Skip to main content
Molecules logoLink to Molecules
. 2016 Oct 24;21(10):1402. doi: 10.3390/molecules21101402

Naturally Occurring Cinnamic Acid Sugar Ester Derivatives

Yuxin Tian 1,, Weirui Liu 1,, Yi Lu 2, Yan Wang 1, Xiaoyi Chen 1, Shaojuan Bai 1, Yicheng Zhao 1, Ting He 1, Fengxue Lao 3, Yinghui Shang 3, Yu Guo 3, Gaimei She 1,*
Editor: Derek J McPhee
PMCID: PMC6273327  PMID: 27783048

Abstract

Cinnamic acid sugar ester derivatives (CASEDs) are a class of natural product with one or several phenylacrylic moieties linked with the non-anomeric carbon of a glycosyl skeleton part through ester bonds. Their notable anti-depressant and brains protective activities have made them a topic of great interest over the past several decades. In particular the compound 3′,6-disinapoylsucrose, the index component of Yuanzhi (a well-known Traditional Chinese Medicine or TCM), presents antidepressant effects at a molecular level, and has become a hotspot of research on new lead drug compounds. Several other similar cinnamic acid sugar ester derivatives are reported in traditional medicine as compounds to calm the nerves and display anti-depression and neuroprotective activity. Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae. This overview discusses the isolation of cinnamic acid sugar ester derivatives from plants, together with a systematic discussion of their distribution, chemical structures and properties and pharmacological activities, with the hope of providing references for natural product researchers and draw attention to these interesting compounds.

Keywords: cinnamic acid sugar ester derivatives, phytochemistry, pharmacological activity, traditional Chinese medicine

1. Introduction

As a class of natural products, cinnamic acid sugar ester derivatives (CASEDs) have become a research focus owing to their structural diversity, together with distinctive and remarkable pharmacodynamic actions, such as anti-depression, anti-cancer, anti-oxidant, anti-inflammatory and anti-viral activities [1,2,3,4,5]. They have one or more phenylacrylic (Ph-CH=CH-CO-) moieties or their derivatives linked to the non-anomeric carbon skeletons of the glycosyl part through ester linkage-bonds. The phenylacrylic group, also named cinnamic acid part, may usually contain hydroxyl or methoxy substituted groups (Figure 1). The aglycone group is the core structure, and includes monosaccharides, disaccharides, trisaccharides, tetrasaccharides, pentasaccharides, hexsaccharides and heptasaccharides. There are one or several -OH groups on the non-anomeric carbon skeleton, connected with the cinnamic acid moiety.

Figure 1.

Figure 1

Substituent groups.

Since 1968 [6], more than 330 CASEDs have been found in the medicinal plants of the families Polygalaceae, Scrophulariaceae, Liliaceae, Oleaceae, Bignoniaceae, Polygonaceae, Orobanchaceae, Rosaceae, Lamiaceae, Labiatae, Gesneriaceae, Rubiaceae, Cruciferae, Plantaginaceae, Verbenaceae, Magnoliaceae, Amaranthaceae, Smilacaeae, Sterculiaceae, Hymenophyllaceae and Asclepiadaceae (Table 1). Interestingly, more than one third of CASEDs are distributed in the family Polygalaceae, which is used for tranquilizing the mind and promoting intelligence as in Traditional Chinese Medicine (TCM) [1]. Yuanzhi, the dried root of Polygala tenuifolia, a representative plant from the Polygalaceae, is a well-known TCM used for its sedative, psychotic, cognitive and depressant effects. It is used in the clinic for tranquilizing and reinforcing the mind, and is commonly applied to physical and mental illness.

Table 1.

The Family Distribution of CASEDs.

Family Number Family Number
Asclepiadaceae 1 Gesneriaceae 8
Hymenophyllaceae 1 Labiatae 11
Sterculiaceae 1 Lamiaceae 11
Amaranthaceae 2 Rosaceae 13
Smilacaeae 3 Orobanchaceae 16
Magnoliaceae 3 Polygonaceae 19
Rubiaceae 5 Oleaceae 20
Plantaginaceae 6 Bignoniaceae 22
Cruciferae 6 Liliaceae 34
Verbenaceae 7 Scrophulariaccae 58
Polygalaceae 126

The oligosaccharide cinnamic acid esters are regarded as the predominant active antidepressant ingredients. 3′,6-Disinapoylsucrose (DISS, 73), as the index component of Yuanzhi, has been studied to the level of the molecular mechanism of its antidepressant effects, representing a hotspot of research on new drug precursor compounds [7]. There are also other multiple reports [8,9] on the antidepressant effects of sibiricose A5 (28) and tenuifoliside A (51). There are additionally several active compounds from Scrophulariae Radix, Rehmannia Radix, Smilacis China Rhizoma, which according to common wisdom, calm the nerves with anti-depression and neuroprotective activity (Table 2).

Table 2.

The Principal Compounds of CASEDs Distributed in TCMs.

Name in TCM Sources Traditional Effect Medicinal Parts Compounds Activity Refs.
Polygalae Radix Polygala tenuifolia Willd. Common wisdom calms the nerves, restoring normal coordination between heart and kidney, Expectoration, subsidence of a swelling Root 51, 52, 72, 73, 280–290, 292, 321–324 Anti-depression activity, neuroprotective activity [10,11,12]
Polygala sibirica L. 28–30, 50, 51, 73, 75, 78, 88 Anti-depression activity, neuroprotective activity, antioxidant activity [13]
Smilacis China Rhizoma Smilaz china L. Syphilis, gout, and rheumatism Root 39, 40, 45, 47, 79, 98, 99, 101, 107 Anticancer activity [14]
Smilax bracteata C. Presl 38, 41, 42, 45–47, 105, 106 Antioxidant activity [15]
Scrophula-riae Radix Scrophularia ningpoensis Hemsl. Clearing heat and cooling blood, nourishing yin to reduce pathogenic fire, detoxicating and resolving a mass Root 14, 53, 59, 132 Antioxidative activity [16,17]
Scrophula-riae Radix Scrophularia buergeriana Miq. Clearing heat and cooling blood, nourishing yin to reduce pathogenic fire, detoxicating and resolving a mass Root 11, 12, 13, 15 Neuroprotective [18]
Rehmann-ia Radix Rehmannia glutinosa var. Purpurea Clearing heat and cooling blood, promoting the secretion of saliva or body fluid Root 124, 125, 131, 133, 136, 138, 207–212 PKC inhibitory activity, antiinflammatory effects, antiviral activity, antibacterial activity [19]

Up to now, there is no relevant literature that analyzes all those CASED compounds systematically. Therefore, this paper is aimed at systematically clarifying the distribution, chemical structures and pharmacological activities of CASEDs, in the hope of drawing more researchers’ attention to these interesting substances.

2. Chemical Constituents

Cinnamic acid sugar ester derivatives (CASEDs) are an important type of natural product. Structurally, they have a glycosyl linked with the phenylacrylic group using ester bonds. The glycosyl part maybe contain one, or several sugar units, which are attached via an -OH group to another -OH by condensation reactions. So far, glucopyrannosyl, rhamnopyranosyl, fructofuranosyl, arabinopyranosyl, galactopyranosyl, apiofuranosyl, xylopyranosyl, lyxopyranosyl, allopyranosyl, fucopyranosyl and lactopyranosyl moieties have been reported to occur in CASEDs. The glycosyl portion usually has an anomeric carbon of one sugar connected to the C-2, C-3 and C-4 of the other glycosyl group. Here, the non-anomeric carbon of the glycosyl part connected (Table 3).

Table 3.

Cinnamic Acid Sugar Ester Derivatives.

