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Abstract: Photocatalytic water splitting using sunlight is a promising technology capable of providing
high energy yield without pollutant byproducts. Herein, we review various aspects of this technology
including chemical reactions, physiochemical conditions and photocatalyst types such as metal
oxides, sulfides, nitrides, nanocomposites, and doped materials followed by recent advances in
computational modeling of photoactive materials. As the best-known catalyst for photocatalytic
hydrogen and oxygen evolution, TiO2 is discussed in a separate section, along with its challenges
such as the wide band gap, large overpotential for hydrogen evolution, and rapid recombination of
produced electron-hole pairs. Various approaches are addressed to overcome these shortcomings,
such as doping with different elements, heterojunction catalysts, noble metal deposition, and
surface modification. Development of a photocatalytic corrosion resistant, visible light absorbing,
defect-tuned material with small particle size is the key to complete the sunlight to hydrogen
cycle efficiently. Computational studies have opened new avenues to understand and predict the
electronic density of states and band structure of advanced materials and could pave the way for
the rational design of efficient photocatalysts for water splitting. Future directions are focused on
developing innovative junction architectures, novel synthesis methods and optimizing the existing
active materials to enhance charge transfer, visible light absorption, reducing the gas evolution
overpotential and maintaining chemical and physical stability.

Keywords: water splitting; solar fuels; hydrogen; photocatalysis; photocatalysts; semiconductors;
nanomaterials; metal oxides; nanotechnology

1. Introduction

The continual increase in world population and lifestyle standards has led to a seminal growth
in global energy consumption [1]. Amounting to about 90% of global energy, fossil fuels supply the
transportation and industrial sectors, leading to high emission of greenhouse gases including carbon
dioxide [2,3] and resulting in a substantial depletion of carbon-based resources that could be otherwise
used for the production of valuable chemicals. In 2013, worldwide energy consumption was 17 TW
and is expected to at least double by 2050 [4]. Development of a clean and renewable source of energy
is crucial to mitigate consequences of fossil fuel consumption including climate change, eventual
depletion of energy supplies, market uncertainty, and foreign oil dependency [5–7].

There are several alternative energy sources including wind, geothermal, hydropower, and solar
which are relatively clean and sustainable in comparison with fossil fuels, however, each of them has
some limitations which make this substitution challenging. Electricity generated by wind turbines is
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not storable. Hydropower suffers from dam construction limitations due to high cost and possible
adverse environmental effects. Geothermal energy is a continuous source which is limited in lifetime
and is subsequently costly in operation [8].

Being unlimited, renewable and free, solar energy is capable of producing electricity or heat
without the requirements of having turbines and maintenance. The energy usage of one year could
be provided by half an hour of solar irradiation on the Earth surface [9]. However, sunlight is an
intermittent source of energy which limits the amount of solar radiation due to its dependence on
geographical position, day, time, and season [10,11]. Another disadvantage of solar energy is its low
density per unit of Earth surface [12]. Therefore, developing a source of energy which is storable, clean,
continuous and renewable, is required to meet global energy demand. Hydrogen is an advantageous
fuel for being: (1) abundant from various sustainable sources (biomass or water); (2) having high
energy yield; (3) environmentally friendly and (4) high storage capability, thus it is considered as an
ideal alternative source of energy for fossil fuels [13–15].

1.1. Hydrogen and Related Concerns

Although hydrogen with its unique properties of high-energy efficiency, easy storage, and freedom
from pollution has been considered as a promising alternative to the conventional sources of energy, H2

has some drawbacks, which need to be addressed for it to be practically used as fuel. Storing hydrogen
as a compressed gas or liquid requires energy and additional costs [16]. The limited infrastructure
for hydrogen fueling is another factor limiting its practical use. The most important hitch of current
hydrogen production methods is the reliance on fossil fuels (natural gas reforming) for its production.
Extensive research has therefore been conducted to explore techniques for producing hydrogen from
renewable sources.

