using specific programs [63].

With the electrophilic P`k and nucleophilic P´k Parr functions at hand, the local electrophilicityωk
and the local nucleophilicity Nk indices were redefined as follows [59]:

ωk “ ω¨ P`k (33)
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and
Nk “ N¨ P´k (34)

Therefore, a simple analysis of the Parr functions permits characterising the most electrophilic
and the most nucleophilic centers in a molecule. These centers are those with the highest electron
density developed along the GEDT involved in polar processes.

2.8. Parr Functions and Polar Reactivity

As commented above, electrophilic P`k or nucleophilic P`k Parr functions are able to explain
regio- and chemoselectivities in most polar reactions. However, the functionality of Parr functions
goes further and, interestingly, within Domingo’s C–C single bond formation model involving C–C
double bonds, they are also able to explain the reactivity in polar organic reactions. Hence, the
reactions of nitrones is an illustrative example of the applicability of Parr functions in this context.
Nitrones are TACs participating in zwitterionic-type (zw-type) 32CA reactions [64]. Most of the simplest
zwitterionic TACs are characterised by a high nucleophilicity N index, N > 3.0 eV, being classified as
strong nucleophiles; consequently, they can react with electron-deficient ethylenes [65]. For these TACs
to participate in zw-type 32CA reactions towards electron-rich ethylenes, an electrophilic activation
of the TAC is demanded. Thus, the simplest nitrone 6a,ω = 1.06 eV, is a moderate electrophile, and
C-phenyl-nitrone 6b,ω = 1.57 eV, is on the borderline of strong electrophiles (see Table 6). Substitution
of a hydrogen by a strong electron-withdrawing –NO2 group in the phenyl substituent of the nitrone
considerably increases the electrophilicity of nitrone 6c to 3.13 eV. However, in spite of its very high
electrophilic activation, the zw-type 32CA of 6c with 2-methylene-1,2-dioxolane, a strong nucleophile,
N = 3.53 eV, presents a high activation energy, 13.2 kcal¨mol´1, which is similar to that associated with
the non-polar 32CA reaction between the simplest nitrone 6a and ethylene, 13.1 kcal/mol.

Table 6. B3LYP/6-31G(d) electrophilicityω and nucleophilicity N indices, in eV, of nitrones 6a–c.

Entry Nitrone ω N

6a CH2NH+O– 1.06 2.92
6b Ph–CHNH+O– 1.57 3.51
6c p-NO2–Ph–CHNH+O– 3.13 2.77

The low reactivity of the electrophilically activated nitrone 6c can be explained by an analysis of
the electrophilic P`k Parr functions. As can be seen in Figure 8, electrophilic Parr functions of nitrone 6c
are mainly located at the p-nitro-phenyl substituent (see the blue regions of the 3D representations of
the ASD of the radical anion of nitrone 6c). While the nitrone oxygen atom presents a low electrophilic
P`k Parr function, P`O = 0.18, the nitrone carbon atom is electrophilically deactivated, P`C = ´0.07.
Consequently, low values of the electrophilic P`k or nucleophilic P´k Parr functions at the atoms
involved in the formation of C–C single bonds could account for the low reactivity of electrophilically
and nucleophilically activated species in polar reactions.
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2.9. The Local Reactivity Difference Index Rk

In order to present simultaneously the electrophilic and/or nucleophilic activation at the different
sites of a molecule, in 2012 Chattaraj proposed the local reactivity difference index Rk, [66] which is
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able to predict the local electrophilic and/or nucleophilic activation within an organic molecule. The
Rk index is defined as:

if p1 ă ωk{Nk ă 2q or p1 ă Nk{ωk ă 2
then Rk « pωk ` Nkq {2 ñ ambiphilic pRk “ ˘n.nnq

else Rk « pωk ` Nkq {2
where Rk ą 0 ñ electrophilic pRk “ `n.nnq

and Rk ă 0 ñ nucleophilic pRk “ ´n.nnq
if |Rk| ă 0.1, then Rk “ 0.0

(35)

whereωk and Nk are obtained with Equations (33) and (34).
In the Rk index, the sign (+, ´, ˘) indicates the electrophilic and/or nucleophilic character of the

center k, while the magnitude n.nn provides a measure of the local activation [66]. For a molecule,
the Rk molecular map of reactivity (RMMR) represents all local Rk indices, giving an illustration of its
reactivity in polar processes.

The Rk index has shown to be a powerful tool when studying intramolecular polar reactions,
in which electrophilic and nucleophilic centers are located within the same molecule. Figure 9
shows the RMMR of a benzoquinone F involved in an intramolecular polar Diels-Alder reaction [67].
Analysis of the RMMR clearly shows that while the butadiene framework of the chain concentrates the
nucleophilic reactivity, the benzoquinone core concentrates the electrophilic reactivity.
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Figure 9. RMMRs (Rk molecular maps of reactivity) of a benzoquinone F involved in an intramolecular
polar Diels-Alder reaction. Rk ą 0, in red, correspond to electrophilic centers, while Rk ă 0, in blue,
correspond to nucleophilic centers.