No. Name Source Refs.
1 6-O-Caffeoyl-1-O-p-coumaroyl-β-d-glucopyranose Prunus buergeriana [20]
2 1,6-Di-O-caffeoyl-β-d-glucopyranose Prunus buergeriana; Coussarea hydrangeifolia [20,21]
3 Osmanthuside E Osmanthus asiaticus [22]
4 1,6-Diferuloyl glucose Sterculia foetida [23]
5 Eutigoside A Ligustrum purpurascens [24]
6 Osmanthuside A Ligustrum purpurascens [24]
7 2-(3,4-Dihydroxyphenyl)-ethyl-(6-O-caffeoyl)-β-d-glucopyranoside or calceolarioside B Calceolaria hypericina; Prunus ssiori; Paraboea glutinosa [25,26]
8 3,4-Dihydroxyphenethyl alcohol 4-O-Caffeoyl-β-d-allopyranoside or calceolarioside A or derhamnosylverbascoside Trichomanes reniforme Forst.f; Calceolaria hypericina; Lantana camaro L. [25,27,28]
9 1′-O-β-d-(1-Hydroxy-4-oxo-2,5-cyclohexadien)-ethyl-6′-O-caffeoylglucopyranoside or calceolarioside D Calceolaria hypericina [25]
10 2-(3,4-Methylenedioxyphenyl)-ethyl-(6-O-caffeoyl)-β-d-glucopyranoside Prunus ssiori [29]
11 4-O-(E)-p-Methoxycinnamoyl-α-l-rhamno-pyranoside or buergeriside C3 Scrophularia buergeriana [18]
12 2-O-Acetyl-3-O-(E)-p-methoxycinnamoyl-α-l-rhamnopyranoside or buergeriside B1 Scrophularia buergeriana [18]
13 2-O-Acetyl-3,4-di-O-(E)-p-methoxycinnamoyl-α-l-rhamnopyranoside or buergeriside A1 Scrophularia buergeriana [18]
14 3-O-Acetyl-2-O-p-methoxycinnamoyl-α(β)-l-rhamnopyranose or ningposide D Scrophularia ningpoensis [16]
15 2-O-Acetyl-3-O-(Z)-p-methoxycinnamoyl-α-l-rhamnopyranoside or buergeriside B2 Scrophularia buergeriana [18]
16 6-O-p-Coumaroyl-d-glucopyranose Prunus buergeriana [20]
17 6-O-Caffeoyl-d-glucopyranose or 6-O-Caffeoyl-d-glucopyranoside Prunus buergeriana; Prunus ssiori [20,29]
18 6-O-[E]-Sinapoyl-(α- and β-)-d-glucopyranoside Cynanchum hancockianum [30]
19 O-Acylglycoses Ligustrum purpurascens [24]
20 3,6-di-O-Caffeoyl-(α/β)-glucose Rubus sanctus [31]
21 6-O-Feruloyl-β-d-glucopyranosyl-(1→6)-glucitol or globularitol Globularia orientalis [32]
22 (2R)-[(6-O-Caffeoyl)-β-d-glucopyranosyloxy]-benzeneacetonitrile or grayanin Prunus buergeriana [20]
23 Scrophyloside A Neopicrorhiza scrophulariiflora [33]
24 Scrophyloside B Neopicrorhiza scrophulariiflora [33]
25 Hexane-1,2,3,4,5-pentanol 1-O-β-(6-O-(E)-feruloyl) glucopyranoside or paederol A Paederia scandens [34]
26 Butane-1,2,3,4-tetraol 1-O-β-(6-O-(E)-feruloyl) glucopyranoside or paederol B Paederia scandens [34]
27 Kaempferol 3-O-β-d-(6-O-p-E-Coumaroyl)-glucopyranoside Froelichia floridana [35]
28 3-O-Feruloylsucrose or sibiricose A5 Trillium kamtschaticum; Polygala sibirica [13,36]
29 3′-Sinapoyl sucrose or sibiricose A6 Polygala sibirica; Polygala tricornis [13,37]
30 3-O-[(E)-3,4,5-Trimethoxycinnamoyl]-β-d-fructo-furanosyl-(2→1)-α-d-glucopyranoside or glomeratose A Polygala sibirica; Polygala tricornis; Polygala glomerata [13,37,38]
31 3,6-Di-p-coumaroyl sucrose or lapathosides D Polygonum lapathifolium [39]
32 Heronioside A Trillium kamtschaticum; Smilax glabra [36,40]
33 Parispolyside F Paris polyphylla var. yunnanensis [41]
34 β-d-(1-Sinapoyl-3-feruloyl)-α-d-glucopyranoside Polygala chamaebuxus [42]
35 β-d-(l-Acetyl-3-feruloyl)-fructofuranosyl-α-d-gluco-pyranoside Polygala chamaebuxus [42]
36 β-d-(1,3-Disinapoyl)-fructofuranosyl-d-gluco-pyranoside Polygala chamaebuxus [42]
37 β-d-(1,3,6-Tri-p-coumaryl)-fructofuranosyl-α-d-glucopyranoside or hydropiperoside Polygonum hydropiperitum; Polygonurn hydropiper [39,43]
38 (1,3-O-di-p-Coumaroyl-6-O-feruloyl)-β-d-fructo-furanosyl-(2→1)-α-d-glucopyranoside or smilaside G Smilax bracteata [15]
39 1-p-Coumaroyl-3,6-diferuloyl sucrose or smilaside C Smilax china [14]
40 1-p-Coumaroyl-3,6-diferuloyl-4-acetyl sucrose or smilaside D Smilax china [14]
41 (3-O-p-Coumaroyl-1,6-O-diferuloyl)-β-d-fructo-furanosyl-(2→1)-α-d-glucopyranoside or smilaside J Smilax bracteata [15]
42 1,3,6-O-Triferuloyl-β-d-fructofuranosyl-(2→1)-α-d-glucopyranoside or smilaside L Smilax bracteata [15]
43 3-O-[(E)-3,4,5-Trimethoxycinnamoyl]-β-d-fructo-furanosyl-(2→1)-(6-O-acetyl)-α-d-glucopyranoside or tricornose A Polygala tricornis [37]
44 Regaloside A Trillium kamtschaticum [36]
45 6′-Acetyl-3,6-diferuloylsucrose or helonioside B Smilax china; Smilax bracteata; Polygonum perfoliatum; Heterosmilax erythrantha [14,15,44,45]
46 (1,3-O-di-p-Coumaroyl-6-O-feruloyl)-β-d-fructo-furanosyl-(2→1)-(6-O-acetyl)-α-d-glucopyranoside or smilaside I Smilax bracteata [15]
47 1-p-Coumaroyl-3,6-diferuloyl-6′-acetyl sucrose or smilaside E Smilax china; Smilax bracteata [14,15]
48 Reiniose C Polygala reinii Fr.et Sav [46]
49 6-O-Benzoyl-3′-O-3,4,5-trimethoxycinnamoyl-sucrose or 3-O-[(E)-3,4,5-trimethoxy-cinnamoyl]-β-d-fructofuranosyl-(2→1)-(6-O-benzoyl)-α-d-glucopyranoside or [3-O-(3,4,5-trimethoxycinnamoyl]-β-d-fructo-furanosyl-(6-O-benzoyl)-α-d-glucopyranoside Polygala tricornis; Polygala glomerata; Polygala reinii Fr.et Sav [37,38,46]
50 3′-Sinapoyl-6-benzoyl sucrose or 6-O-benzoyl-3′-O-sinapoylsucrose 6-O-benzoyl-3′-O-sinapoylsucrose or (3-O-[(2E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-1-oxoprop-2-enyl]-β-d-fructofuranosyl 6-O-benzoyl-α-d-glucopyranoside) Polygala sibirica; Polygala tricornis; Polygala telephioidesWilld. [13,37,47]
51 β-d-[3-O-(3,4,5-Trimethoxycinnamoyl)]-fructo-furanosyl-α-D-[6-O-(p-hydroxybenzoyl)]-gluco-pyranoside or tenuifoliside A Polygala tenuifolia; Polygala sibirica [10,11,12,13]
52 β-d-(3-O-Sinapoyl)-fructofuranosyl-α-d-(6-O-(p-hydroxybenzoyl)]-glucopyranoside or tenuifoliside B Polygala tenuifolia [10]
53 Sibirioside A Scrophularia ningpoensis Hemsl [17]
54 3-O-(E)-Sinapoyl-β-d-fructofuranosyl-(2→1)-[6-O-(E)-p-coumaroyl]-α-d-glucopyranoside or glomeratose B Polygala glomerata [38]
55 3-O-[(E)-3,4,5-Trimethoxycinnamoyl]-β-d-fructo-furanosyl-(2→1)-[6-O-(E)-p- coumaroyl] -α-d-glucopyranoside or glomeratose C Polygala glomerata [38]
56 3,4-O-β-d-Di-feruloyl-fructofuranosyl-6-O-α-d-(p-coumaroyl)-glucopyranoside Monnina obtusifolia H.B.K. [48]
57 6′-O-p-Coumarylhydropiperoside or vanicoside D Polygonum pensylvanicum [49]
58 1,3,6′-Tri-p-coumaroyl-6-feruloyl sucrose or diboside A Fagopyrum dibotrys (D. Don.) Hara. [50]
59 6-O-Caffeoyl-β-d-fructofuranosyl-(2→1)-α-d-gluco-pyranoside Scrophularia ningpoensis Hemsl; Globularia orientalis [17,32]
60 3,4-O-β-d-Di-feruloyl-fructofuranosyl-6-O-α-d-(caffeoyl)-glucopyranoside Monnina obtusifolia H.B.K. [48]
61 Reiniose A Polygala reinii Fr.et Sav [46]
62 6-O-Feruloyl-β-d-fructofuranosyl-(2→1)-α-d-glucopyranoside or β-d-fructofuranosyl-6-O-feruloyl-α-d-glucopyranoside or arillatose B Globularia orientalis; Polygala arillata [32,51]
63 1,6′-Diferuloyl-3,6-di-p-coumaroylsucrose or lapathoside A Polygonum lapathifolium [39]
64 1,6,6′-Triferuloyl-3-p-coumaroyl sucrose or lapathoside B Polygonum lapathifolium [39]
65 6′-Feruloyl-3,6-di-p-coumaroyl sucrose or lapathoside C Polygonum lapathifolium [39]
66 6′-Feruloyl-1,6-di-p-coumaroyl sucrose or hydropiperoside A Polygonum hydropiper L. [52]
67 Vanicoside B Polygonum perfoliatum; Polygonum pensylvanirum [44,53]
68 4-Acetyl-3,6′-diferuloylsucrose Lilium speciosum var. rubrum; Lilium longiflorum [54,55]
69 6-Acetyl-3,6′-diferuloylsucrose Lilium speciosum var. rubrum [54]
70 4,6-Diacetyl-3,6′-diferuloylsucrose Lilium speciosum var. rubrum [54]
71 3,6′-Diferuloylsucrose Lilium speciosum var. rubrum;Lilium longiflorum [54,55]
72 β-d-[3-O-(3,4,5-Trimethoxycinnamoyl)]-fructo-furanosyl-α-d-(6-O-sinapoyl)-glucopyranoside or tenuifoliside C Polygala tenuifolia; Polygala tricornis; Polygala glomerata; Polygala reinii Fr.et Sav; Polygala japonica Houtt. [10,37,38,46,56]
73 3′,6-Disinapoyl sucrose or 3-O-(E)-sinapoyl-β-d-fructofuranosyl-(2→1)-[6-O-(E)-sinapoyl]-α-d-glucopyranoside Polygala tenuifolia; Polygala sibirica; Polygala tricornis; Polygala glomerata; Polygala reinii Fr.et Sav; Securidaca longipedunculata; Polygala virgata [10,13,37,38,46,57,58]
74 β-D-(3,4-Disinapoyl)fructofuranosyl-α-d-(6-sinapoyl)glucopyranoside Securidaca longipedunculata [57]
75 6-O-Sinapoylsucrose or sibiricose A1 Polygala sibirica [13]
76 3-O-Feruloyl-β-d-fructofuranosyl-(6-O-sinapoyl)-α-d-glucopyranoside Polygala reinii Fr.et Sav [46]
77 3-O-[(E)-3,4,5-Trimethoxycinnamoyl]-β-d-fructo-furanosyl-(2→1)-[6-O-(E)-p-coumaroyl]-α-d-glucopyranoside or glomeratose D Polygala glomerata [38]
78 6-O-3,4,5-Trimethoxycinnamoyl sucrose or sibiricose A2 Polygala sibirica [13]
79 3,6-Diferuloyl-4′,6′-diacetylsucrose or smilaside A Smilax china [14]
80 3-O-[(E)-3,4,5-Trimethoxycinnamoyl]-β-d-fructo-furanosyl-(2→1)-(4-O-acetyl)-(6-O-benzoyl)-α-d-glucopyranoside or tricornoses B Polygala tricornis [37]
81 4′-Acetyl-3,6′-diferuloylsucrose Lilium speciosum var. rubrum [54]
82 β-d-(3-O-Sinapoyl)fructofuranosyl-α-d-(4-O-acetyl-6-O-sinapoyl)glucopyranoside Polygala virgata [58]
83 Reiniose B Polygala reinii Fr.et Sav [46]
84 4-O-Benzoyl-3′-3,4,5-trimethoxycinnamoylsucrose or [3-O-(3,4,5-trimethoxycinnamoyl)]-β-d-fructofuranosyl-(4-O-benzoyl)-α-d-gluco-pyranoside Polygala tricornis; Polygala reinii Fr.et Sav [37,46]
85 (3,6-O-Diferuloyl)-β-d-fructofuranosyl-(2→1)-(4-O-p-coumaroyl-6-O-acetyl)-α-d-glucopyranoside or quiquesetinerviuside D Calamus quiquesetinervius Burret [4]
86 (3,6-O-Diferuloyl)-β-d-fructofuranosyl-(2→1)-(4-O-feruloyl)-α-d-glucopyranoside or quiquesetinerviuside A Calamus quiquesetinervius Burret [4]
87 (3,6-O-Diferuloyl)-β-d-fructofuranosyl-(2→1)-(4-O-feruloyl-6-O-acetyl)-α-d-glucopyranoside or quiquesetinerviuside B Calamus quiquesetinervius Burret [4]
88 3′,4-O-Disinapoylsucrose or sibiricose A4 Polygala sibirica [13]
89 1-O-Acetyl-3-O-p-coumaroyl-β-d-fructofuranosyl-3,6-di-O-acetyl-α-d-glucopyranoside Prunus padus [58]
90 (3,6-Di-O-feruloyl)-β-d-fructofuranosyl-(3,6-di-O-acetyl)-α-d-glucopyranoside Smilax glabra [40]
91 3′-O-Acetylvanicoside B or vanicoside F Polygonum pensylvanicum [49]
92 6,3′-Diacetyl-3,6′-diferuloylsucrose Lilium speciosum var. rubrum [54]
93 4,6,3′-Triacetyl-3,6′-diferuloylsucrose Lilium speciosum var. rubrum [54]
94 β-d-(3-O-Sinapoyl)fructofuranosyl-α-d-(3-O-acetyl-6-O-sinapoyl)glucopyranoside Polygala virgata [59]
95 Heterosmilaside Heterosmilax erythrantha [45]
96 1-O-Acetyl-3-O-p-coumaroyl-β-d-fructofuranosyl-3,4,6-tri-O-acetyl-α-d-glucopyranoside Prunus padus [58]
97 1,2′,6′-Triacetyl-3,6-diferuloylsucrose Polygonum perfoliatum [44]
98 2′,6′-Diacetyl-3,6-diferuloylsucrose Polygonum perfoliatum; Smilax china; Heterosmilax erythrantha [14,44,45]
99 1,3-Di-p-coumaroyl-6-feruloyl-2′,6′-diacetylsucrose or smilaside F Smilax china [14]
100 Smiglaside B Smilax glabra [40]
101 Smiglaside E Smilax china; Smilax glabra [14,40]
102 Vanicoside A Polygonum perfoliatum; Polygonum pensylvanirum [44,53]
103 2′-Acetyl-1,6′-diferuloyl-3,6-di-p-coumaroyl sucrose or hydropiperoside B Polygonum hydropiper L. [52]
104 2′-O-Acetylhydropiperoside or vanicoside C Polygonum pensylvanirum [49]
105 1-O-p-Coumaroyl-3,6-O-diferuloyl-β-d-fructo-furanosyl-(2→1)-(2-O-acetyl)-α-d-glucopyranoside or smilaside K Smilax bracteata [15]
106 (1,3-O-Di-p-coumaroyl-6-O-feruloyl)-β-d-fructo-furanosyl-(2→1)-(2-O-acetyl)-α-d-glucopyranoside or smilaside H Smilax bracteata [15]
107 3,6-Diferuloyl-2′-acetyl sucrose or smilaside B Smilax china [14]
108 2′,4′,6′-Triacetyl-3,6-diferuloylsucrose or smiglaside C Smilax glabra; Polygonum perfoliatum [40,44]
109 β-d-(1-O-Acetyl-3,6-O-trans-dicinnamoyl)fructo-furanosyl-α-d-(2,4,6-O-triacetyl)glucopyranoside or niruriside Phyllanthus niruri L. [60]
110 1,2′,4′,6′-Tetraacetyl-3,6-diferuloylsucrose Polygonum perfoliatum [44]
111 Smiglaside A Smilax glabra [40]
112 Smiglaside D Smilax glabra [40]
113 4′-O-Acetylvanicoside A or vanicoside E Polygonum pensylvanicum [49]
114 (3,6-O-Diferuloyl)-β-d-fructofuranosyl-(2→1)-(4-O-p-coumaroyl-2-O-acetyl)-α-d-glucopyranoside or quiquesetinerviuside E Calamus quiquesetinervius Burret [4]
115 (3,6-O-Diferuloyl)-β-d-fructofuranosyl-(2→1)-(4-O-feruloyl-2-O-acetyl)-α-d-glucopyranoside or quiquesetinerviuside C Calamus quiquesetinervius Burret [4]
116 3-O-p-Coumaroyl-β-d-fructofuranosyl2,3,4,6-tetra-O-acetyl-α-d-glucopyranoside Prunus padus [58]
117 1-O-Acetyl-3-O-p-coumaroyl-β-d-fructofuranosyl 2,3,6-tri-O-acetyl-α-d-glucopyranoside Prunus padus [58]
118 β-d-(1-O-Acetyl-3,6-O-p-E-dicoumaroyl)-fructo-furanosyl-α-d-(4′-O-acetyl-2′-O-p-E-coumaroyl)-glucopyranoside Froelichia floridana [35]
119 2-Feruloyl-O-α-d-glucopyranoyl-(1′→2)-3,6-O-feruloyl-β-d-fructofuranoside Paris polyphylla var. yunnanensis [61]
120 3-O-Caffeoyl-β-d-fructofuranosyl 2,3,4,6-tetra-O-acetyl-α-d-glucopyranoside Prunus ssiori [24]
121 Magnoloside A Magnolia obovata Thunb [62]
122 β-(p-Hydroxyphenyl)ethyl O-α-l-rhamno-pyranosyl-(1→3)-6-O-trans-p-coumaroyl-β-d-gluco-pyranoside or osmanthuside B6 Osmanthus asiaticus; Ligustrum purpurascens [22,24]
123 β-(p-Hydroxyphenyl)ethyl O-α-l-rhamno-pyranosyl-(1→3)-4-O-cis-p-coumaroyl-β-d-gluco-pyranoside or osmanthuside D Osmanthus asiaticus [22]
124 Jionoside D Rehmannia glutinosa var. Purpurea; Scrophularia nodosa L. [19,63]
125 2-Phenylethyl O-α-l-rhamnopyranosyl-(1→3)-4-O-caffeoyl-β-d-glucopyranoside or jionoside C Rehmannia glutinosa var. Purpurea [19]
126 Osmanthuside B Ligustrum purpurascens; cistanche salsa [24,64]
127 Lipedoside A-II Ligustrum purpurascens [24]
128 Isoverbascoside Lantana camaro L.; Pedicularis artselaeri; Pedicularis striata; Markhamia stipulate; Fernandoa adenophylla; Markhamia lutea; Scrophularia scorodonia [15,29,65,66,67,68,69]
129 Scrophularia nodosa L. [63]
130 6′-O-(E)-Cinnamoyl verbascoside Osmanthus austrocaledonica [65]
131 Acteoside or verbascoside Rehmannia glutinosa var. Purpurea; Ligustrum purpurascens; Calceolaria hypericina; Lantana camaro L.; Scrophularia nodosa L.; Pedicularis artselaeri; Pedicularis striata; Markhamia stipulate; Fernandoa adenophylla; Markhamia lutea; Scrophularia scorodonia; Penstemon serrulatus Menz; Aeginetia indica Linn; Pedicularis lasiophrys; Lagotis stolonifera; Conandron ramoidioides; Paulownia tomentosa stem; Phlomis grandiflora; Pedicularis spicata; Pedicularis bngijora; cistanche salsa; Brandisia hancei; Phlomis linearis [15,19,24,25,29,63,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84]
132 cis-Acteoside or cisacteoside Scrophularia ningpoensis Hemsl; Scrophularia nodosa L.; Penstemon serrulatus Menz [17,63,71]
133 Cistanoside C or leucosceptoside A or trans-leucosceptoside A Rehmannia glutinosa var. Purpurea; Fernandoa adenophylla; Penstemon serrulatus Menz; Pedicularis bngijora; cistanche salsa; Lamiophlomis rotata [19,69,71,79,85,86]
134 cis-Leucosceptoside A Penstemon serrulatus Menz [71]
135 2′′,3′′′-Diacetyl acteoside Aeginetia indica Linn [72]
136 2′-Acetyl acteoside Rehmannia glutinosa var. Purpurea; cistanche salsa; Aeginetia indica Linn; Brandisia hancei [19,64,72,82]
137 l′-O-β-d-(3-Methoxy-4-hydroxy-β-phenyl)-ethyl-6′-O-feruloyl-α-l-(2-acetyl)-rhamnosyl-(1→3′)-4′-acetylglucopyranoside or pedicularioside E Pedicularis lasiophrys [73]
138 Martynoside or trans-martynoside Rehmannia glutinosa var. Purpurea; Pedicularis artselaeri; Fernandoa adenophylla; Penstemon serrulatus Menz; Paulownia tomentosa stem; Galeopws pubescens [19,66,69,71,76,87]
139 cis-Martynoside Penstemon serrulatus Menz [71]
140 2-(4-Hydroxy-3-methoxyphenyl)ethyl O-α-l-rhamnopyranosyl-(1→3)-O-(4-O-feruloyl)-β-d-glucopyranoside or cistanoside D cistanche salsa; Pedicularis artselaeri; Pedicularis lasiophrys; Pedicularis bngijora [64,66,73,79]
141 2-(3′,4′-Dihydroxyphenyl)-ethanol 1-O-β-d-xylosyl-(1→3)-β-d-(4-caffeyl)-glucoside or conandroside Conandron ramoidioides [74]
142 Isonuomioside A Paraboea glutinosa; Lantana camaro L. [27,29]
143 Calceolarioside E Paraboea glutinosa; Lantana camaro L. [27,29]
144 Plantamajoside Lagotis stolonifera [75]
145 Isocistanoside F Ligustrum purpurascens [24]
146 α-l-Rhamnopyranosyl(1→3)-O-(4-O-caffeoyl)-d-glucopyranoseor cistanoside F cistanche salsa [85]
147 3-Hydroxy-4-methoxy-β-phenylethoxy-O-α-l-rhamnopyranosyl-(1→3)-6-O-feruloyl-β-d-gluco-pyranoside or isomartynoside Galeopws pubescens [87]
148 1′-O-β-d-(3,4-Dihydroxy-β-phenyl)-ethyl-4′-O-caffeoyl-β-d-xylopyranosyl-(1′′′→6′)-glucopyran oside or calceolarioside C Calceolaria hypericina [25]
149 4-Cinnamoyl desxylosyl mussatioside Mussatia [88]
150 1-O-trans-Caffeoyl-2′-O-trans-sinapoylgentiobiose. Wasabia japonica Matsumura [89]
151 1-O-trans-Feruloyl-2′-O-trans-sinapoylgentiobiose Wasabia japonica Matsumura [89]
152 1,2′-di-O-trans-sinapoylgentiobiose Wasabia japonica Matsumura [89]
153 1-(3′′,4′′-Dihydroxy-5′′-methoxy)-O-trans-cinnamoyl-2′-O-trans-feruloyl gentiobiose Wasabia japonica Matsumura [89]
154 1-(3′′,4′′-Dihydroxy-5′′-methoxy)-O-trans-cinnamoyl-2′-O-trans-sinapoylgentiobiose Wasabia japonica Matsumura [89]
155 1,2′-Di-(3′′,4′′-dihydroxy-5′′-methoxy)-O-trans-cinnamoyl gentiobiose Wasabia japonica Matsumura [89]
156 (5-O-E-Caffeoyl)-β-d-apio-d-furanosyl-(1→6)-β-d-glucopyranosyl benzoic acid ester or psydroside Psydrax livida [90]
157 Crenatoside Orobanche crenata [91]
158 Campneoside II or orobanchoside Paulownia tomentosa stem; Orobanche crenata [76,91]
159 Campneoside I Paulownia tomentosa stem [76]
160 Ligurobustoside C Ligustrum purpurascens [24]
161 Ligurobustoside I Ligustrum purpurascens [24]
162 1-O-{6-O-[3-O-(E,E)-(β,β′-bis-Sinapoyl)-β-d-fructo-furanosyl]}-α-d-glucopyranoside intramolecular ester or glomeratose E Polygala glomerata [38]
163 3-O-[(E)-Sinapoyl]-β-d-fructofuranosyl-(2→1)-[β-d-glucopyranosyl-(1→2)]-[6-O-(E)-sinapoyl]-α-d-glucopyranosideor tricornose D Polygala tricornis [37]
164 3-O-[(E)-3,4,5-Trimethoxycinnamoyl]-β-d-fructo-furanosyl-(2→1)-[β-d-glucopyranosyl-(1→2)]-[6-O-(E)-sinapoyl]-α-d-glucopyranoside or tricornose C Polygala tricornis [37]
165 3-O-(E)-3,4,5-Trimethoxycinnamoyl-[4-O-(E)-feruloyl]-β-d-fructofuranosyl-(2→1)-[β-d-gluco-pyranosyl-(1→2)]-[6-O-(E)-sinapoyl]-α-d- gluco-pyranoside or tricornose F Polygala tricornis [37]
166 3-O-(E)-3,4,5-Trimethoxycinnamoyl-[4-O-(E)-sinapoyl]-β-d-fructofuranosyl-(2→1)-[β-d-glucopyranosyl-(1→2)]-[6-O-(E)-sinapoyl]-α-d-glucopyranoside or tricornose E Polygala tricornis [37]
167 Reiniose E Polygala reinii Fr.et Sav [46]
168 Reiniose F Polygala reinii Fr.et Sav [46]
169 O-β-d-Glucopyranosyl-(1→3)-6-O-feruloyl -α-d-glucopyranosyl β-d-fructofuranoside or arillatose C Polygala arillata [51]