1.2. Hydrogen Evolution by Solar Energy

Steam methane reforming is a widely used technique to produce hydrogen from natural gas
at high temperatures (up to 900 ˝C) and pressures (1.5–3 MPa) [17,18]. Coal gasification is also
employed to generate hydrogen through partial oxidation at high temperatures and pressures (up to
5 MPa) [17]. Biomass materials such as crops, animal wastes, and plants under thermochemical
routes generate hydrogen through pyrolysis and gasification which produce byproducts of CO, CO2,
and methane [19]. Biological processes for hydrogen production from biomass materials are other
promising techniques [20] but they are not economically feasible yet. Consequently, current hydrogen
generation techniques suffer from a reliance on fossil fuel sources, harsh process conditions, and
significant costs. Alternative methods that utilize renewable sources of energy for hydrogen production
such as hydropower, wind power, and sunlight must be explored. Among these sustainable energies,
solar energy has been considered a more promising source due to its lesser location dependence in
comparison to wind and hydropower energy.

The combination of solar energy with plentiful water resources provides a reasonable platform for
hydrogen generation which is called solar water splitting [21–23]. There are three approaches to split
water using solar energy [24]: (1) thermochemical water splitting; (2) photobiological water splitting;
and (3) photocatalytic water splitting. Although the thermochemical approach is the simplest, the
requirement for large solar concentrators makes this method highly expensive and less favorable [25].
Biophotolysis can be divided into water biophotolysis and organic biophotolysis depending on the
microorganism type, product, and mechanisms of the reaction [26]. Although water biophotolysis is
cleaner than organic biophotolysis (regarding CO2 emissions) [27], low yields of hydrogen production,
toxic effects of enzymes, and limitations on scaling up the process exist [28]. Photocatalytic water
splitting possesses several advantages over thermochemical and photobiological water splitting
including: (1) low cost (capable of reducing the photovoltaic arrays) [29]; (2) relatively high solar-to-H2

efficiency; (3) capability of separating H2 and O2 streams; and (4) flexible reactor size which is
appropriate for small scale usage [30]. The US Department of Energy (DOE) has established the
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ultimate target of 26% for the solar to hydrogen energy conversion ratio which requires aggressive
research to improve the current status [31].

1.3. Photocatalytic Water Splitting

To achieve overall water splitting and investigate structure-property relationships of
photocatalysts the two half reactions of water splitting have been studied extensively. These reactions
being hydrogen and oxygen evolution reactions usually involve the use of sacrificial reagents to
improve the hydrogen and oxygen yield. Even though a catalyst can catalyze both reactions with
the aid of sacrificial electron donors and acceptors, this may not work for overall water splitting. To
clarify, water splitting discussed in this review refers to directly splitting of water into hydrogen and
oxygen in a 2:1 ratio by the use of a proper photocatalyst. Several research and review articles have
proposed the mechanisms of photocatalytic water splitting [32–34]. The reaction is first initiated by
photon absorption, which generates numerous electron-hole pairs with sufficient potentials. Those
charge carriers then migrate to the surface of the catalysts and react with surface active sites. Finally,
the photo-generated electrons reduce water to form hydrogen, and the holes oxidize water molecules
to give oxygen.

Fujishima and Honda first reported the overall photocatalytic water splitting by a titanium dioxide
(TiO2) electrode [35]. Since this pioneering work, numerous research studies of water splitting have
been conducted on semiconductor materials, especially via heterogeneous catalysis. Semiconductors
have non-overlapping valence bands and conduction bands with a band gap in between that of
insulators and conductors. When sufficient photochemical energy is applied, electrons will be excited
into the conduction band, leaving electron holes in the valence band and excess electrons in the
conduction band. These electron-hole pairs play key roles in the redox reactions of water splitting.
Electrons are responsible for reducing protons to hydrogen molecules, and oxygen anions will be
oxidized by the holes. In order to initiate the redox reaction, the highest level of the valence band
should be more positive than water oxidation level (EO2{H2O, 1.23 V vs. Normal hydrogen electrode;
NHE), while the lowest level of the conduction band should be more negative than the hydrogen
evolution potential (EH2{H2O, 0 V vs. NHE).