2.10. Electrophilic and Nucleophilic Free Radicals

Non-polar organic reactions involving neutral radical species do not experience any electron
density exchange along the reaction. However, the adequate substitution in the radical species
may favour the electron density exchange, determining the chemical reactivity of these radical
species. Consequently, a set of five DFT reactivity indices, namely, the global electrophilicity ωo

and nucleophilicity No indices, the radical Po
k Parr function and the local electrophilicity ωo

k and
nucleophilicity No

k indices, have recently been proposed for the study of the reactivity of free
radicals [68].

Using Parr’s definition, the electrophilicityωo index of free radicals at their ground state, namely:

ωo “
µ˝2

2η˝
(36)

was introduced, where µ˝ is the global electronic chemical potential and η˝ is the global chemical
hardness of free radicals. Similar to µ and η, these quantities may be approached as:
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µ˝ « ´
pI˝ ` A˝q

2
(37)

and
η˝ « ´ pI˝ ´ A˝q (38)

where I˝ and A˝ correspond to the ionisation potential and the electron affinity of free radicals.
Operational formulations for these quantities can be obtained through:

µ˝ «

´

Eα,˝
HOMO ` Eβ,˝

LUMO

¯

2
(39)

and
η˝ « ´

´

Eβ,˝
LUMO ´ Eα,˝

HOMO

¯

(40)

where Eα,˝
HOMO and Eβ,˝

LUMO are the one electron energies of the frontier HOMO and LUMO for the
electrons in the α and β spin state of the radicals and the relationships I˝ =´Eα,˝

HOMO and A˝ =´Eβ,˝
LUMO

were used.
On the other hand, and in analogy to our nucleophilicity N index, we also introduced the global

nucleophilicity N˝ index of free radicals as:

N˝ “ Eα,˝
HOMO pNucleophileq ´ Eα,˝

HOMO pDCMq (41)

where the dicyanomethyl (DCM) radical is taken as a reference to define a positive scale of global
nucleophilicity of radicals.

For the local descriptors, the radical Parr function Po
k is defined as:

Po prq “ ρs prq (42)

where ρs(r) is the ASD at the r atom of the neutral radical.
Therefore, the local electrophilicity ωo

k and nucleophilicity No
k indices for free radicals can be

easily obtained by the following expressions:

ωo
k “ ωo¨ Po

k (43)

No
k “ No¨ Po

k (44)

whereωo and No are obtained from Equations (36) and (41), respectively.
The global radical indices were tested for a series of twenty-three free radicals being

electrophilically and/or nucleophilically activated (see Table 7). Thus, analysis of the electrophilicity
ωo and nucleophilicity No indices for the substituted free radicals given in Table 7 clearly shows that
they correctly predict their electrophilic and nucleophilic behaviours. Interestingly, these global indices
also account for the ambiphilic behaviour of free radicals, such as 7g and 7h, having concurrently an
electron-withdrawing and electron-releasing substitution.

Analysis of the local electrophilicityωo
k and nucleophilicity No

k indices for free radicals, together
with analysis of the local electrophilicity ωk and nucleophilicity Nk indices for alkenes, allows
explaining the regio- and chemoselectivity in radical additions of free radicals to alkenes. ELF
topological analysis for the C–C bond formation along the nucleophilic addition of 2-hydroxyprop-2-yl
free radical 7u to electrophilic methyl acrylate evidenced that the new C–C bond is formed through the
C-to-C coupling of two radical centers, which were properly characterised through the use of the Parr
functions [68]. Besides, radical Parr functions Po

k have also shown to be an applicable tool to analyse
the most electrophilic and nucleophilic centers in cationic and anionic organic molecules participating
in ionic reactions [41,69].
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Table 7. B3LYP/6-31G(d) electronic chemical potential, µo, chemical hardness, ηo , global
electrophilicity, ωo , and global nucleophilicity, No , in eV, for a series of thirty-two free radicals
ordered by decreasing electrophilicity.
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7p I Cl Me Me ´3.23 3.85 1.36 2.73
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3. Conclusions

Reactivity in organic chemistry has been in the spotlight for a long time and is one of the most
widely studied and transcendental issues, as its understanding allows determining why and how
reactions take place. Since the establishment of DFT as a quantum-mechanical theory founded on
electron density, numerous efforts have been devoted to redefine useful concepts already known in
organic chemistry and to make them applicable for the semi-quantitative study of reactivity.

In this sense, theoretical reactivity indices defined within the conceptual DFT have become a
powerful tool for the semi-quantitative study of organic chemical reactivity. Many reactivity indices
have been proposed in the literature, but the purpose of this review has been to collect, and briefly
discuss, the most relevant ones, which are those that have proved to give more accurate responses to
experimental evidences. Thus, numerous theoretical and experimental studies have shown that global
quantities such as the electronic chemical potential µ, the electrophilicity ω and the nucleophilicity N
indices, and local condensed indices such as the electrophilic P`k and nucleophilic P´k Parr functions,
are powerful tools not only to predict and/or explain reactivity but also provide answers to questions
so important to organic chemists, such as regio- and chemoselectivity of organic reactions.

The aim of the present review is to show that conceptual DFT reactivity indices are a highly
effective and indispensable tool for analysing reactivity in organic chemistry nowadays and that,
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remarkably, their calculations can be easily performed without a complex computational demand.
This fact constitutes one of their most valuable advantages and makes them accessible to the entire
community of organic chemists.
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