170 O-β-d-Glucopyranosyl-(1→3)-6-O-sinapoyl-α-d-glucopyranosyl β-d-fructofuranoside or arillatose D Polygala arillata [51]
171 O-β-d-Glucopyranosyl-(1→3)-α-d-gluco-pyranosyl-3′-O-feruloyl-β-d-fructofuranoside or arillatose E Polygala arillata [51]
172 O-β-d-Glucopyranosyl-(1→3)-α-d-gluco-pyr anosyl-3′-O-sinapoyl-β-d-fructofuranoside or arillatose F Polygala arillata [51]
173 3-Feruloyl-4-acetyl-6′-(13′-O-β-d-gluco-pyranosyl)feruloylsucrose Lilium longiflorum [55]
174 Reiniose D Polygala reinii Fr.et Sav; Polyyala fallax [46,92]
175 Dalmaisiose A Polygala dalmaisiana [93]
176 3,4-Dihydroxyphenylethanol-6-O-trans-caffeoyl-β-d-apiofuranosyl(1→5)-β-d-apiofuranosyl(1→3)-β-d-glucopyranoside or paraboside B Paraboea glutinosa [27]
177 3,4-Dihydroxyphenylethanol-4-O-trans-caffeoyl-β-d-apiofuranosyl(1→5)-β-d-apiofuranosyl(1→3)-β-d-glucopyranosideor paraboside A Paraboea glutinosa [27]
178 2-(3,4-Dihydroxyphenyl)ethyl 3,6-O-bis(β-d-apiofranosyl)-4-O-caffeoyl-β-d-glucopyranoside or paucifloside Lysionotus pauciflorus [94]
179 l′-O-β-d-(3,4-Dihydroxy-β-phenyl)-ethyl-4′-O-caffeoyl-β-d-apiosyl-(l→3′)-α-l-rhamnosyl-(l→6′)-glucopyranoside or pedicularioside A Pedicularis striata; Markhamia lutea; Pedicularis striata pall ssp. arachnoidea; Pedicularis spicata [5,67,77,78]
180 l′-O-β-d-(3,4-Dihydroxy-β-phenyl)-ethyl-4′-O-feruloyl-β-d-apiosyl(1→3′)-α-l-rhamnosyl-(1→6′)-glucopyranoside or pedicularioside M Pedicularis striata pall ssp. arachnoidea [77]
181 l′-O-β-d-(3-hydroxy-4-methoxy-β-phenyl)-ethyl-4′-feruloyl-β-d-apiosyl(l→3′)-α-l-rhamnosyl-(l→6′)-glucopyranoside or pedicularioside N Pedicularis artselaeri; Pedicularis striata pall ssp. arachnoidea [66,77]
182 l′-O-β-d-(3-Methoxy-4-hydroxy-β-phenyl)-ethyl-4′-O-feruloyl-β-d-apiosyl-(1→3′)-α-l-rhamnos yl-(1→6′)-glucopyranoside or pedicularioside H Pedicularis spicata [78]
183 3,4-Dihydroxy-β-phenylethoxy-O-[α-arabino-pyranosyl-(1′′′′→2′′)-α-rhamnopyranosyl-(1′′′→3′′)-6′′-O-caffeoyl-β-glucopyranoside] or markhamioside C Markhamia stipulata [68]
184 Ehrenoside Veronica pectinata var. glandulosa; Aragoa cundinamarcensis [75,95,96]
185 3,4-Dihydroxy-β-phenylethoxy-O-[α-arabino-pyranosyl-(1′′′′→2′′)-α-rhamnopyranosyl-(1′′′→3′′)-4-O-caffeoyl-6-O-acetyl-β-glucopyranoside or markhamioside D Markhamia stipulata [68]
186 2-(3,4-Dihydroxyphenyl)ethyl-O-α-l-arabino-pyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→3)]-(4-O-trans-feruloyl)-β-d-glucopyranoside or verpectoside A Veronica pectinata var. glandulosa [95]
187 Lagotoside Lagotis stolonifera [75]
188 3,4-Dihydroxy-β-phenylethoxy-O-β-apiofuranosyl-(1→2)-α-rhamnopyranosyl-(1→3)-4-O-caffeoyl-β-glucopyranosideor 2′′-O-β-apiosylverbascoside Markhamia stipulata ; Fernandoa adenophylla [68,69]
189 1-O-(3,4-Dihydroxyphenyl)ethyl β-d-apiofuranosyl(1→2)-α-l-rhamnopyranosyl (1→3)-4-O-caffeoyl-6-acetyl-β-d-glucopyrano sideor luteoside A Markhamia stipulate; Markhamia lutea [5,68]
190 1-O-(3,4-Dihydroxyphenyl)ethyl β-d-apio-furanosyl(1→2)-α-l-rhamnopyranosyl(1→3)-6-O-caffeoyl-β-d-glucopyranosideor luteoside B Markhamia stipulate; Markhamia lutea [5,68]
191 1-O-(3,4-Dihydroxyphenyl)ethyl β-d-apio-furan osyl(1→2)-α-l-rhamnopyranosyl(1→3)-6-O-feruloyl-β-d-glucopyranoside or luteoside C Markhamia lutea [5]
192 3-Hydroxy-4-methoxy-β-phenylethoxy-O-[β-apio-furanosyl-(1′′′′→2′′)-α-rhamnopyranosyl-(1′′′→3′′)-6′′-O-feruloyl-β-glucopyranoside] or markhamioside B Markhamia stipulate [68]
193 3,4-Dihydroxy-β-phenylethoxy-O-[β-galacto-pyranosyl-(1′′′′→2′′)-α-rhamnopyranosyl-(1′′′→3′′)-4-O-caffeoyl-6-O-acetyl-β-glucopyranoside] or markhamioside E Markhamia stipulate [68]
194 2-(3,4-Dihydroxyphenyl)ethyl-O-β-d-gluco-pyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→3)]-(4-O-trans-caffeoyl)-β-d-glucopyranoside or verpectoside B Veronica pectinata var. glandulosa [95]
195 2-(3,4-Dihydroxyphenyl)ethyl-O-β-d-gluco-pyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→3)]-(4-O-trans-feruloyl)-β-d-glucopyranoside or verpectoside C Veronica pectinata var. glandulosa [95]
196 1′-O-β-d-(3-Methoxy-4-hydroxy-phenyl)-ethyl-α-l-rhamnosyl-(1→3′)-α-l-arabinosyl-(1→4′)-6′-O-feruloyl-glucopyranoside or pedicularioside I Pedicularis bngijora [79]
197 Angoroside A Scrophularia nodosa L.; Scrophularia scorodonia [63,70]
198 Scrophuloside B1 Scrophularia nodosa L. [63]
199 Scrophuloside B2 Scrophularia nodosa L. [63]
200 3,4-Dihydroxy-β-phenylethoxy-O-α-l-arabino-pyranosyl-(1→6)-α-l-rhamnopyranosyl-(1→3)-4-O-feruloyl-β-d-glucopyranoside or angoroside D Scrophularia scorodonia [70]
201 Angoroside C Scrophularia nodosa L. [63]
202 Forthysioside B Markhamia lutea [5]
203 6′-β-d-Apiofuranosyl cistanoside C Lamiophlomis rotata [86]
204 Lamiophlomiside A Lamiophlomis rotata [86]
205 cis-Lamiophlomiside A Lamiophlomis rotata [86]
206 Forsythoside B Phlomis grandiflora; Phlomis fruticosa [80]
207 Alyssonoside Phlomis grandiflora; Phlomis fruticosa [80]
208 2-(3,4-Dihydroxyphenyl)ethyl O-α-rhamno-pyranosyl-(1→3)-[β-d-galactopyranosyl-(l→6)]-(4-O-p-coumaroyl)-β-d-glucopyranoside or jionoside E Rehmannia glutinosa var. Purpurea [19]
209 Purpureaside C Rehmannia glutinosa var. Purpurea; Scrophularia nodosa L. [19,63]
210 Jionoside A1 Rehmannia glutinosa var. Purpurea [19]
211 Jionoside A2 Rehmannia glutinosa var. Purpurea [19]
212 Jionoside B1 Rehmannia glutinosa var. Purpurea [19]
213 Jionoside B2 Rehmannia glutinosa var. Purpurea [19]
214 Echinacoside Ligustrum purpurascens; cistanche salsa [24,81]
215 2-(4-Hydroxy-3-methoxyphenyl)ethyl O-α-l-rhamnopyranosyl-(1→3)-O-[β-d-glucopyrano syl(1→6)]-(4-O-caffeoyl)-β-d-glucopyranosideor cistanoside A Ligustrum purpurascens [81]
216 2-(4-Hydroxy-3-methoxyphenyl)ethyl O-α-l-rhamnopyranosyl-(1→3)-O-[β-d-glucopyran osyl(1→6)]-(4-O-feruloyl)-β-d-glucopyranoside or cistanoside B Ligustrum purpurascens [81]
217 Poliumoside Brandisia hancei [82]
218 [β-(3′,4′-Dihydroxylphenyl)-ethyl]-(2-O-acetyl)-(3,6-O-di-α-l-rhamnopyranosyl-(4-O-caffeoyl)β-d-glucopyranoside or brandioside Brandisia hancei [82]
219 Arenarioside Scrophularia nodosa L. [63]
220 1-O-3,4-(Sihydroxyphenyl)-ethyl-β-d-apiofuranosyl-(1→4)-α-l-rharmnopyranosyl-(1→3)-4-O-caffeoyl-β-d-glucopyranoside or myricoside Markhamia lutea; Picria tel-ferae Lour. [5,97]
221 Rossicaside B Boschniakia rossica [98]
222 Rossicaside A Boschniakia rossica [98]
223 2-O-Acetylrossicaside A Ortbocarpus densiflourus var. gracilis [99]
224 β-d-glucopyranosyl(1→4)-α-l-rhamnopyranosyl-(1→3)-(4-O-trans-caffeoyl)-d-glucopyranose Boschniakia rossica [98]
225 Lavandulifolioside leonurus glaucescens [83]
226 β-(3,4-Dihydroxyphenyl)-ethyl-O-α-L-arabinopyranosyl-(1→2)-α-L-rhamnopyranosyl-(l →3)-4-O-feruloyl-β-D-glucopyranoside or leonosides A leonurus glaucescens [83]
227 β-(3-Hydroxy,4-methoxyphenyl)-ethyl-O-α-l-arabinopyranosyl-(l→2)-α-l-rhamnopyranosyl-(1→3)-4-O-feruloyl-β-d-glucopyranoside or leonoside B leonurus glaucescens [83]
228 2R-Galactosyl-acteoside or lamalboside Lamium album [100]
229 3,4-Dihydroxy-β-phenylethoxy-O-β-d-gluco-pyranosyl-(1→2)-α-l-rhamnopyranosyl-(1→3)-4-O-caffeoyl-β-d-glucopyranoside or phlinoside A Phlomis linearis [84]
230 3,4-Dihydroxy-β-phenylethoxy-O-α-l-lyxo-pyranosyl-(1→2)-α-l-rhamnopyranosyl-(1→3)-4-O-caffeoyl-β-d-glucopyranoside or teucrioside Teucrium chamaedrys [101]
231 3,4-Dihydroxy-β-phenylethoxy-O-β-d-xylo-pyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→3)-4-O-caffeoyl-β-d-glucopyranoside or phlinoside B Phlomis linearis [84]
232 3,4-Dihydroxy-β-phenylethoxy-O-β-d-xylo-pyranosyl-(1→2)-α-l-rhamnopyranosyl-(1→3)-4-O-feruloyl-β-d-glucopyranoside or phlinoside D Phlomis lineuris [102]
233 2-(4-Hydroxyphenyl)-ethyl-[3-O-α-l-rhamno-pyranosyl(1→4)-α-l-rhamnopyranosyl][6-O-p-coumaroyl]-O-β-d-glucopyranoside or ligupurpuroside C Ligustrum purpurascens [24]
234 2-(4-Hydroxyphenyl)-ethyl-[3-O-α-l-rhamno-pyranosyl(1→4)-α-l-rhamnopyranosyl][6-O-(E)-caffeoyl]-O-d-glucopyranoside or ligupurpuroside D Ligustrum purpurascens [24]
235 3-O-[α-l-Rhamnopyranosyl(1→4)-α-l-rhamno-pyranosyl]-4-O-(E)-caffeoyl-d-glucopyranose or ligupurpuroside F Ligustrum purpurascens [24]
236 Ligupurpuroside B Ligustrum purpurascens [24]
237 Ligurobustosides N Ligustrum purpurascens [24]
238 Ligupurpuroside A Ligustrum purpurascens [24]
239 3,4-Dihydroxy-β-phenylethoxy-O-α-l-rhamno-pyranosyl-(l→2)-α-l-rhamnopyranosyl-(1→3)-4-O-caffeoyl-β-d-glucopyranoside or phlinoside C Phlomis linearis [84]
240 3,4-Dihydroxy-β-phenylethoxy-O-α-l-rhamno-pyranosyl-(l→2)-α-l-rhamnopyranosyl-(l→3)-4-O-feruloyl-β-d-glucopyranoside or phlinoside E Phlomis lineuris [102]
241 Myricoside Clerodendrum serratum [103]
242 3-Hydroxy-4-methoxy-β-phenethyl-O-β-d-apio-furanosyl-(1→3)-α-l-rhamnopyranosyl-(1→3)-4-O-feruloyl-β-d-glucopyranoside or serratumoside A Clerodendrum serratum [103]
243 Aragoside Aragoa cundinamarcensis [96]
244 Persicoside Aragoa cundinamarcensis [96]
245 1′-O-β-d-(3-Hydroxy-4-methoxy-β-phenyl)-ethyl-4′-O-feruloyl-β-d-glucopyranosyl-(1→3)-α-l-rhamnosyl-(1→6′)-glucopyranoside or artselaeroside B Pedicularis artselaeri [66]
246 3,4-Dihydroxy-β-phenyl-ethyl-O-α-l-rhamno-pyranosyl-(1→2)-O-β-d-glucopyranosyl-(1→6)-3-O-caffeoyl-β-d-allopyranoside or magnoloside B Magnolia obovata Thunb [62]
247 α-l-Xylopyranosyl-(4′′→2′)-(3-O-β-d-gluco-pyranosyl)-1′-O-E-caffeoyl-β-d-glucopyranoside Coussarea hydrangeifolia [21]
248 2-(3,4-Dihydroxyphenyl)-R,S-2-ethoxyethyl-O-β-d-glucopyranosyl(1→4)-α-l-rhamno-pyranosyl(1→3)(4-O-trans-caffeoyl)-β-d-gluco-pyranoside or rossicaside F Boschniakia rossica [97]
249 4-Cinnamoyl desxylosylmussatioside Mussatia [88]
250 4-p-Coumaroylmussatioside Mussatia [88]
251 4-cis-p-Coumaroylmussatioside Mursatia byacinthima [104]
252 4-p-Methoxycmnamoylmussatioslde ormussatloside III Mussatia [88]
253 4-Feruloylmussatioside Mussatia [88]
254 4-Dimethylcaffeoylmussatloside or mussatioside II Mussatia [88]
255 3-O-[(E)-Sinapoyl]-β-d-fructofuranosyl-(2→1)-[β-d-glucopyranosyl-(1→4)-β-d-gluco-pyranosyl-(1→2)]-[6-O-(E)-sinapoyl]-α-d-gluco-pyranoside or tricornose G Polygala tricornis [37]
256 3-O-(E)-Sinapoyl-[4-O-(E)-p-coumaroyl]-β-d-fructofuranosyl-(2→1)-[β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→2)]-[6-O-(E)-sinapoyl]-α-d-glucopyranoside or tricornose L Polygala tricornis [37]
257 3-O-(E)-Sinapoyl-[4-O-(E)-feruloyl]-β-d-fructo-furanosyl-(2→1)-[β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→2)]-[6-O-(E)-sinapoyl] -α-d-glucopyranoside or tricornose K Polygala tricornis [37]
258 3-O-(E)-sinapoyl-[4-O-(E)-sinapoyl]-β-d-fructo-furanosyl-(2→1)-[β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→2)]-[6-O-(E)-sinapoyl]-α-d-glucopyranoside or tricornose H Polygala tricornis [37]
259 3-O-(E)-3,4,5-Trimethoxylcinnamoyl-[4-O-(E)-feruloyl]-β-d-fructofuranosyl-(2→1)-[β-d-gluco-pyranosyl-(1→4)-β-d-glucopyranosyl-(1→2)]-[6-O-(E)-sinapoyl]-α-d-glucopyranoside or tricornose J Polygala tricornis [37]
260 3-O-(E)-3,4,5-Trimethoxylcinnamoyl-[4-O-(E)-sinapoyl]-β-d-fructofuranosyl-(2→1)-[β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→2)]-[6-O-(E)-sinapoyl]-α-d-glucopyranoside or tricornose I Polygala tricornis [37]
261 Senegose I Polygala senega var. latifolia Torr. Et Gray [105]
262 1-O-(E)-p-Coumaroyl-(3-O-benzoyl)-β-d-fructo-furanosyl-(2→1)-[β-d-glucopyranosyl-(1→2)]-[6-O-acetyl-β-d-glucopyranoysl-(1→3)]-[4-O-(E)-feruloyl]-(6-d-acetyl)-α-d-glucopyranoside or glomeratose F Polygala glomerata [38]
263 1-O-(E)-p-Coumaroyl-(3-O-benzoyl)-β-d-fructo-furanosyl-(2→l)-[β-d-glucopyranosyl-(1→2)]-[6-O-acetyl-β-d-glucopyranoside-(1→3)]-{4-O-[4-O-β-d-glucopyranosyl-(E)-feruloyl]}-[6-O-(E)-p-coumaroyl]-α-d-glucopyranosyl or glomeratose G Polygala glomerata [38]
264 1-O-p-coumaroyl-(3-O-benzoyl)-β-d-fructo-furanosyl-(2→1)-[β-d-glucopyranosyl-(1→2)]-[6-O-acetyl-β-d-glucopyranosyl-(1→3)]-(4-O-p-coumaroyl)-α-d-glucopyranoside or fallaxose C Polyyala fallax [92]
265 Reiniose G Polygala glomerata; Polygala reinii Fr. et Sav [38,46]
266 Dalmaisiose H Polygala dalmaisiana [93]
267 1-O-p-Coumaroyl-(3-O-benzoyl)-β-d-fructo-furanosyl-(2→1)-[β-d-glucopyranosyl-(1→2)]-[6-O-acetyl-β-d-glucopyranosyl-(1→3)]-(4-O-feruloyl)-α-d-glucopyranoside or fallaxose D Polyyala fallax [92]
268 Dalmaisiose J Polygala dalmaisiana [93]
269 Dalmaisiose L Polygala dalmaisiana [93]
270 Dalmaisiose M Polygala dalmaisiana [93]
271 Reiniose H Polygala reinii Fr. et Sav [46]
272 Senegose G Polyyala fallax; Polygala senega var. latifolia Torr. Et Gray [92,105]
273 Senegose H Polygala senega var. latifolia Torr. Et Gray [105]
274 Senegose F Polygala reinii Fr. et Sav; Polygala senega var. latifolia Torr. Et Gray [46,105]
275 3-O-β-D-Glucopyranosylpresenegenin 28-O-β-D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-{4-O-[(E)-3,4-dimethoxycinnamoyl]}-β-D-fucopyranosyl ester or Polygalasaponin XLII Polygala glomerata Lour [106]
276 3,4-Dihydroxy-β-phenylethyl-O-α-l-rhamno-pyranosyl-(1→2)-O-[O-β-d-glucopyranosyl-(1→4)-β-d-glucopyranosyl-(1→6)]-3-O-caffeoyl-β-d-allopyranoside or magnoloside C Magnolia obovata Thunb [62]
278 3-O-{4-O-[β-d-Glucopyranosyl-(1→3)-(2-O-acetyl)-α-l-rhamnopyranosyl]-feruloyl}-β-d-fructo-furanosyl-(2→1)-(4,6-di-O-benzoyl)-α-d-gluco-pyranoside or fallaxose B Polyyala fallax [92]
279 2-(3,4-Dihydroxyphenyl)ethyl O-β-apio-furanosyl-(1→6)-O-[O-β-apiofuranosyl-(1→4)-α-rhamnopyranosyl-(1→3)]-4-O-(E)-caffeoyl-β-glucopyranoside or lunariifolioside Phlomis lunariifolia [106]
280 Tenuifoliose K Polygala tenuifolia Willd [11]
281 Tenuifoliose J Polygala tenuifolia Willd [11]
282 tenuifoliose I Polygala tenuifolia Willd [11]
283 Tenuifoliose H Polygala tenuifolia Willd [11]
284 Tenuifoliose C Polygala tenuifolia Willd; Polyyala fallax [12,92]
285 Tenuifoliose B Polygala tenuifolia Willd [12]
286 Tenuifoliose D Polygala tenuifolia Willd; Polygala reinii Fr. et Sav [12,46]
287 Tenuifoliose E Polygala tenuifolia Willd [12]
288 Tenuifoliose A Polygala tenuifolia Willd [11,12]
289 Tenuifoliose P Polygala tenuifolia Willd [11]
290 Tenuifoliose O Polygala tenuifolia Willd [11]
291 Reiniose I Polygala reinii Fr. et Sav [46]
292 Tenuifoliose N Polygala tenuifolia Willd [11]
293 Reiniose J Polygala reinii Fr. et Sav [46]
294 1-O-Feruloyl-(3-O-benzoyl)-β-d-fructofuranosyl-(2→1)-[β-d-glucopyranosyl-(1→2)]-[β-d-gluco-pyranosyl-(1→3)-(6-o-acetyl)-β-d-gluco-pyranosyl-(1→3)]-(6-o-feruloyl)-α-d-glucopyranoside or fallaxose E Polyyala fallax [92]
295 Senegose K Polygala senega L. [107]
296 Senegose J Polygala senega L. [107]
297 Senegose N Polygala senega L. [107]
298 Senegose O Polygala senega L. [107]
299 Senegose M Polygala senega L. [107]
300 Senegose L Polygala senega L. [107]
301 Senegose D Polygala senega var. latifolia Torr. Et Gray [108]
302 Senegose C Polygala senega var. latifolia Torr. Et Gray [108]
303 Senegose B Polygala senega var. latifolia Torr. Et Gray [108]
304 Senegose A Polygala senega var. latifolia Torr. Et Gray [108]
305 Senegose E Polygala senega var. latifolia Torr. Et Gray [108]
306 Dalmaisiose D Polygala dalmaisiana [93]
307 Dalmaisiose B Polygala dalmaisiana [93]
308 Dalmaisiose E Polygala dalmaisiana [93]
309 Dalmaisiose I Polygala dalmaisiana [93]
310 Dalmaisiose N Polygala dalmaisiana [93]
311 Dalmaisiose F Polygala dalmaisiana [93]
3312 Dalmaisiose P Polygala dalmaisiana [93]
313 Dalmaisiose G Polygala dalmaisiana [93]
314 Dalmaisiose C Polygala dalmaisiana [93]
315 Dalmaisiose K Polygala dalmaisiana [93]
316 Dalmaisiose O Polygala dalmaisiana [93]
317 E-Senegasaponin b Polygala senega L.var. latifolia Torrey et Gray [109]
318 Z-Senegasaponin b Polygala senega L.var. latifolia Torrey et Gray [109]
319 Senegin II Polygala glomerata Lour [106]
320 (Z)-Senegin II Polygala glomerata Lour [106]
321 Tenuifoliose M Polygala tenuifolia Willd [11]
322 Tenuifoliose L Polygala tenuifolia Willd [11]
323 Tenuifoliose G Polygala tenuifolia Willd [11]
324 Tenuifoliose F Polygala tenuifolia Willd [11,12]
325 3-O-β-d-Glucopyranosylpresenegenin 28-O-β-d-galactopyranosyl-(1→4)-β-d-xylo-pyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)[β-d-glucopyranosyl-(1→3)]-(4-O-[(E)-3,4-dimethoxycinnamoyl]}-8-O-fucopyranosyl ester or polygalasaponin XLIV Polygala glomerata Lour [106]
326 3-O-β-d-Glucopyranosylpresenegenin 28-O-β-d-galactopyranosyl-(1→4)-β-d-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-[6-O-acetyl-β-d-glucopyranosyl-(1→3)]-{4-O-[(E)-3,4-dimethoxycinnamoyl])-β-d-fucopyranosyl ester or polygalasaponin XLV Polygala glomerata Lour [106]
327 3-O-β-d-Glucopyranosylpresenegenin 28-O-β-d-galactopyranosyl-(1→4)-β-O-xylopyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-[6-O-acetyl-β-d-glucopyranosyl-(1→3)]-{4-O-[(Z)-3,4-dimethoxycinnamoyl]}-β-d-fucopyranosyl ester or polygalasaponin XLVI Polygala glomerata Lour [106]
328 3-O-β-d-Glucopyranosylpresenegenin, 28-O-β-d-galactopyransyl(1→4)-β-d-xylopyranosyl -(1→4)-α-l-rhamnopyranosyl-(1→2)-{4-O-p-methoxycinnamoyl]}-[β-d-glucopyranosy l(1→3)]-β-d-fucopyranosyl ester or polygalasaponin X X X Polygala japonica Houtt. [56]
329 3-O-β-d-Glucopyranosylpresenegenin 28-O-β-d-galactopyranosyl-(1→4)-β-d-xylo-pyranosyl-(1→4)-α-l-rhamnopyranosyl-(1→2)-[α-l-arabinopyranosyl-(1→3)]-[4-O-(E)-p-methoxycinnamoyl]-β-d-fucopyranosyl ester or polygalasaponin XLIII Polygala glomerata Lour [106]
330 3-O-β-d-Glucopyranosylpresenegenin 28-O-α-l-arabinopyransyl (1→4)-β-d-xylopyranosyl-(1→4)-[β-d-apiofuranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)-[4-O-3,4,5-trimethoxy-cinnamoyl]-β-d-fucopyranosyl ester or polygalasaponin XXXI Polygala japonica Houtt. [56]
331 E-Senegasaponin a Polygala senega L.var. latifolia Torrey et Gray [109]
332 Z-Senegasaponin a Polygala senega L.var. latifolia Torrey et Gray [109]
333 1-O-(E)-p-Coumaroyl-(3-O-benzoyl)-β-d-fructo-furanosyl-(2→1)-[6-O-(E)-feruloyl-β-d-gluco-pyranosyl-(1→2)]-[6-O-acetyl-β-d-gluco-pyranosyl-(1→3)-(4-O-acetyl)-β-d-glucopyranosyl-(1→3)]-4-O-[4-O-α-l-rhamnopyranosyl-(E)-p-coumaroyl]-α-d-glucopyranoside or polygalajaponicose I Polygala japonica [110]
334 3-O-β-d-Glucopyranosylpresenegenin 28-O-α-L-arabinopyransyl-(1→4)-β-d-xylo-pyranosyl-(1→4)-[β-d-apiofuranosyl-(1→3)]-α-l-rhamnopyranosyl-(1→2)-[4-O-p-methoxy-cinnamoyl]-[α-l-rhamnopyranosyl(1→3)]-β-d-fucopyranosyl ester or polygalasaponin XXXII Polygala japonica Houtt. [56]