H2O` 2h` Ñ 2H` `
1
2

O2 Eo
oxidation “ ´1.23 V (1)

2H` ` 2e´ Ñ H2 Eo
reduction “ 0.00 V (2)

H2O Ñ H2 `
1
2

O2 (3)

Therefore, the minimum band gap for a suitable water splitting photocatalyst should be 1.23 eV.
Accordingly, TiO2, ZrO2, KTaO3, SrTiO3, and BiVO4 are good candidates for photocatalytic water
splitting [36–38] However, some typical semiconductors such as SiC, ZnO, and CdS, even though
their band gap fits well into the water splitting redox potential, are not active for water splitting due
to photocorrosion. Photo-corrosion happens when the anion from the catalyst itself is oxidized by
photogenerated holes instead of water. Another challenge is that most semiconductor catalysts only
operate under ultraviolet (UV) light which accounts for only ca. 4% of the total solar energy [32–34].
To improve the solar energy efficiency, photocatalysts with the ability to work under visible light are
highly desirable, since visible light contributes to almost half of the incoming solar energy. The band
gap of semiconductor materials should be less than 3 eV to have a visible light response. Recently,
semiconductor catalysts coupled with carbon materials or precious metal particles have been shown to
have better visible light response [35,36]. In addition, metal sulfides, metal nitrides, and metal-free
catalysts are also promising catalytic systems for photocatalytic water splitting by visible light [37–40].

Traditional water-splitting photocatalysts are based on transition metal oxides which form stable
compounds due to the high electronegativity of oxygen atoms [41]. Transition metal oxides can be
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classified into two groups according to their d orbital structure. Early transition metals like Ti, V,
Nb, and W have empty d orbitals, thus having a low valence band energy. Also, their valence bands
are strongly influenced by the oxygen 2p orbitals. As a result, these materials have large band gaps
which make them less efficient for photocatalytic reactions. Several strategies including doping and
creating defects have been engaged to increase their light absorption efficiency. For example, Zhao et al.
successfully designed defect-enriched black TiO2 through high-temperature hydrogenation and the
synthesized material exhibited excellent photocatalytic hydrogen evolution reactivity [42]. On the other
hand, late transition metals such as Mn, Fe, Co, and Ni have occupied d orbitals. Their oxides usually
have small band gaps and the strong d-d transitions play significant roles [41]. Fe2O3 is a typical
example in this group due to its abundant and inexpensive nature, and its attractive photocatalytic
activities have been reported [43,44]. Having little polaron conductivity is the disadvantage of late
transition metal oxides [45]. To overcome those limitations, multicomponent metal oxides have
been developed. Moreover, metal nitrides and metal sulfides were synthesized and shown better
photocatalytic activities. Wei et al have reported that combining cations with s2 and d0 configurations
can lower the band gap. The coupling between s band from s2 cation and p band from oxygen can
increase the valence band level while the coupling between d band from d0 cation and p band can
lower the conduction band level [46]. A typical example of this type of ternary oxides is BiVO4. Its
photocatalytic properties have been intensively studied over the years [47–50]. Further doping BiVO4

with other cations such as Ag+, V5+, and W6+ can increase its electronic conductivity and resulting in
better catalytic performance [51–53]. Other examples of band gap tuning by ternary oxides include
CuWO4, ZnFe2O4, CaFe2O4, CuBi2O4, and CuNb3O8, etc. [54–58]. Besides metal doping techniques;
nitrogen substituting can also decrease the band gap due to its higher-lying 2p orbital levels [59,60].
Like nitrogen, sulfur and selenium also possess higher-lying p bands than those of oxygen; they can
also be used to create smaller band gap materials than their oxides counterparts [61–63]. Moreover,
modification of the catalysts with silicon, group III-V semiconductors, and carbon-based materials
have been reported and proved to be efficient methods for developing photoactive materials [64–66].
The summary of very recent photocatalysts is presented in Table 1. It is crucial to note that the amount
of active photocatalyst material, the light source, turnover frequency and catalytic stability is different
in each entry of the table. Therefore, the hydrogen production should not be deemed as the sole
measure of performance in every system.

Once the electron-hole pairs are generated, these charge carriers need to move to the surface of
the catalysts and catalyze water splitting at the interfaces between the electrode and electrolyte. The
major challenge in this step is the recombination of electrons and holes [32,34]. The photogenerated
electron-hole pairs can recombine in a short period of time before they catalyze the redox reactions,
releasing heat or photon energy. In general, fewer defects and small particle size are believed to be able
to inhibit the recombination of electrons and holes. Surface defects usually can serve as adsorption
sites for electrons and holes and facilitate their recombination before redox reaction, thus decreasing
photocatalytic activity. Highly crystalline and stoichiometric materials have fewer defects on the
surface; therefore, they are beneficial for the overall water splitting reaction. On the other hand,
nanosized materials can provide short diffusion distances for electrons and holes to get to the surface
active sites, thus limiting the recombination probability. Nonetheless, materials with small particle size
usually lead to high surface area, which contributes to effective interaction between charge carriers
and surface active sites.