Up to now, there has been no detailed research on the extraction procedures for these chemical constituents. Generally, the crude extracts wer prepared with different concentrations of methanol, ethanol or acetone-water solution by the impregnation method, refluxing extraction or decoction method [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111]. Then the extracts were evaporated in a rotary evaporator to yield a syrupy residue. This residue was suspended in H2O and extracted successively with petroleum ether, CHCl3, EtOAc and H2O-satd n-BuOH [10,14,15,22]. The different extracts were then fractionated on different chromatographic columns with different mobile phases. Thereinto, silica gel CC was the most commonly used positive phase chromatographic column and eluted with petroleum ether, petroleum ether–EtOAc CHCl3–EtOAc, CHCl3–MeOH, CHCl3–MeOH–H2O with various ratios [10,11,22,30]. Mitsubishi Diaion HP-20, Diaion HP20SS, Chromatorex ODS, different types of macroporous resin and MCI columns were the reverse phase chromatography columns, which were used widely, eluted with a step-gradient of MeOH–H2O or EtOH–H2O (10%–100%), respectively. Sephadex LH-20 was also commonly used [19,31]. Some oligosachariches were isolated by preparative HPLC (Develosil Lep-ODS) [11]. Preparative TLC and recycle semi-preparative HPLC were often used to further purify samples [15].