Lastly, the migrated electrons and holes will interact with surface active sites and go through a
series of redox reactions to produce hydrogen and oxygen. At this point, the intrinsic activity and the
number of the surface active sites become crucial. Even if the photogenerated electrons and holes are
well separated and reached the material surface, the reaction cannot happen without proper active
sites. The bottom level of conduction bands of many transition metal oxides are not negative enough
to start the hydrogen evolution reaction, so co-catalysts such as precious metals and NiO are needed
to provide assistance for water reduction [32]. However, the top level of valence bands of metal
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oxides are usually positive enough to oxidize water to oxygen without the aid of co-catalysts. High
surface areas can provide more accessible active sites and are reported to be beneficial for the water
splitting reaction but, this factor is not as large as other structural parameters such as crystallinity
and particle size [67–70]. This is due to the adsorption of reactant water molecules not being that
dominant in water splitting as in other reactions like dye degradation. Moreover, water splitting into
hydrogen and oxygen is an energy demanding reaction, which is thermodynamically unfavorable.
The backward reaction is more likely to occur. Therefore, the separation and removal of produced
oxygen and hydrogen play a major role in this reaction.

Table 1. Recent visible light active photocatalysts for water splitting.

Photocatalysts Band Gap (eV) Illumination Hydrogen Production Ref.

Pt, Cr, Ta Doped TiO2 N/A Visible light (>420 nm) 11.7 µmol¨h´1¨g´1 [71]

Cu-Ga-In-S/TiO2 N/A 300 W Xe arc lamp
(385–740 nm) 50.6 µmol¨h´1 [72]

1 wt.%Pt/C-HS-TiO2 2.94 Visible light 5713.6 µmol¨h´1¨g´1 [73]

Platinized sub-10 nm
rutile TiO2 (1 wt.% Pt) 2.7–2.9

Xe lamp (PLS-SXE,
300–2500 nm) with (UVREF:

320–400 nm, ca. 83 mW¨ cm´2;
UVCUT400: 400–780 nm,

ca. 80 mW¨ cm´2)

932 µmol¨h´1¨g´1

visible light
1954 µmol¨h´1¨g´1

simulated solar light

[74]

Rh- and
La-codoped SrTiO3

N/A 300 W Xe lamp fitted with
a cutoff filter (λ > 420 nm) 84 µmol¨h´1 [75]

Cu1.94S-ZnxCd1´xS
(0 ď x ď 1) 2.57´3.88 visible-light irradiation

(λ > 420 nm) 7735 µmol¨h´1¨g´1 [76]

MoS2/Co2O3/
poly(heptazine imide) N/A visible light irradiation 0.67 µmol¨h´1 [77]

Bi4NbO8Cl 2.4 visible light 6.25 µmol¨h´1 [78]

CdS nanorod/
ZnS nanoparticle N/A visible light irradiation

(>420 nm) 239,000 µmol¨h´1¨g´1 [79]

Ni/CdS/g-C3N4 N/A 300 W Xe lamp (ě420 nm) 1258.7 µmol¨h´1¨g´1 [80]

CdS/WS/graphene N/A visible light irradiation
(>420 nm) 1842 µmol¨h´1¨g´1 [81]

V-doped TiO2/RGO N/A visible light irradiation 160 µmol¨h´1 [82]

Pt/g-C3N4
Conjugated Polymers 2.56 visible light irradiation

(>420 nm) 1.2 µmol¨h´1 [83]

Au–TiO2 Nanohybrids N/A Vis-NIR irradiation (>420 nm ) 647,000 µmol¨h´1¨g´1 [84]

SrTiO3:La,Rh/
Au/BiVO4:Mo N/A 300 W Xe lamp fitted with

a cutoff filter (λ > 420 nm) 90 µmol¨h´1 [85]

CoOx-B/TiO2-TaON N/A 150 W Xe Lamp arc (>400 nm) 40 µmol¨h´1 [86]

MoS2/CuInS2 N/A 300 W Xe lamp fitted with
a cutoff filter (λ > 420 nm) 202 µmol¨h´1¨g´1 [87]

Copper-Organic
Framework; H2PtCl6

2.1 UV-Visible irradiation 30 µmol¨h´1¨g´1 [88]

2. Photocatalytic Reactions

2.1. Types of Reaction

2.1.1. Photochemical Reactions

Heterogeneous photochemical water splitting consists of three components: a catalyst, visible
light absorber, and sacrificial electron donor. Although the basic principles of photochemical and
photoelectrochemical systems are identical, they differ in their setup. In photochemical reactions, there
is a semiconductor-electrolyte junction at which the water splitting reaction takes place (Figure 1).
The required potential for water splitting is generated at the semiconductor-liquid interface. The
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semiconductor should be stable in the electrolyte to prevent any corrosion. Depending on the band
edge position of the semiconductor as discussed previously, they can be active in hydrogen production,
oxygen production, or overall water splitting [89].
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Figure 1. Schematic representation of photochemical water splitting. Figure adapted from reference [90]
of Currao work.

2.1.2. Photo-Electrochemical Reactions

In photoelectrochemical (PEC) water splitting, a photocatalyst, which is a semiconductor, is
irradiated by UV-visible light with energy greater or equivalent to the band gap of the semiconductor
(Figure 2). The light energy will be absorbed by the photocatalyst and results in charge separation at the
valence band and conduction band. The holes are produced at the valence band, and the photo-excited
electrons are located in the conduction band. The holes trigger the oxidation of water at the surface
of conduction band while the photo-excited electrons at conduction band reduce the absorbed H+ to
H2. Mainly in photoelectrochemical water splitting, semiconductors are applied as a photocathode or
photo-anode depending on the reaction, which is favored. In photo-electrochemical water splitting,
a semiconductor electrode should be in contact with an electrolyte, which contains a redox couple.
In PEC water splitting, the overall reaction takes place at two different electrodes. In this method,
the potential which is needed for water splitting is being provided by illuminating the cathode or
anode [91].
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2.2. Reaction Setup

The most common experimental setup used by researchers consists of a reaction cell, a gas
circulation pump, vacuum pumps, and a gas chromatograph detector. The oxygen and hydrogen
produced can also be detected using oxygen and hydrogen sensors, or by volumetric methods. The
reaction solution should be purged with inert gases before testing, and the whole setup should be
air-free to measure the amount of evolved oxygen accurately. Several light sources can be used to
initiate the reaction. For photocatalysts with a UV light response, high-pressure mercury lamps are
employed and the reaction cell should be quartz. For the catalysts with band gaps smaller than 3 eV,
a 300 W xenon lamp and a filter are used to generate visible light. A solar simulator is also used as
incident light when evaluating solar hydrogen evolution. Different types of reaction cells have been
reported in the literature. Cells with two simultaneous semiconductors were employed in the 1970s
and 1980s [39,69]. Single-junction cells have been reported to drive the hydrogen evolution reaction.
However they are not satisfying for the overall water splitting due to insufficient photovoltage [67,68].
Multi-junction devices coupled with electrocatalysts could provide a large enough photo-voltage to
drive water splitting [70]. A monolithic three-junction amorphous silicon photovoltaic cell coupled to
cobalt phosphate and Ni-Zn-Mo tri-metal catalyst has been reported and exhibited an efficiency of
4.7% [92].

3. Photocatalytic Condition

Various parameters affect the photocatalytic activity of an inorganic photoconductor including
surface chemistry, surface and junction defects [93], crystallinity, doping and deep traps, band edge
positions, particle size, and morphology [94]. A variety of methods are tried for controlled synthesis of
photocatalyst to tune these variables including hydrothermal [95], microwave assisted [96], surfactant
assisted [97], and sonochemical [98] synthesis.