2.1. Monosaccharide Esters

The 27 monosaccharide [16,18,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35] esters 110, 2127 represent the simplest structures found among CASEDs (Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5). The main structural moiety of these compounds (Figure 2 and Figure 5), is a β-d-glucose ester, or an α-l-rhamnose ester in compounds 1115 (Figure 3). Compounds 1620 exist as anomeric mixtures in solution and the phenylacrylic group is often attached at the C-6 position of the glycosyl moiety. Coincidentally, compounds 1115 possess the same p-methoxy- cinnamoyl group attached to the rhamnose unit though an ester bond in the monosaccharide ester. Compounds 2, 4 and 20 are phenylpropanol esters linked with glucose as the important part. Compounds 1 and 3 contain two different phenylpropanols attached to one glucose molecule. Ningposide D (14) [16] is also an anomeric mixture of rhamnose esters and the anomeric ration α/β is 3:1, here it was drawn as the α-l-rhamnose ester. Isolated from the underground parts of Globularia orientali, globularitol (21) has a carbohydrate chain moiety, formed by a glucitol group. It has the ability to efficiently scavenge free radicals [32]. Grayanin (22) has a mandelonitrile unit connected at the C-1 position in the glucose. This compound is a unique cyanogenic glycoside among CASEDs [20]. The benzeneacetonitrile group of grayanin may be originated from phenylalanine from the biosynthetic pathway viewpoint. Up to now, paederol A (25) and B (26), are the only two reported CASEDs with acyclic sugars. By the way, paederol A and B did not exhibit obviously cytotoxicity in the Lu1 (lung cancer), LNCaP (prostate cancer) and MCF-7 (breast cancer) [34]. Kaempferol 3-O-β-d-(6-O-p-E-coumaroyl)-glucopyranoside (27) is the only flavonoid of CASEDs, which possess inhibitory activity towards a drug-metabolizing enzyme, CYP3A4 [35].

Figure 2.

Structures of compounds 110.

Figure 2

Cpd. R1 R2 R3 R4 R5 Cpd. R1 R2 R3 R4 R5
1 E H H H G 6 R H H E H
2 G H H H G 7 S H H H G
3 S H H H I 8 S H H G H
4 I H H H I 9 T H H H G
5 R H H H E 10 V H H H G

Figure 3.

Structures of compounds 1115.

Figure 3

Cpd. R1 R2 R3 R4
11 H H H F
12 H A F H
13 H A F F
14 H F A H
15 H A F′ H

Figure 4.

Structures of compounds 1620.

Figure 4

Cpd. R1 R2 R3 R4 R5
16 H H H H E
17 H H H H G
18 H H H H K
19 H H H E H
20 H H G′ H G

Figure 5.

Figure 5

Structures of compounds 2127.

2.2. Disaccharide Esters

Disaccharide esters 28162 (Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15 and Figure 16) [4,5,10,13,15,17,19,24,25,29,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91] constitute the largest group among CASEDs. Their glycosyl parts include glycosyl groups, with glucopyrannosyl, rhamnopyranosyl, fructofuranosyl, and arabinopyranosyl ones being the most important and sucrose units as found in compounds 28120, 162 are more rare,. Among them, the glycosyl unit in 28120 has the anomeric carbon on α-d-glucose linked to a β-d-fructose. The ester bond is often formed at the C-6 position of α-d-glucose and C-3 position of β-d-fructose. The compounds 122140 are composed of α-l-rhamnose and β-d-glucose, with a connection between the C-1 location of α-l-rhamnose and C-3 position of β-d-glucose. The cinnamic acid unit is mainly connected to the C-4 position of β-d-glucose, and less often in the C-6 location. The glycosyl moieties of compounds 145147 are similar to those of 122140, and the configuration of the hydroxyl attached to the anomeric carbon of glucose could not be determined. The aglycone part of compounds 150155 is two β-d-glucoses joined by C-1 and C-6, and the functional group is attached to the C-2 position of the parent nucleus.

Figure 6.

Structures of compounds 28120.

Figure 6

Cpd. R1 R2 R3 R4 R5 R6 R7 R8 Cpd. R1 R2 R3 R4 R5 R6 R7 R8
28 H H H H H H H I 75 H H H K H H H H
29 H H H H H H H K 76 H H H K H H H I
30. H H H H H H H M 77 H H H M H H H M
31 H H H H H E H E 78 H H H M H H H H
32 H H H H H I H I 79 H H A A H I H I
33 H H H H H I H E 80 H H A B H H H M
34 H H H H K H H I 81 H H A I H H H I
35 H H H H K H H K 82 H H A K H H H K
36 H H H H A H H I 83 H H B H H H H I
37 H H H H E E H E 84 H H B H H H H M
38 H H H H E I H E 85 H H E A H I H I
39 H H H H E I H I 86 H H I H H I H I
40 H H H H E I A I 87 H H I A H I H I
41 H H H H I I H E 88 H H K H H H H K
42 H H H H I I H I 89 H A H A A H H E
43 H H H A H H H M 90 H A H A H I H I
44 H H H A H H H I 91 H A H I E E H E
45 H H H A H I H I 92 H A H I H A H I
46 H H H A E I H E 93 H A H I H A A I
47 H H H A E I H I 94 H A H K H H H K
48 H H H B H H H I 95 H I H H H I H H
49 H H H B H H H M 96 H A A A A H H E
50 H H H B H H H K 97 A H H A A I H I
51 H H H C H H H M 98 A H H A H I H I
52 H H H C H H H K 99 A H H A I I H E
53 H H H D H H H H 100 A H H A I I H I
54 H H H E H H H K 101 A H H A E I H I
55 H H H E H H H M 102 A H H I E E H E
56 H H H E H H I I 103 A H H I I E H E′
57 H H H E E E H E 104 A H H H E E H E
58 H H H E E I H E 105 A H H H E I H I
59 H H H G H H H H 106 A H H H E I H E
60 H H H G H H I I 107 A H H H H I H I
61 H H H I H H H M 108 A H A A H I H I
62 H H H I H H H H 109 A H A A A D H D
63 H H H I I E H E 110 A H A A A I H I
64 H H H I I I H E 111 A H A A I I H I
65 H H H I H E H E 112 A H A A E I H I
66 H H H I E E H H 113 A H A I E E H E
67 H H H I E E H E 114 A H E H H I H I
68 H H H I H H A I 115 A H I H H I H I
69 H H H I H A H I 116 A A A A H H H E
70 H H H I H A A I 117 A A H A A H H E
71 H H H I H H H I 118 E H A H A E H E
72 H H H K H H H M 119 I H H H H I H I
73 H H H K H H H K 120 A A A A H H H G
74 H H H K H H K K

Figure 7.

Structure of compound 121.

Figure 7

Cpd. R1 R2 R3 R4
121 S G H H

Figure 8.

Structures of compounds 122140.

Figure 8

Cpd. R1 R2 R3 R4 R5 R6 R7 Cpd. R1 R2 R3 R4 R5 R6 R7
122 R H H E H H H 132 S H G′ H H H H
123 R H E H H H H 133 S H I H H H H
124 G H T H H H H 134 S H I′ H H H H
125 Q H G H H H H 135 S A G H H H A
126 R H E H H H H 136 S A G H H H H
127 S H H E H H H 137 T H A I H A H
128 S H H G H H H 138 T H I H H H H
129 S H E′ H H H H 139 T H I′ H H H H
130 S H G D H H H 140 U H I H H H H
131 S H G H H H H

Figure 9.

Structure of compound 141.

Figure 9

Cpd. R1 R2 R3 R4
141 S H G H

Figure 10.

Structures of compounds 142143.

Figure 10

Cpd. R1 R2 R3 R4
142 S H H G
143 S H G H

Figure 11.

Structure of compound 144.

Figure 11

Cpd. R1 R2 R3 R4
144 S H G H

Figure 12.

Structures of compounds 145147.

Figure 12

Cpd. R1 R2 R3 R4
145 H H H E
146 H H G H
147 T H H I
148 S H H G

Figure 13.

Structure of compound 148.

Figure 13

Cpd. R1 R2 R3 R4
148 S H H G

Figure 14.

Structure of compound 149.

Figure 14

Cpd. R1 R2 R3
149 D H R

Figure 15.

Structures of compounds 150155.

Figure 15

Cpd. R1 R2
150 G K
151 I K
152 K K
153 L I
154 L K
155 L L

Figure 16.

Figure 16

Structures of compounds 156162.

Sibiricose A5 (28), tenuifoliside A (51) and DISS (73) from the root of Polygala sibirica (Yuanzhi) [13], have the same core sucrose unit and the ester is always connected at the C-6 position of α-d-glucose and C-3 position of β-d-fructose. These compounds have anti-depression properties. In 1968, verbascoside (=acteoside 131) was the first CASED isolated from the medical plant Syringa vulgaris (Oleaceae) [3]. So far, it has been reported in nine families. Magnoloside A (121) from medicinal plants of the Magnoliaceae family is unique among the phenylpropanoids in rarely occurring alone as the core glycosyl [62]. In addition, crenatoside (157) has a novel annular framework which attaches the C-1 and C-2 of the glucose to a hexatomic oxygen ring [91]. Glomeratose E (162) possesses a (E,E)-β,β′-bis-sinapoyl group between the α-d-glucose and β-d-fructose [38].

2.3. Trisaccharide Esters

Ninety three compounds 163254 [5,19,21,24,37,46,51,55,63,64,65,66,67,75,78,79,80,81,82,83,84,85,86,93,94,95,96,97,98,99,100,101,102,103,104] represent the trisaccharide ester category. They are mainly obtained from the Scrophulariaccae plant family. The most common glycosyl moieties are sucrose, with glucose as core unit (compounds 163174, 175, Figure 17, Figure 18, Figure 19 and Figure 20 and Figure 21), di-apiose combined with glucose (176178, Figure 22 and Figure 23), glucose as the kernel glycosyl (179246, 247248, Figure 24, Figure 25, Figure 26, Figure 27, Figure 28, Figure 29, Figure 30, Figure 31, Figure 32, Figure 33, Figure 34, Figure 35, Figure 36, Figure 37, Figure 38, Figure 39, Figure 40, Figure 41, Figure 42, Figure 43, Figure 44, Figure 45, Figure 46, Figure 47, Figure 48, Figure 49, Figure 50, Figure 51 and Figure 52 and Figure 53), and rhamnose as the central part with its terminal carbon combined with glucose and the C-3 connected with xylose (249254, Figure 54). The phenylpropanoid groups usually esterify the C-3 and C-4 positions of fructose, C-3, C-4 and C-6 of glucose and C-4 of rhamnose. Tricornoses E (165) and F (166) from the Polygalaceae family possess two different phenylpropanoids attached to one fructose molecule [37]. Lilongiside (173), reiniose D (174) and hydrangeifolin II (253) differ from other trisaccharide esters in that their three sugar cores are not combined as a whole chain [21,46,55]. The aglycone groups of lilongiside and reiniose D are sucrose with glucose, rhamnose. Hydrangeifolin II is composed of caffeoyl glycoside with a diglycosyl unit esterified with an ester linkage. This compound has a weak DPPH free radical scavenging activity. Teucrioside (229) from the Labiatae family is the only CASED that has a lyxose moiety, rarely occuring in higher plants [101]. The anomeric carbon configuration of glucose unit in ligupurpuroside F (234) is not determined [24]. Rossicaside F (254) exists as epimers at the β-C of the phenethyl alcohol moiety (R,S-β-OEt) [98].

Figure 17.

Structures of compounds 163166.

Figure 17

Cpd. R1 R2 R3 Cpd. R1 R2 R3
163 K H K 165 M I K
164 M H K 166 M K K

Figure 18.

Structures of compounds 167168.

Figure 18

Cpd. R1 R2 R3 R4 R5 R6 R7
167 H H I H H H K
168 H H K H H H K

Figure 19.

Structures of compounds 169172.

Figure 19

Cpd. R1 R2 Cpd. R1 R2
169 I H 171 H I
170 K H 172 H K

Figure 20.

Structures of compounds 173174.

Figure 20

Cpd. R1 R2 R3 R4 R5 R6 R7 R8
173 H H H O H H A I
174 H H P B H H H B

Figure 21.

Structure of compound 175.

Figure 21

Cpd. R1 R2 R3
175 E A D

Figure 22.

Structures of compounds 176177.

Figure 22

Cpd. R1 R2 R3 R4
176 S H H G
177 S H G H

Figure 23.

Structure of compound 178.

Figure 23

Cpd. R1 R2
178 S G

Figure 24.

Structures of compounds 179182.

Figure 24

Cpd. R1 R2
179 S G
180 S I
181 T I
182 U I

Figure 25.

Structures of compounds 183187.

Figure 25

Cpd. R1 R2 R3
183 S H G
184 S G H
185 S G A
186 S I H
187 T I H

Figure 26.

Structures of compounds 188192.

Figure 26

Cpd. R1 R2 R3
188 S G H
189 S G A
190 S H G
191 S H I
192 T H I

Figure 27.

Structure of compound 193.

Figure 27

Cpd. R1 R2 R3
193 S G A

Figure 28.

Structures of compounds 194195.

Figure 28

Cpd. R1 R2 R3
194 S G H
195 S I H

Figure 29.

Structure of compound 196.

Figure 29

Cpd. R1 R2 R3
196 U H I

Figure 30.

Structures of compounds 197201.

Figure 30

Cpd. R1 R2 R3
197 S H G
198 S H I
199 S H I′
200 S H I
201 T H I

Figure 31.

Structures of compounds 202205.

Figure 31

Cpd. R1 R2 R3
202 S H G
203 U H G
204 U H I
205 U H I′

Figure 32.

Structures of compounds 206207.

Figure 32

Cpd. R1 R2 R3
206 S H G
207 S H I

Figure 33.

Structures of compounds 208213.

Figure 33

Cpd. R1 R2 R3
208 S H E
209 S H G
210 S H I
211 S H I′
212 U H I
213 U H I′

Figure 34.

Structures of compounds 214216.

Figure 34

Cpd. R1 R2 R3
214 S H G
215 U H G
216 U H I

Figure 35.

Structures of compounds 217218.

Figure 35

Cpd. R1 R2 R3
217 S H G
218 S A G

Figure 36.

Structure of compound 219.

Figure 36

Cpd. R1 R2 R3
219 S H G

Figure 37.

Structure of compound 220.

Figure 37

Cpd. R1 R2 R3 R4
220 S H G H

Figure 38.

Structures of compounds 221223.

Figure 38

Cpd. R1 R2 R3 R4
221 E H I H
222 S H G H
223 S A G H

Figure 39.

Structure of compound 224.

Figure 39

Cpd. R1 R2 R3 R4
224 H H I H

Figure 40.

Structures of compounds 225227.

Figure 40

Cpd. R1 R2 R3 R4
225 S H G H
226 S H I H
227 T H I H

Figure 41.

Structure of compound 228.

Figure 41

Cpd. R1 R2 R3 R4
228 S H G H

Figure 42.

Structure of compound 229.

Figure 42

Cpd. R1 R2 R3 R4
229 S H G H

Figure 43.

Structure of compound 230.

Figure 43

Cpd. R1 R2 R3 R4
230 S H G H

Figure 44.

Structures of compounds 231232.

Figure 44

Cpd. R1 R2 R3 R4
231 S H G H
232 S H I H

Figure 45.

Structures of compounds 233234.

Figure 45

Cpd. R1 R2 R3 R4
233 R H H E
234 R H H G

Figure 46.

Structures of compounds 235238.

Figure 46

Cpd. R1 R2 R3 R4
235 H H G H
236 R H E H
237 R H G H
238 S H G H

Figure 47.

Structures of compounds 239240.

Figure 47

Cpd. R1 R2 R3 R4
239 S H G H
240 S H I H

Figure 48.

Structures of compounds 241242.

Figure 48

Cpd. R1 R2 R3 R4
241 S H G H
242 T H I H

Figure 49.

Structure of compound 243.

Figure 49

Cpd. R1 R2 R3
243 S G H

Figure 50.

Structure of compound 244.

Figure 50

Cpd. R1 R2 R3
244 S G H

Figure 51.

Structure of compound 245.

Figure 51

Cpd. R1 R2 R3
245 T H I

Figure 52.

Structure of compound 246.

Figure 52

Cpd. R1 R2 R3
246 S G H

Figure 53.

Figure 53

Structures of compounds 247248.

Figure 54.

Structures of compounds 249254.

Figure 54

Cpd. R1 R2 Cpd. R1 R2
249 D R 252 F R
250 E R 253 I R
251 E′ R 254 J R

2.4. Tetrasaccharide Esters

Of all the tetrasaccharide esters 255279 (Figure 55, Figure 56, Figure 57, Figure 58, Figure 59 and Figure 60) [37,38,46,62,92,93,105,106,107], 23 are found in Polygalaceae plants Most of the phenylacrylic moieties are coumaroyl, feruloyl and sinapoyl groups. According to the core glycosyl type, these compounds can be classified into four groups, including the combination of fructose with three glucoses (255274, Figure 55, Figure 56 and Figure 57), rhamnose, fructose with two glucoses (277278, Figure 60), the other tetrasaccharide esters (275, 276, 279, Figure 58, Figure 59 and Figure 60). Senegoses F–I (261, 272274) [105], whose absolute configurations were established by spectroscopic and chemical means, were purified from Polygala senega var. latifolia ToRR. et GRAY(Polygalaceae). Polygalasaponin XLII (275) which was obtained from the roots of Polygalaglomerata Lour belongs to the oleanane-type saponins, [107]. Its fucose C-4 position attaches to a 3,4-dimethoxycinnamoyl by an ester bond. The structures of fallaxose A (277) and fallaxose B (278), found in the roots of Polygala fallax, are similar, except for the acetyl group and the glucose location. Both are esterified with ferulic acid [92].

Figure 55.

Structures of compounds 255260.

Figure 55

Cpd. R1 R2 R3 R4 Cpd. R1 R2 R3 R3
255 K H H K 258 K K H K
256 K E H K 259 M I H K
257 K I H K 260 M K H K

Figure 56.

Structure of compound 261.

Figure 56

Cpd. R1 R2 R3 R4 R5 R6
261 I B H I A A

Figure 57.

Structures of compounds 262274.

Figure 57

Cpd. R1 R2 R3 R4 R5 Cpd. R1 R2 R3 R4 R5
262 E B I A A 269 E B I H I
263 E B H E A 270 E B I A I
264 E B E H A 271 I B E A A
265 E B E A A 272 I B I H A
266 E B E A E 273 I B I A H
267 E B I H A 274 I B I A A
268 E B I H E

Figure 58.

Structure of compound 275.

Figure 58

Cpd. R1 R2 R3
275 J H H

Figure 59.

Structure of compound 276.

Figure 59

Cpd. R1 R2 R3
276 S G H

Figure 60.

Figure 60

Structures of compounds 277279.

2.5. Other Sugar Esters

To our knowledge, pentasaccharide esters 280320 (Figure 61, Figure 62, Figure 63 and Figure 64) [11,12,46,92,93,107,108,109,110], hexsaccharide esters 321333 (Figure 65, Figure 66, Figure 67, Figure 68, Figure 69, Figure 70 and Figure 71) [11,12,56,107,109,110], heptasaccharide esters 334 (Figure 72) [56] were all found in the Polygalaceae family and most of them form a series of similar type compounds. That is to say, CASEDs with higher carbon numbers are rarely found in plants outside the Polygalaceae. The phenylacrylic groups usually locate at C-1 of fructose, C-4 of glucose, as well as C-4 of fucose. Most glycosyl moieties of pentasaccharide esters are four glucoses and a fructose with different locations and sequence. Tenuifolioses A and B (285, 288), obtained from Polygala tenuifolia Willd, showed neuroprotective activity. Tenuifolioses A and B have the same glycosyl core, with β-d-glucoses connected at the C-1 and C-4 position and the first glucose combined with another glucose at C-2 and β-d-fructose at C-1 [12]. Compounds 280294 with this same sugar core serve to remind researchers of the need for more studies on these compounds to find more precursor compounds of anti-depression drugs. The tenuifoliose A–E (284288), senegose A–E (301305), J–O (295300) type of oligosaccharide multi-esters are esterified with coumaric and ferulic acids [108,111]. Compounds 306307, 311 [93] are pentasaccharide esters having the same glycosyl connection sequence as that of reiniose G (265) and have a p-coumaroyl residue at C-6 of glucose [38]. Compounds 308310, 312316 are also pentasaccharide esters, but with a feruloyl residue at C-6 of glucose. Compounds 319320 and 325330 are CASEDs belonging to the oleanane-type saponins and found in the root parts of Polygala glomerata Lour [107], which have the same parent nuclei as polygalasaponin XLII (275). To our knowledge, only one heptasaccharide ester (polygalasaponin XXXII, 334) was reported, and it is also an oleanane-type saponin, with hippocampus-dependent learning and memory enhancing activity. Polygalasaponin XXXII [56], as the representative of oleanane-type saponins in CASEDs, has also captured attention of researchers to do more investigation on the other compounds of the class (317320, 325332) in order to identify compounds with the same activity or with more sugars that might improve the improve hippocampus-dependent learning and memory enhancing activity of polygalasaponin XXXII.

Figure 61.

Structures of compounds 280294.

Figure 61

Cpd. R1 R2 R3 R4 R5 R6 Cpd. R1 R2 R3 R4 R5 R6
280 E B E H H A 288 E B I A A A
281 E B E H A A 289 I B I H H A
282 E B E A H A 290 I B I H A A
283 E B E A A A 291 I B I A H A
284 E B I H H A 292 I B I A A A
285 E B I H A A 293 I B E′ A H A
286 E B I A H A 294 I B H I H A
287 E B I A H H

Figure 62.

Structures of compounds 295305.

Figure 62

Cpd. R1 R2 R3 R4 R5 Cpd. R1 R2 R3 R4 R5
295 E B I A H 301 I B I H H
296 E B I A A 302 I B I H A
297 E B I′ A A 303 I B I A H
298 E′ B I A A 304 I B I A A
299 I B E A H 305 I B I′ A A
300 I B E A A

Figure 63.

Structures of compounds 306316.

Figure 63

Cpd. R1 R2 R3 R4 R5
306 E B N A H
307 E B N A A
308 E B P A H
309 E B P A E
310 E B P A I
311 I B N A H
312 I B P H I
313 I B P A H
314 I B P A A
315 I B P A E
316 I B P A I

Figure 64.

Structures of compounds 317320.

Figure 64

Cpd. R1 R2 R3
317 F H H
318 F′ H H
319 J H H
320 J′ H H

Figure 65.

Structures of compounds 321322.

Figure 65

Cpd. R1 R2 R3 R4 R5
321 E B A H A
322 E B A A A

Figure 66.

Structures of compounds 323324.

Figure 66

Cpd. R1 R2 R3 R4 R5
323 E B A H A
324 E B A A A

Figure 67.

Structures of compounds 325328.

Figure 67

Cpd. R1 R2 R3 R4
325 J H H H
326 J A H H
327 J′ A H H
328 F H H H

Figure 68.

Structure of compound 329.

Figure 68

Cpd. R1 R2 R3 R4
329 F H H H

Figure 69.

Structure of compound 330.

Figure 69

Cpd. R1 R2 R3
330 M H H

Figure 70.

Structures of compounds 331332.

Figure 70

Cpd. R1 R2
331 F H
332 F′ H

Figure 71.

Structure of compound 333.

Figure 71

Cpd. R1 R2 R3 R4 R5
333 E B A A A

Figure 72.

Structure of compound 334.

Figure 72

Cpd. R1 R2
334 F H

3. Biological Activities

To date, approximately 334 CASEDs have been isolated from various medicinal plants and their structures characterized. However, the biological activities, mechanism of action and structure-activity-relationships (SAR) of many CASEDs have rarely been explored up to now. Hence, an overview of the pharmacological activities of the CASED may serve as valuable indication to further probe into their full therapeutic potentials.

3.1. Anti-Depression Activity and Neuroprotective Activity

Depression, one of the major mental disorders, is accompanied by symptoms such as emotional slump, reduced physical activities, feelings of helplessness and pessimism and even suicide attempts. At present there are three main points of view regarding the pathogenesis of depression, including the biogenic amine theory, the nerve nutrition theory and the cytokines theory.

Sibiricose A5 (28), tenuifoliside A (51), 3′,6-disinapoylsucrose (DISS, 73), tenuifoliside B (52), buergerisides A1 (13), B1 (12), B2 (15) and C1 (11), tenuifolioses A (285) and B (288) show obvious antidepressant activity [10,12,13,18]. Sibiricose A5 (28) and tenuifoliside A (51), extracted from Chinese herbal medicine Polygala tenuifolia Willd, were found to dramatically protect PC12 cells damaged by glutamate [9]. Tenuifolioses A (285) and B (288) showed neuroprotective activity against glutamate and serum deficiency at a concentration of 1 × 10−5 mol·L−1 [12]. Liu et al. [1] discovered that DISS and tenuifoliside A (TEA, 51), isolated from Radix Polygalae, showed protective effects on SH-SY5Y against Cort-induced injury. A study by Ikeya et al. [112] showed that tenuifoliside B (52) improved the scopolamine-induced impairment of passive avoidance response by promoting the cholinergic system. Buergerisides A1 (13), B1 (12), B2 (15) and C1 (11) from the roots of Scrophularia buergeriana exhibit protective activity on primary cultures of rat cortical cells after exposure to excitotoxin, glutamate according to an investigation by Kim et al. [18].

Further findings demonstrate that a possible mechanism of the antidepressant action of DISS maybe be related with hippocampal neuroplasticity and neuroproliferation. DISS possesess potent and rapid antidepressant activity, which are mediated via brain MAO-A and MAO-B activity and upregulated serum cortisol levels induced by CMS [113]. In neuronal cells, DISS-mediated regulation of BDNF gene expression is associated with CREB-mediated transcription of BDNF upstream activation of ERK1/2 and CaMKII to cause neuroprotective and antidepressant effects [114]. Dong et al. [8] discovered that the neurotrophic mechanism of TEA (b24) in C6 cells correlates with TrkB/BDNF/ERK and TrkB/BDNF/PI3K.

3.2. Anticancer Activity

Belonging to the family of serine/threonine protein kinases that are activated by Ca2+, Protein Kinase C (PKC) is involved in signal transduction, and cellular proliferation and differentiation. It also plays an important role in cell cycle control, tumor genesis, antitumor drug resistance and apoptosis. PKC has been proved to be related with the activation of HIV-1 gene expression, tumor promotion, and the inhibition of apoptosis in leukemia cells. Therefore, it makes a lot of sense to find chemical compounds from natural plants to inhibit the activity of PKC [50,54].

Takasaki et al. found that vanicoside A (102) and vanicoside B (67) from Polygonum pensylvanirum inhibited PKC activity with IC50 values of 44 μg/mL and 31 μg/mL, respectively [54]. After this preliminary work, LaVerne et al. [50] continued the isolation work on this plant in order to obtain possible homologues via HPLC-MS and isolated vanicosides C-F (104, 57, 113, 91). Regretfully, LaVeme did not to do much research on the pharmacological activity of the vanicosides. Notably, acteoside (=verbascoside, 131) from Lantana camara also shows PKC inhibitory activity in the rat brain with an IC50 of 25 μM [29]. With the widest distribution in the plant kingdom, acteoside has been widely applied to treat diseases such as cancer, inflammation, or immune disorders.

In the virus family, the Epstein-Barr virus (EBV) is a type of herpes virus causing cancer. EBV has been considered one of the causes of many kinds of malignant tumors such as nasopharyngeal carcinoma. EBV infection mainly occurs human oropharyngeal epithelial cells and B lymphocytes. Lapathoside A (63), lapathoside D (31), vanicoside B (67) and hydropiperoside (37) exhibit remarkable inhibitory effects on the EBV, which is early antigen induced by tumor-promoters, so it makes sense to focus on these four compounds as worthy anti-tumor-promoters for cancer chemoprevention [2,39].

Meanwhile, Takasaki et al. [39] reported that lapathoside A (63) and vanicoside B (67) inhibited two-stage carcinogenesis induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). Moreover, vanicoside B exhibits remarkable inhibitory effects, which are initiated with a NO (nitric oxide) donor and NOR-1((±)-(E)-methyl-2-[(E)-hydroxyimino]-5-nitro-6-methoxy-3-hexenamide).

Smilaside D (40), smilaside E (47) and smilaside F (99) displayed cytotoxicity against human colon tumor (DLD-1) cells (ED50 = 2.7, 4.5, 5.0 μg/mL), and smilaside A (79) showed weak cytotoxicity against DLD-1 cells (ED50 = 11.6 μg/mL). Furthermore, smilaside A (79), smilaside B (107), smilaside D, smilaside E and smilaside F displayed weak cytotoxicity (ED50 = 5.1–13.0 μg/mL) on three to six human tumor cell lines, consisting of human cervical carcinoma (Hela), human oral epithelium carcinoma (KB), DLD-1, human medulloblastoma (Med) cells, human lung carcinoma (A-549) and human breast adenocarcinoma (MCF-7) [14].

3.3. Antioxidant Activity

Plenty of CASEDs were found to possess antioxidant activities, mainly related to their substituted acid groups. The antioxidant properties of these compounds were tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. Probably thanks to the presence of the 3,4-dihydroxy (catechol) moiety in the structure, compound 2 showed significant antioxidant activities, compared to caffeic acid [21]. Compound 21 from Globularia orientalis also exhibited antioxidant potential, indicating that it could efficiently scavenge free radicals [32].

Zhang et al. [15] found that smilasides G–L (38, 106, 46, 41, 105, 42) showed moderate scavenging activities against DPPH radicals and smilasides J–L (41, 105, 42) exhibited stronger antioxidant activity, which was quite similar to that in positive control ((±)-α-tocopherol). These results support the idea that the substituted feruloyl group plays a key role in the antioxidant activity of phenylpropanoid sugar esters. Heterosmilaside (95), helonioside B (45) and compound 98 showed strong antioxidant DPPH radical scavenging activity with IC50 values of 12.7, 9.1 and 8.7 µg/mL, respectively [46]. Compounds 28, 32 and 44 exhibited higher activity on scavenging the DPPH radical, compared to l-cysteine at the concentration of 0.02 mM, and the antioxidant activity of compound 32 was almost as same as that of α-tocopherol [36]. Compound 62 and verbascoside showed antioxidant potential pointing out their ability to efficiently scavenge free radicals. 6-O-Sinapoyl sucrose (75) showed weak activity in the DPPH test, but in the superoxide scavenging test, its antioxidative activity increased slightly, hence, a sucrose moiety esterified by sinapic acid seems to regulate the antioxidative activity [115]. Lapathoside D (31) showed DPPH radical scavenging activity with an IC50 of 0.088 mM [3]. Kiem et al. [53] found that vanicoside A (102), hydropiperoside B (103) and vanicoside E (113) exhibited significant DPPH radical scavenging properties, with IC50 values of 23.4, 26.7 and 49.0 µg/mL, respectively. However, compounds 66, 67 and 113 were inactive, probably due to the non-existence of acetyl groups in their molecules compared with 102, 103 and 113. Wang et al. discovered that diboside A (58) and lapathoside A (63) only showed low activities in the DPPH test [51].

Ehrenoside (183), verpectoside A (185), B (193) and C (194) were isolated from the aerial parts of Veronica pectinata var. glandulosa. They revealed potent radical scavenging activity against DPPH radical. Ehrenoside and verpectoside B were more active than 3-tert-butyl-4-hydroxyanisole (BHA) and had comparable activity to all dl-α-tocopherol [104]. Hamerski et al. reported that the antioxidant activity of compound 2 (IC50 values 15.0 μM) was comparable to that of the positive control caffeic acid, while compound 253 possess only weak activity [21].

In the study of Wang et al. [116], compound 59 possessed modest activity, with an IC50 of 20.1 µM in the DPPH radical scavenging test and in the metmyoglobin assay it had antioxidative activity comparable with Trolox (3.70 Trolox equivalents). Quiquesetinerviusides A-E (86, 87, 115, 85 and 114) exhibited low DPPH scavenging activity, but considerable·OH radical scavenging activity (IC50 8.4 ± 1.1, 6.8 ± 1.0, 7.4 ± 1.0, 5.5 ± 0.9, 3.6 ± 0.8 µM, respectively) [4]. Hosoya et al. [89] used ESR to evaluate the effect on superoxide anion radicals (O2−) of compounds 154, 150, 155, 153 and they exhibited IC50 values of 28.5, 84.5, 8.4, 17.1 µM, respectively, using ascorbic acid (IC50 value 140 µM) as a positive control.

3.4. Antiinflammatory Activity

Antiinflammatory activity referes to the removal of inflammation or swelling. Acteoside (131), angoroside A (196) and angoroside C (200) revealed a considerable effect in the TXB2-release assay. Angoroside A (196), angoroside D (199), acteoside (131) and isoacteoside (128) significantly inhibited LPS-induced PGE2, NO and TNF-α in a concentration-dependent manner. In LPS-stimulated macrophages, angoroside C (200) only had activity on NO [63,70]. Acteoside (131) had strong in vitro and in vivo anti-inflammatory effects, whilst isoacteoside (128) was found to have modest activity. Pretreatment with 1–50 μM CASED (compounds 131, 157, 220) concentration-dependently diminished phorbol-12-myristate-13-acetate (PMA) and N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced reactive oxygen species (ROS) production with IC50 values of approximately 6.8–23.9 and 3.0–8.8 μM, respectively [117]. The anti-inflammatory activities of quiquesetinerviusides D (85) and E (114) were evaluated in RAW 264.7 cells. Both of them exhibited strong activities against LPS-stimulated NO production. And the outcome showed inhibition of quiquesetinerviuside D and E (IC50 9.5, 9.2 µM) compared with a positive control, quercetin (IC50 34.5 µM). In vitro cyclooxygenase (COX) catalyzed prostaglandin biosynthesis inhibition assay, compounds 131,205, 218 and these compounds exhibited stronger inhibitory potencies on Cox-2 than Cox-1 (131,205, 218 IC50 on Cox-2 at 0.69, 0.49 and 0.61 mM, respectively).

3.5. Antiviral Activity

Niruriside (109) has particular inhibitory activity with an IC50 value of 3.3 μM, against the binding of regulation of virion expression (REV) protein to responsive element (RRE) RNA [60]. Kernan et al. [69] reported that verbacteoside (131), isoverbascoside (128), luteoside A (188) and luteoside B (189) exhibited antiviral activity (EC50) in an in vitro assay against respiratory syncytial virus (RSV), which was resembled or better than that of ribavirin, a drug used to cure RSV contagion in humans. Furthermore, these compounds also showed better activity against RSV than ribavirin. Verbascoside (131) exhibited antiviral activity against vesivular stomatitis virus (VSV), but was inactive against herpes simplex type I (HSV-1). The non-toxic confining cellular viability concentration for the activity was 53.6% at 500 μg/mL [118].

3.6. Other Activities

Compounds 138,131, 159, 158 isolated from Paulownia tomentosa stems were texted for in vitro cytotoxity against Streptococcus pyogenes (A308 and A77), Staphylococcus aureus (SG511, 285 and 503), Streptococcus faecium MD8b, etc. All the compounds exhibited remarkable antibacterial activity. Compound 159 showed a minimal inhibitory concentration (MIC) value of 150 μg/mL against Staphylococcus and Streptococcus species [76]. A mixture of poliumoside (216) and lamalboside (227) revealed moderate antibacterial activity. Compounds 130, 205 and 218 also possess antimicrobial activity [119]. Vanicoside A (102) and B (67) showed β-glucosidase inhibitory activity, with IC50 values of 59.8 and 48.3 μg/mL (59.9 and 50.5 μM), respectively [120]. The activity of forsythoside B (205) and alyssonoside (206) against free radical-induced impairment of endothelium-dependent relaxation in isolated rat aorta was investigated. Both provided partial protection at 10−4 M concentration against the electrolysis-induced inhibition acetylcholine response [121]. Senegin II (319) was tested for hypoglycemic activity in normal and KK-Ay mice. Under similar conditions, senegin II not only reduced the level of blood glucose in normal mice 4 h after intraperitoneal administration, but also significantly lowered the blood glucose level of KK-Ay mice [122]. Tenuifolioses B (288), and C (284) potentiated basal synaptic transmission in the dentate gyrus of anesthetized rats [12]. The only septsaccharide ester, polygalasaponin XXXII (334), could improve hippocampus-dependent learning and memory. The result suggests that it may be through the enhancement of synaptic transmission, activation of the MAP kinase cascade and improvement of BDNF level [56].

The rhizome extracts of Smilax glabra Rox B., which is called tufuling in Traditional Chinese Medicine, show many kinds of pharmacological activities like hypoglyceaemic, immuno- modulatory, free-radical scavenging and antioxidant enzyme fortifying activities. Compounds 32, 90, 100, 101, 108, 111, 112 were purified from the S. glabra which should impulse scientistc to perform more research on these compounds [40].

4. Conclusions

Because of the wide range of distribution, diverse structures and significant pharmacological activities of the CASEDs, more natural product researchers are paying great attention to these compounds. However, most studies on the CASED since 1977 are still isolated and report simple pharmacological activities. More in-depth research on the pharmacological mechanisms of action should be performed. Full exploitation on the broad array of biological activities of CASEDs awaits more researchers to devote themselves to this field.

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China grant No. 81573692), National Natural Science Foundation of China grant No. 8157140862), the Beijing Nova Program (grant No. 2011070), the Self-selected Topic of Beijing University of Chinese Medicine (grant No. 2015-JYB-JSMS024), the Beijing Nova Program (No. Z121102002512045).

Author Contributions

Y.T. and W.L. drafted and revised the manuscript; Y.L., Y.W., Y.Z., X.C., S.B., T.H., F.L., Y.S. and Y.G. made suggestions and played an important role in preparing this paper, and G.S approved the final version.

Conflicts of Interest

The authors declare no conflict ofinterest.

Footnotes

Sample Availability: Samples of the compounds not avalible are available from the authors.

References

  • 1.Liu P., Hu Y., Guo D.H., Wang D.X., Tu H.H., Ma L., Xie T.T., Kong L.Y. Potential antidepressant properties of Radix polygalae (Yuan Zhi) Phytomedicine. 2010;17:794–799. doi: 10.1016/j.phymed.2010.01.004. [DOI] [PubMed] [Google Scholar]
  • 2.Takasaki M., Konoshima T., Kuroki S., Tokuda H., Nishino H. Cancer chemopreventive activity of phenylpropanoid esters of sucrose, vanicoside B and lapathoside A, from Polygonum lapathifolium. Cancer Lett. 2001;173:133–138. doi: 10.1016/S0304-3835(01)00670-X. [DOI] [PubMed] [Google Scholar]
  • 3.Fan P., Terrier L., Hay A.E., Marston A., Hostettmann K. Antioxidant and enzyme inhibition activities and chemical profiles of Polygonum sachalinensis F. Schmidt ex Maxim (Polygonaceae) Fitoterapia. 2010;81:124–131. doi: 10.1016/j.fitote.2009.08.019. [DOI] [PubMed] [Google Scholar]
  • 4.Chang C.L., Zhang L.J., Chen R.Y., Kuo L.M.Y., Huang J.P., Huang H.C., Lee K.H., Wu Y.C., Kuo Y.H. Antioxidant and Anti-inflammatory Phenylpropanoid Derivatives from Calamus quiquesetiner vius. J. Nat. Prod. 2010;73:1482–1488. doi: 10.1021/np100181c. [DOI] [PubMed] [Google Scholar]
  • 5.Kernan M.R., Amarquaye A., Chen J.L., Chan J., Sesin D.F., Parkinson N., Ye Z.J., Barrett M., Bales C., Stoddart C.A., et al. Antiviral phenylpropanoidglycosides from the medicinal plant Markhamia lutea. J. Nat. Prod. 1998;61:564–570. doi: 10.1021/np9703914. [DOI] [PubMed] [Google Scholar]
  • 6.Birkhofer L., Kaiser C., Thomas U. Sugar esters. IV. Acteoside and neoacteoside sugar esters from Syringis vulgaris. Z. Naturforsch. B. 1968;23:1051–1058. [PubMed] [Google Scholar]
  • 7.Hu Y., Liao H.B., Guo D.H., Liu P., Wang Y.Y., Rahman K. Antidepressant-like effects of 3, 6′-disinapoyl sucrose on hippocampal neuronal plasticity and neurotrophic signal pathway in chronically mild stressed rats. Neurochem. Int. 2010;56:461–465. doi: 10.1016/j.neuint.2009.12.004. [DOI] [PubMed] [Google Scholar]
  • 8.Dong X.Z., Huang C.L., Yu B.Y., Hu Y., Mu L.H., Liu P. Effect of Tenuifoliside A isolated from Polygala tenuifolia on the ERK and PI3K pathways in C6 glioma cells. Phytomedicine. 2014;21:1178–1188. doi: 10.1016/j.phymed.2014.04.022. [DOI] [PubMed] [Google Scholar]
  • 9.Tu H.H., Liu P., Ma L., Liao H.B., Xie T.T., Mu L.H., Liu Y.M. Study on antidepressant components of sucrose ester from Polygala tenuifolia. Chin. J. Chin. Mater. Med. 2008;33:1278–1280. [PubMed] [Google Scholar]
  • 10.Ikeya Y., Sugama K., Okada M., Mitsuhashi H. Four new phenolic glycosides from Polygala tenuifolia. Chem. Pharm. Bull. 1991;39:2600–2605. doi: 10.1248/cpb.39.2600. [DOI] [Google Scholar]
  • 11.Miyase T., Iwata Y., Ueno A. Tenuifolioses G-P, Oligosaccharide Multi-Esters from the Roots of Polygala tenuifolia WILLD. Chem. Pharm. Bull. 1992;40:2741–2748. doi: 10.1248/cpb.40.2741. [DOI] [Google Scholar]
  • 12.Miyase T., Iwata Y., Ueno A. Tenuifolioses A-F, Oligosaccharide Multi-Esters from the Roots of Polygala tenuifolia WILLD. Chem. Pharm. Bull. 1991;39:3082–3084. doi: 10.1248/cpb.39.3082. [DOI] [Google Scholar]
  • 13.Miyase T., Noguchi H., Chen X.M. Sucrose esters and xanthone C-glycosides from the roots of Polygala sibirica. J. Nat. Prod. 1999;62:993–996. doi: 10.1021/np990084t. [DOI] [PubMed] [Google Scholar]
  • 14.Kuo Y.H., Hsu Y.W., Liaw C.C., Lee J.K., Huang H., Kuo L.M.Y. Cytotoxic Phenylpropanoid Glycosides from the Stems of Smilax china. J. Nat. Prod. 2005;68:1475–1478. doi: 10.1021/np050109q. [DOI] [PubMed] [Google Scholar]
  • 15.Zhang L., Liao C.C., Huang H.C., Shen Y.C., Yang L.M., Kuo Y.H. Antioxidant phenylpropanoid glycosides from Smilax bracteata. Phytochemistry. 2008;69:1398–1404. doi: 10.1016/j.phytochem.2008.01.002. [DOI] [PubMed] [Google Scholar]
  • 16.Nguyen A.T., Fontaine J., Malonne H., Claeys M., Luhmer M., Duez P. A sugar ester and an iridoid glycoside from Scrophularia ningpoensis. Phytochemistry. 2005;66:1186–1191. doi: 10.1016/j.phytochem.2005.03.023. [DOI] [PubMed] [Google Scholar]
  • 17.Chen B., Wang N.L., Huang J.H., Yao X. Iridoid and phenylpropanoid glycosides from Scrophularia ningpoensis Hemsl. Asian J. Tradit. Med. 2007;2:118–123. [Google Scholar]
  • 18.Kim S.R., Kim Y.C. Neuroprotective phenylpropanoid esters of rhamnose isolated from roots of Scrophularia buergeriana. Phytochemistry. 2000;54:503–509. doi: 10.1016/S0031-9422(00)00110-2. [DOI] [PubMed] [Google Scholar]
  • 19.Sasaki H., Nishimura H., Mitsuhashi H. Hydroxycinnamic acid esters of phenethylalcohol glycosides from Rehmannia glutinosa var. Purpurea. Phytochemistry. 1989;28:875–879. doi: 10.1016/0031-9422(89)80134-7. [DOI] [Google Scholar]
  • 20.Shimomura H., Sashida Y., Adachi T. Phenylpropanoidglucose esters from Prunus buergeriana. Phytochemistry. 1988;27:641–644. doi: 10.1016/0031-9422(88)83165-0. [DOI] [Google Scholar]
  • 21.Hamerski L., Bomm M.D., Silva D.H.S., Young M.C.M., Furlan M., Eberlin M.N., Castro-Gamboa I., Jose Cavalheiro A., da Silva Bolzani V. Phenylpropanoid glucosides from leaves of Coussarea hydrangeifolia (Rubiaceae) Phytochemistry. 2005;66:1927–1932. doi: 10.1016/j.phytochem.2005.06.019. [DOI] [PubMed] [Google Scholar]
  • 22.Sugiyama M., Kikuchi M. Studies on the constituents of Osmanthus species. VI. Structures of phenylpropanoid glycosides from the leaves of Osmanthus asiaticus Nakai. Chem. Pharm. Bull. 1990;38:2953–2955. doi: 10.1248/cpb.38.2953. [DOI] [Google Scholar]
  • 23.Xia P.F., Feng Z.M., Yang Y.N., Zhang P.C. Two flavonoid glycosides and a phenylpropanoid glucose ester from the leaves of Sterculia foetida. J. Asian Nat. Prod. Res. 2009;11:766–771. doi: 10.1080/10286020903055103. [DOI] [PubMed] [Google Scholar]
  • 24.She G.M., Wang D., Zeng S.F., Yang C.R., Zhang Y.J. New Phenylethanoid Glycosides and Sugar Esters from Ku-Ding-Cha, a Herbal Tea Produced from Ligustrum purpurascens. J. Food Sci. 2008;73:C476–C481. doi: 10.1111/j.1750-3841.2008.00830.x. [DOI] [PubMed] [Google Scholar]
  • 25.Nicoletti M., Galeffi C., Messana I., Marini-Bettolo G.B., Garbarino J.A., Gambaro V. Phenylpropanoid glycosides from Calceolaria hypericina. Phytochemistry. 1988;27:639–641. doi: 10.1016/0031-9422(88)83164-9. [DOI] [Google Scholar]
  • 26.Wang X., Li L., Bai Z., Peng Y., Xiao P., Liu Y. Five new phenylpropanoid glycosides from Paraboea glutinosa (Gesneriaceae) J. Nat. Med. 2011;65:301–306. doi: 10.1007/s11418-010-0493-7. [DOI] [PubMed] [Google Scholar]
  • 27.Hiroshi W., Yasufumi S., Nobutoshi T., Cambie R.C., Braggins J.E. Chemical and chemotaxonomical studies of ferns. LXXXVII. Constituents of Trichomanes reniforme. Chem. Pharm. Bull. 1995;43:461–465. doi: 10.1248/cpb.43.461. [DOI] [PubMed] [Google Scholar]
  • 28.Taoubi K., Fauvel M.T., Gleye J., Moulis C., Fouraste I. Phenylpropanoid glycosides from Lantana camara and Lippia multiflora. Planta Med. 1997;63:192–193. doi: 10.1055/s-2006-957647. [DOI] [PubMed] [Google Scholar]
  • 29.Abdallah O.M., Kamel M.S., Mohamed M.H. Phenylpropanoid glycosides of Prunus ssiori. Phytochemistry. 1994;37:1689–1692. doi: 10.1016/S0031-9422(00)89593-X. [DOI] [Google Scholar]
  • 30.Lou H., Li X., Zhu T., Li W. Sinapic acid esters and a phenolic glycoside from Cynanchumhancockianum. Phytochemistry. 1993;32:1283–1286. doi: 10.1016/S0031-9422(00)95106-9. [DOI] [Google Scholar]
  • 31.Hussein S.A.M., Ayoub N.A., Nawwar M.A.M. Caffeoyl sugar esters and an ellagitannin from Rubus sanctus. Phytochemistry. 2003;63:905–911. doi: 10.1016/S0031-9422(03)00331-5. [DOI] [PubMed] [Google Scholar]
  • 32.Calisa I., Kirmizibekmeza H., Tasdemira D., Sticherb O., Irelandc C.M. Sugar esters from Globularia orientalis. Z. Naturforsch. 2002;57c:591–596. doi: 10.1515/znc-2002-7-807. [DOI] [PubMed] [Google Scholar]
  • 33.Kim I.H., Kaneko N., Uchiyama N., Lee J.E., Takeya K., Kawahara N., Goda Y. Two phenylpropanoid glycosides from Neopicrorhiza scrophulariiflora. Chem. Pharm. Bull. 2006;54:275–277. doi: 10.1248/cpb.54.275. [DOI] [PubMed] [Google Scholar]
  • 34.Chin Y.W., Yoon K.D., Ahn M.J., Kim J. Two new phenylpropanoid glycosides from the aerial parts of Paederia scandens. Notes. 2010;31:1071. doi: 10.5012/bkcs.2010.31.04.1070. [DOI] [Google Scholar]
  • 35.Wang P., Li S., Ownby S., Zhang Z., Yuan W., Zhang W., Scott Beasley R. Ecdysteroids and a sucrose phenylpropanoid ester from Froelichia floridana. Phytochemistry. 2009;70:430–436. doi: 10.1016/j.phytochem.2009.01.017. [DOI] [PubMed] [Google Scholar]
  • 36.Ono M., Takamura C., Sugita F., Masuoka C., Yoshimitsu H., Ikeda T., Nohara T. Two new steroid glycosides and a new sesquiterpenoid glycoside from the underground parts of Trillium amtschaticum. Chem. Pharm. Bull. 2007;55:551–556. doi: 10.1248/cpb.55.551. [DOI] [PubMed] [Google Scholar]
  • 37.Li J., Jiang Y., Tu P.F. Tricornoses A-L, Oligosaccharide Multi-esters from the Roots of Polygalat ricornis. J. Nat. Prod. 2005;68:739–744. doi: 10.1021/np050023x. [DOI] [PubMed] [Google Scholar]
  • 38.Zhang D., Miyase T., Kuroyanagi M., Umehara K., Noguchi H. Oligosaccharide polyesters from roots of Polygala glomerata. Phytochemistry. 1998;47:45–52. doi: 10.1016/S0031-9422(97)00490-1. [DOI] [PubMed] [Google Scholar]
  • 39.Takasaki M., Kuroki S., Kozuka M., Konoshima T. New phenylpropanoid esters of sucrose from Polygonum lapathifolium. J. Nat. Prod. 2001;64:1305–1308. doi: 10.1021/np010222q. [DOI] [PubMed] [Google Scholar]
  • 40.Chen T., Li J.X., Xu Q. Phenylpropanoid glycosides from Smilax glabra. Phytochemistry. 2000;53:1051–1055. doi: 10.1016/S0031-9422(99)00522-1. [DOI] [PubMed] [Google Scholar]
  • 41.Wang Y., Gao W.Y., Zhang T.J., Guo Y.Q. A novel phenylpropanoid glycosides and a new derivation of phenolic glycoside from Paris Polyphylla var. yunnanensis. Chin. Chem. Lett. 2007;18:548–550. doi: 10.1016/j.cclet.2007.03.011. [DOI] [Google Scholar]
  • 42.Hamburger M., Hostettmann K. Hydroxycinnamic acid esters from Polygala chamaebuxus. Phytochemistry. 1985;24:1793–1797. doi: 10.1016/S0031-9422(00)82553-4. [DOI] [Google Scholar]
  • 43.Fukuyama Y., Sato T., Miura I., Asakawa Y., Takemoto T. Hydropiperoside, a novel coumaryl glycoside from the root of Polygonum hydropiper. Phytochemistry. 1983;22:549–552. doi: 10.1016/0031-9422(83)83043-X. [DOI] [Google Scholar]
  • 44.Sun X., Zimmermann M.L., Campagne J.M., Sneden A.T. New sucrose phenylpropanoid esters from Polygonum perfoliatum. J. Nat. Prod. 2000;63:1094–1097. doi: 10.1021/np000055e. [DOI] [PubMed] [Google Scholar]
  • 45.Nhiem N.X., VanKiem P., Van Minh C., Ban N.K., Cuong N.X., Tai B.H., Kim Y.H. Phenylpropanoid glycosides from Heterosmilax erythrantha and their antioxidant activity. Arch. Pharm. Res. 2009;32:1373–1377. doi: 10.1007/s12272-009-2005-4. [DOI] [PubMed] [Google Scholar]
  • 46.Saitoh H., Miyase T., Ueno A. Reinioses A-J, oligosaccharide multi-esters from the roots of Polygala reinii Fr. et Sav. Chem. Pharm. Bull. 1994;42:1879–1885. doi: 10.1248/cpb.42.1879. [DOI] [PubMed] [Google Scholar]
  • 47.Chang H.T., Tu P.F. New Oligosaccharide Esters and Xanthone C-Glucosides from Polygala telephioides. Helv. Chim. Acta. 2007;90:944–950. doi: 10.1002/hlca.200790095. [DOI] [Google Scholar]
  • 48.Lepore L., Malafronte N., Condero F.B., Gualtieri M.J., Abdo S., Piaz F.D., De Tommasi N. Isolation and structural characterization of glycosides from an anti-angiogenic extract of Monnina obtusifolia H.B.K. Fitoterapia. 2011;82:178–183. doi: 10.1016/j.fitote.2010.08.018. [DOI] [PubMed] [Google Scholar]
  • 49.Brown L.V.L., Larson S.R., Sneden A.T. Vanicosides C-F, new phenylpropanoid glycosides from Polygonum pensylvanicum. J. Nat. Prod. 1998;61:762–766. doi: 10.1021/np970581e. [DOI] [PubMed] [Google Scholar]
  • 50.Wang K.J., Zhang Y.J., Yang C.R. Antioxidant phenolic constituents from Fagopyrum dibotrys. J. Ethnopharmacol. 2005;99:259–264. doi: 10.1016/j.jep.2005.02.029. [DOI] [PubMed] [Google Scholar]
  • 51.Kobayashi W., Miyase T., Suzuki S., Noguchi H., Chen X.M. Oligosaccharide Esters from the Roots of Polygala arillata. J. Nat. Prod. 2000;63:1066–1069. doi: 10.1021/np0000567. [DOI] [PubMed] [Google Scholar]
  • 52.Van Kiem P., Nhiem N.X., Cuong N.X., Hoa T.Q., Huong H.T., van Minh C., Kim Y.H. New phenylpropanoid esters of sucrose from Polygonum hydropiper and their antioxidant activity. Arch. Pharm. Res. 2008;31:1477–1482. doi: 10.1007/s12272-001-2133-y. [DOI] [PubMed] [Google Scholar]
  • 53.Zimmermann M.L., Sneden A.T. Vanicosides A and B, protein kinase C inhibitors from Polygonum pensylvanicum. J. Nat. Prod. 1994;57:236–242. doi: 10.1021/np50104a007. [DOI] [PubMed] [Google Scholar]
  • 54.Shimomura H., Sashida Y., Mimaki Y. Bitter phenylpropanoid glycosides from Lilium speciosum var. rubrum. Phytochemistry. 1986;25:2897–2899. doi: 10.1016/S0031-9422(00)83765-6. [DOI] [Google Scholar]
  • 55.Shoyama Y., Hatano K., Nishioka I., Yamagishi T. Phenolic glycosides from Lilium longiflorum. Phytochemistry. 1987;26:2965–2968. doi: 10.1016/S0031-9422(00)84572-0. [DOI] [Google Scholar]
  • 56.Zhang D., Miyase T., Kuroyanagi M., Umehara K., Ueno A. Five new triterpene saponins, polygalasaponins XXVIII-XXXII from the root of Polygala japonica Houtt. Chem. Pharm. Bull. 1996;44:810–815. doi: 10.1248/cpb.44.810. [DOI] [PubMed] [Google Scholar]
  • 57.De Tommasi N., Piacente S., De Simone F., Pizza C. New sucrose derivatives from the bark of Securidaca longipedunculata. J. Nat. Prod. 1993;56:134–137. doi: 10.1021/np50091a020. [DOI] [PubMed] [Google Scholar]
  • 58.Yoshinari K., Sashida Y., Mimaki Y., Shimomura H. New polyacylated sucrose derivatives from the bark of Prunus padus. Chem. Pharm. Bull. 1990;38:415–417. doi: 10.1248/cpb.38.415. [DOI] [Google Scholar]
  • 59.Bashir A., Hamburger M., Msonthi J.D., Hostettmann K. Sinapoic acid esters from Polygala virgata. Phytochemistry. 1993;32:741–745. doi: 10.1016/S0031-9422(00)95164-1. [DOI] [PubMed] [Google Scholar]
  • 60.Qian-Cutrone J., Huang S., Trimble J., Li H., Lin P.F., Alam M., Klohr S.E., Kadow K.F. Niruriside, a new HIV REV/RRE binding inhibitor from Phyllanthus niruri. J. Nat. Prod. 1996;59:196–199. doi: 10.1021/np9600560. [DOI] [PubMed] [Google Scholar]
  • 61.Yan L., Gao W., Zhang Y., Wang Y. A new phenylpropanoid glycosides from Paris polyphylla var. yunnanensis. Fitoterapia. 2008;79:306–307. doi: 10.1016/j.fitote.2007.11.029. [DOI] [PubMed] [Google Scholar]
  • 62.Takashi H., Yoshiyasu F., Toshihide Y., Kazuyuki N. Structures of magnolosides B and C, novel phenylpropanoid glycosides with allopyranose as core the sugar unit. Chem. Pharm. Bull. 1988;36:1245–1248. [Google Scholar]
  • 63.Miyase T., Mimatsu A. Acylated Iridoid and Phenylethanoid Glycosides from the Aerial Parts of Scrophularia nodosa. J. Nat. Prod. 1999;62:1079–1084. doi: 10.1021/np9805746. [DOI] [PubMed] [Google Scholar]
  • 64.Kobayashi H., Karasawa H., Miyase T., Fukushima S. Studies on the contituents of Cistanchis Herba. IV. Isolation and structures of two new phenylpropanoid glycosides, cistanosides C and D. Chem. Pharm. Bull. 1984;32:3880–3885. doi: 10.1248/cpb.32.3880. [DOI] [Google Scholar]
  • 65.Benkrief R., Ranarivelo Y., Skaltsounis A.L., Tillequin F., Koch M., Pusset J., Sévenet T. Monoterpene alkaloids, iridoids and phenylpropanoid glycosides from Osmanthusaustrocaledonica. Phytochemistry. 1998;47:825–832. doi: 10.1016/S0031-9422(97)00994-1. [DOI] [Google Scholar]
  • 66.Su B.N., Ma L.P., Jia Z.J. Iridoid and Phenylpropanoid Glycosides from Pedicularis artselaeri. J. Planta Med. 1998;64:720–723. doi: 10.1055/s-2006-957565. [DOI] [PubMed] [Google Scholar]
  • 67.Liu Z.M., Jia Z.G. Phenylpropanoid and iridoid glycosides from Pedicularis striata. Phytochemistry. 1991;30:1341–1344. doi: 10.1016/s0031-9422(00)95221-x. [DOI] [PubMed] [Google Scholar]
  • 68.Kanchanapoom T., Kasai R., Yamasaki K. Phenolic glycosides from Markhamia stipulata. Phytochemistry. 2002;59:557–563. doi: 10.1016/S0031-9422(01)00466-6. [DOI] [PubMed] [Google Scholar]
  • 69.Kanchanapoom T., Kasai R., Yamasaki K. Lignan and phenylpropanoid glycosides from Fernandoa adenophylla. Phytochemistry. 2001;57:1245–1248. doi: 10.1016/S0031-9422(01)00212-6. [DOI] [PubMed] [Google Scholar]
  • 70.De Santos Galindez J., Diaz-Lanza A.M., Fernández Matellano L., Rumbero Sánchez A. A new phenylpropanoid glycoside isolated from Scrophularia scorodonia L. Magn. Reson. Chem. 2000;38:688–691. doi: 10.1002/1097-458X(200008)38:8<688::AID-MRC714>3.0.CO;2-5. [DOI] [Google Scholar]
  • 71.Skrzypek Z., Wysokinska H., Swia̧tek L., Wróblewski A.E. Phenylpropanoid Glycosides from Penstemon serrulatus. J. Nat. Prod. 1999;62:127–129. doi: 10.1021/np970465b. [DOI] [PubMed] [Google Scholar]
  • 72.Ho J.C., Chen C.M., Li Z.Q., Row L.C. Phenylpropanoid glycosides from the parasitic plant, Aeginetia indica. J. Chin. Chem. Soc. 2004;51:1073–1076. doi: 10.1002/jccs.200400160. [DOI] [Google Scholar]
  • 73.Jia Z.J., Liu Z.M., Wang C.Z. Phenylpropanoid and iridoid glycosides from Pedicularis lasiophrys. Phytochemistry. 1992;31:263–266. doi: 10.1016/0031-9422(91)83050-u. [DOI] [PubMed] [Google Scholar]
  • 74.Nonaka G., Nishioka I. Bitter phenylpropanoid glycosides from Conandron ramoidioides. Phytochemistry. 1977;16:1265–1267. doi: 10.1016/S0031-9422(00)94371-1. [DOI] [Google Scholar]
  • 75.Çaliş İ., Taşdemir D., Wright A.D., Sticher O. Lagotoside: A new phenylpropanoid glycoside from Lagotis stolonifera. Helv. Chim. Acta. 1991;74:1273–1276. doi: 10.1002/hlca.19910740615. [DOI] [Google Scholar]
  • 76.Kang K.H., Jang S.K., Kim B.K., Park M.K. Antibacterial phenylpropanoid glycosides from Paulownia tomentosa Steud. Arch. Pharm. Res. 1994;17:470–475. doi: 10.1007/BF02979128. [DOI] [PubMed] [Google Scholar]
  • 77.Jia Z.J., Gao J.J. Phenylpropanoid glycosides from Pedicularis striata pallssp. Arachnoidea. Phytochemistry. 1993;34:1188–1190. [Google Scholar]
  • 78.Jia Z.J., Liu Z.M., Wang C.Z. Phenylpropanoid and iridoid glycosides from Pedicularis spicata. Phytochemistry. 1991;30:3745–3747. doi: 10.1016/0031-9422(91)80101-6. [DOI] [PubMed] [Google Scholar]
  • 79.Jia Z.J., Liu Z.M. Phenylpropanoid and iridoid glycosides from Pedicularis longiflora. Phytochemistry. 1992;31:3125–3127. doi: 10.1016/0031-9422(91)83050-u. [DOI] [PubMed] [Google Scholar]
  • 80.Ersoz T., SaracogluA İ., Harput Ü.Ş., Çalis İ., Donmez A.A. Iridoid and phenylpropanoid glycosides from Phlomis grandiflora var. fimbrilligera and Phlomis fruticosa. Turk. J. Chem. 2002;26:171–178. [Google Scholar]
  • 81.Kobayashi H., Karasawa H., Miyase T., Fukushima S. Studies on the constituents of Cistanchis herba. III. Isolation and structures of new phenylpropanoid glycosides, cistanosides A and B. Chem. Pharm. Bull. 1984;32:3009–3014. doi: 10.1248/cpb.32.3009. [DOI] [Google Scholar]
  • 82.He Z.D., Yang C.R. Brandioside, a phenylpropanoid glycoside from Brandisia hancei. Phytochemistry. 1991;30:701–702. doi: 10.1016/0031-9422(91)83759-e. [DOI] [PubMed] [Google Scholar]
  • 83.Çaliş İ. Two phenylpropanoid glycosides from Leonurus glaucescens. Phytochemistry. 1992;31:357–359. doi: 10.1016/0031-9422(91)83078-Y. [DOI] [PubMed] [Google Scholar]
  • 84.Sticher O., Rüedi P. Phlinosides A, B and C, three phenylpropanoid glycosides from Phlomis linearis. Phytochemistry. 1990;29:1253–1257. doi: 10.1016/0031-9422(90)85436-j. [DOI] [PubMed] [Google Scholar]
  • 85.Kobayashi H., Karasawa H., Miyase T., Fukushima S. Studies on the constituents of Cistanchis Herba. V. Isolation and structures of two new phenylpropanoid glycosides, cistanosides E and F. Chem. Pharm. Bull. 1985;33:1452–1457. doi: 10.1248/cpb.33.1452. [DOI] [Google Scholar]
  • 86.Yi J.H., Zhang G.L., Li B.G., Chen Y.Z. Phenylpropanoid glycosides from Lamiophlomis rotata. Phytochemistry. 1999;51:825–828. doi: 10.1016/S0031-9422(99)00027-8. [DOI] [Google Scholar]
  • 87.Calis I., Lahloub M.F., Rogenmoser E., Sticher O. Isomartynoside, a phenylpropanoid glycoside from Galeopsis pubescens. Phytochemistry. 1984;23:2313–2315. doi: 10.1016/S0031-9422(00)80542-7. [DOI] [Google Scholar]
  • 88.Jimenez C., Villaverde M.C., Riguera R., Castedo L., Stermitz F.R. Five phenylpropanoid glycosides from Mussatia. Phytochemistry. 1988;27:2947–2951. doi: 10.1016/0031-9422(88)80694-0. [DOI] [Google Scholar]
  • 89.Hosoya T., Yun Y.S., Kunugi A. Antioxidant phenylpropanoid glycosides from the leaves of Wasabia japonica. Phytochemistry. 2008;69:827–832. doi: 10.1016/j.phytochem.2007.08.021. [DOI] [PubMed] [Google Scholar]
  • 90.Nahrstedt A., Rockenbach J., Wray V. Phenylpropanoid glycosides, a furanone glucoside and geniposidic acid from members of the rubiaceae. Phytochemistry. 1995;39:375–378. doi: 10.1016/0031-9422(94)00906-A. [DOI] [Google Scholar]
  • 91.Afifi M.S., Lahloub M.F., El-Khayaat S.A., Anklin C.G., Rüegger H., Sticher O. Crenatoside: A Novel Phenylpropanoid Glycoside from Orobanche crenata. Planta Med. 1993;59:359–362. doi: 10.1055/s-2006-959701. [DOI] [PubMed] [Google Scholar]
  • 92.Zhang D., Miyase T., Kuroyanagi M., Umehara K., Noguchi H. Oligosaccharide polyesters from roots of Polygala fallax. Phytochemistry. 1997;45:733–741. doi: 10.1016/S0031-9422(97)00065-4. [DOI] [PubMed] [Google Scholar]
  • 93.Kobayashi S., Miyase T., Noguchi H. Polyphenolic Glycosides and Oligosaccharide Multiesters from the Roots of Polygala dalmaisiana. J. Nat. Prod. 2002;65:319–328. doi: 10.1021/np010434n. [DOI] [PubMed] [Google Scholar]
  • 94.Liu Y., Seligmann O., Wagner H., Bauer R. Paucifloside, A New Phenylpropanoid Glycoside from Lysionotus pauciflorus. Nat. Prod. Lett. 1995;7:23–28. doi: 10.1080/10575639508043182. [DOI] [Google Scholar]
  • 95.Saracoglu I., Harput U.S., Inoue M., Ogihara Y. New phenylethanoid glycosides from Veronica pectinata var. glandulosa and their free radical scavenging activities. Chem. Pharm. Bull. 2002;50:665–668. doi: 10.1248/cpb.50.665. [DOI] [PubMed] [Google Scholar]
  • 96.Rønsted N., Bello M.A., Jensen S.R. Aragoside and iridoid glucosides from Aragoa cundinamarcensis. Phytochemistry. 2003;64:529–533. doi: 10.1016/S0031-9422(03)00157-2. [DOI] [PubMed] [Google Scholar]
  • 97.Thuan N.D., Thuong P.T., Na M.K., Bae K., Lee J.P., Lee J.H., Seo H.W., Min B.S., Kim J.C., Bae K.H. A phenylpropanoid glycoside with antioxidant activity from Picria tel-ferae. Arch. Pharm. Res. 2007;30:1062–1066. doi: 10.1007/BF02980238. [DOI] [PubMed] [Google Scholar]
  • 98.Shyr M.H., Tsai T.H., Lin L.C. Rossicasins A, B and rosicaside F, three new phenylpropanoid glycosides from Boschniakia rossica. Chem. Pharm. Bull. 2006;54:252–254. doi: 10.1248/cpb.54.252. [DOI] [PubMed] [Google Scholar]
  • 99.Boros C.A., Marshall D.R., Caterino C.R., Stermitz F.R. Iridoid and phenylpropanoid glycosides from Orthocarpus spp. Alkaloid content as a consequence of parasitism on Lupinus. J. Nat. Prod. 1991;54:506–513. doi: 10.1021/np50074a024. [DOI] [Google Scholar]
  • 100.Budzianowski J., Skrzypczak L. Phenylpropanoid esters from Lamium album flowers. Phytochemistry. 1995;38:997–1001. doi: 10.1016/0031-9422(94)00727-B. [DOI] [PubMed] [Google Scholar]
  • 101.Gross G.A., Lahloub M.F., Anklin C., Schulten H.R., Sticher O. Teucrioside, a phenylpropanoid glycoside from Teucrium chamaedrys. Phytochemistry. 1988;27:1459–1463. doi: 10.1016/0031-9422(88)80215-2. [DOI] [Google Scholar]
  • 102.Çalis İ., Başaran A.A., Saracog̈lu İ., Sticher O. Phlinosides D and E, phenylpropanoid glycosides, and iridoids from Phlomis linearis. Phytochemistry. 1991;30:3073–3075. doi: 10.1016/S0031-9422(00)98255-4. [DOI] [PubMed] [Google Scholar]
  • 103.Yang H., Hou A.J., Mei S.X., Peng L.Y., Sun H.D. A new phenylpropanoid glycoside: Serratumoside A from Clerodendrum serratum. Chin. Chem. Lett. 2000;11:323–326. [Google Scholar]
  • 104.Jiménez C., Villaverde M.C., Riguera R., Castedo L., Stermitz F. Phenylpropanoid glycosides from Mussatia hyacinthina. J. Nat. Prod. 1989;52:408–410. doi: 10.1021/np50062a036. [DOI] [Google Scholar]
  • 105.Saitoh H., Miyase T., Ueno A. Senegoses F-I, Oligosaccharide Multi-Esters from the Roots of Polygala senega var latifolia Torr. Et Gray. Chem. Pharm. Bull. 1993;41:2125–2128. doi: 10.1248/cpb.41.2125. [DOI] [PubMed] [Google Scholar]
  • 106.Çalış I., Kırmızıbekmez H. Glycosides from Phlomis lunariifolia. Phytochemistry. 2004;65:2619–2625. doi: 10.1016/j.phytochem.2004.04.038. [DOI] [PubMed] [Google Scholar]
  • 107.Saitoh H., Miyase T., Ueno A., Atarashi K., Saiki Y. Senegoses J-O, oligosaccharide multi-esters from the roots of Polygala senega L. Chem. Pharm. Bull. 1994;42:641–645. doi: 10.1248/cpb.42.641. [DOI] [PubMed] [Google Scholar]
  • 108.Saitoh H., Miyase T., Ueno A. Senegoses A-E, Oligosaccharide Multi-Esters from Polygala senega var. latifolia Torr.et Gray. Chem. Pharm. Bull. 1993;41:1127–1131. doi: 10.1248/cpb.41.1127. [DOI] [PubMed] [Google Scholar]
  • 109.Yoshikawa M., Murakami T., Ueno T., Kadoya M., Matsuda H., Yamahara J., Murakami N. Bioactive Saponins and Glycosides. I. Senegae Radix. (1): E-Senegasaponins a and b and Z-Senegasaponins a and b. Their Inhibitory Effect on Alcohol Absorption and Hypoglycemic Activity. Chem. Pharm. Bull. 1995;43:2115–2122. doi: 10.1248/cpb.43.2115. [DOI] [PubMed] [Google Scholar]
  • 110.Fu J., Zuo L., Yang J., Chen R., Zhang D. Oligosaccharide polyester and triterpenoid saponins from the roots of Polygala japonica. Phytochemistry. 2008;69:1617–1624. doi: 10.1016/j.phytochem.2008.01.010. [DOI] [PubMed] [Google Scholar]
  • 111.Zhang D., Miyase T., Kuroyanagi M., Umehara K., Noguchi H. Polygalasaponins XLII–XLVI from roots of Polygala glomerata. Phytochemistry. 1998;47:459–466. doi: 10.1016/S0031-9422(97)00439-1. [DOI] [PubMed] [Google Scholar]
  • 112.Ikeya Y., Takeda S., Tunakawa M., Karakida H., Toda K., Yamaguchi T., Aburada M. Cognitive Improving and Cerebral Protective Effects of Acylated Oligosaccharides in Polygala tenuifolia. Biol. Pharm. Bull. 2004;27:1081–1085. doi: 10.1248/bpb.27.1081. [DOI] [PubMed] [Google Scholar]
  • 113.Hu Y., Liu M., Liu P., Gao D.H., Wei R.B., Rahman K. Possible mechanism of the antidepressant effect of 3,6′-disinapoyl sucrose from Polygala tenuifolia Willd. J. Pharm. Parmacol. 2011;63:869–874. doi: 10.1111/j.2042-7158.2011.01281.x. [DOI] [PubMed] [Google Scholar]
  • 114.Hu Y., Liu M.Y., Liu P., Dong X.Z., Boran A.D.W. Neuroprotective Effects of 3,6′-Disinapoyl Sucrose Through Increased BDNF Levels and CREB Phosphorylation via the CaMKII and ERK1/2 Pathway. J. Mol. Neurosci. 2014;53:600–607. doi: 10.1007/s12031-013-0226-y. [DOI] [PubMed] [Google Scholar]
  • 115.Fabre N., Urizzi P., Souchard J.P., Fréchard A., Claparols C., Fourasté I., Moulis C. An antioxidant sinapic acid ester isolated from Iberis amara. Fitoterapia. 2000;71:425–428. doi: 10.1016/S0367-326X(00)00127-1. [DOI] [PubMed] [Google Scholar]
  • 116.Wang M., Shao Y., Li J., Zhu N., Rangarajan M., LaVoie E.J., Ho C.T. Antioxidative phenolic glycosides from sage (Salvia officinalis) J. Nat. Prod. 1999;62:454–456. doi: 10.1021/np980436g. [DOI] [PubMed] [Google Scholar]
  • 117.Lin L.C., Wang Y.W., Hou Y.C., Chang S., Liou K.T., Chou Y.C., Wang W.Y., Shen Y.C. The inhibitory effect of phenylpropanoid glycosides and iridoid glucosides on free radical production and β2 integrin expression in human leucocytes. J. Pharm. Parmacol. 2006;58:129–135. doi: 10.1211/jpp.58.1.0016. [DOI] [PubMed] [Google Scholar]
  • 118.Bermejo P., Abad M.J., Díaz A.M., Fernández L., De Santos J., Sanchez S., Villaescusa L., Carrasco L., Irurzun A. Antiviral Activity of Seven Iridoids, Three Saikosaponins and One Phenylpropanoid Glycoside Extracted from Bupleurumrigidum and Scrophularia scorodonia. Planta Med. 2002;68:106–110. doi: 10.1055/s-2002-20238. [DOI] [PubMed] [Google Scholar]
  • 119.Sahpaz S., Garbacki N., Tits M., Bailleul F. Isolation and pharmacological activity of phenylpropanoid esters from Marrubium vulgare. J. Ethnopharmacol. 2002;79:389–392. doi: 10.1016/S0378-8741(01)00415-9. [DOI] [PubMed] [Google Scholar]
  • 120.Kawai Y., Kumagai H., Kurihara H., Yamazaki K., Sawano R., Inoue N. β-Glucosidase inhibitory activities of phenylpropanoid glycosides, vanicoside A and B from Polygonum sachalinense rhizome. Fitoterapia. 2006;77:456–459. doi: 10.1016/j.fitote.2006.05.008. [DOI] [PubMed] [Google Scholar]
  • 121.Ismailoglu U.B., Saracoglu I., Harput U.S., Sahin-Erdemli I. Effects of phenylpropanoid and iridoid glycosides on free radical-induced impairment of endothelium-dependent relaxation in rat aortic rings. J. Ethnopharmacol. 2002;79:193–197. doi: 10.1016/S0378-8741(01)00377-4. [DOI] [PubMed] [Google Scholar]
  • 122.Kako M., Miura T., Nishiyama Y., Ichimaru M., Moriyasu M., Kato A. Hypoglycemic activity of some triterpenoid glycosides. J. Nat. Prod. 1997;60:604–605. doi: 10.1021/np9605403. [DOI] [PubMed] [Google Scholar]

Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

RESOURCES