The synthesis parameters modify the activity of the catalyst especially when dealing with
morphologically active nanoparticles and high surface area structures. Catalyst synthesis conditions
including temperature, surfactants, concentration, and pH impact the structural features including
crystal size, shape, and structure of the material [99]. Concentrations of building blocks in the
solution affect nucleation and growth of the crystal structure, ultimately determining the activity.
This is particularly tunable for co-catalytic systems where one-dimensional and two-dimensional
structured materials have a geometric dependency. Copper oxide and zinc oxide core-shell nano
wires [100], Cu2O/CuO heterojunction decorated with nickel [101], three dimensional branched
cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction [102], CuO nanoplates coupled with anatase
TiO2 [103] are examples of geometrically active co-catalytic systems. For the synthesis of inorganic
photocatalysts, pH along with hydrothermal temperature, treatment time, and solvent ratio control
the morphology [104–109]. For BiVO4 solvent volume ratios of ethylene glycol over water (EG/H2O)
ranging from 10/50 to 60/0 completely change the morphology of nanostructures. At 10/50 and
20/40, the FE-SEM images show lamellar shapes, with 20/40 making sheets thicker. Then at 30/30,
40/20, 50/10, and 60/0, leaf-like, bowknot-like, candy-like, and olive-like shapes were obtained. This
is explained by higher viscosity of EG and its inhibitory effect on crystal growth thus allowing the
nanocrystals to rotate and find a 3D structure to stabilize [110–112]. The morphology of BiVO4 is
controllable with pH ranging from irregular microparticles at high pH to more uniform sized hollow
structure microspheres at low pH [106].

Surface and Band Structure

There are various studies indicative of surface chemical functionality, local structure and
morphological characteristics of catalysts affecting the photocatalytic activity of the water splitting
reaction. Surface chemical functionality is modified to protect against corrosion; deactivate destructive
surface states; tailor band-edge positions; or selectively extract of carriers to improved catalytic
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activity [41,113]. Other than the increased catalytic activity via surface area, there is a trade-off between
light absorption and carrier diffusion lengths which surface structure does influence. Increased surface
area may lead to decreased photovoltage and increased surface recombination. Therefore careful
understanding of loss mechanisms are required before surface modifications are employed [41].

Sheet-like morphologies exhibit higher light absorption than that of spherical morphologies for
CuO. On reducing the crystallite size, band gaps shift towards lower energies [114]. One of the most
recent examples is BiVO4 where the narrow band gap (2.4 eV) of the material and various possible
morphologies has drawn research interest. Control and desirable structures, as well as morphology of
BiVO4 for photocatalytic activities are necessary here [115,116]. Photocatalytic activity is shown to vary
depending on the exposed facets of BiVO4 [117]. Synthesis of various types of BiVO4 morphologies has
been studied including single crystal microspheres [118], heterophase microspheres [119], octahedra
and decahedra [105], peanut-like and needle-like [107], star-like nanoplates [108], spindly hollow
microtubes [120], leaf-like [121], hyperbranched-like [122], flower-like [123], porous olive-like [124],
fusiform-like [116], and butterfly-like shapes [125].

Composites and multicomponent catalysts of BiVO4 have been studied with various morphologies;
buckhorn-like BiVO4 with a shell of CeOx nanodots [126], one-dimensional spindle-like BiVO4/TiO2

nanofibers [127], nest-like Bi2WO6/BiVO4 composite [128], flower-like monoclinic BiVO4/surface
rough TiO2 ceramic fibers [129], and shuriken-shaped m-BiVO4/{001}-TiO2 heterojunction [130].

Band gap engineering is one of the main ways to increase the process efficiency where adjusting
the layer thickness and sequence leads to the development of new electronic states [131]. Assuming
junction materials to be A and B, junction architecture comes in three types: Type I is when the CB of
material A is higher than that of material B while the VB of A is lower than B. Since electrons/holes
tend to move downward/upward respectively for lower energy, they both get accumulated in material
A. In type II, the VB and CB of Material A are both lower than those of Material B which leads to
charge carrier separation. Type III is similar to type II with enhanced differences between CB’s and
VB’s of the junction material [132]. Type II junction architecture is one widely used method to fabricate
photocatlyst heterojunctions [133]. Enhanced activity due to charge carrier separation is reported
for CdS/TiO2 [134,135] and CdS/ZnO [136,137] heterostructures. Nanostructuring of the junction
films are important since excessive thickness would hinder efficient charge transfer. It is suggested
that the film thickness be comparable with charge carrier diffusion length while being thick enough
to significantly absorb light [41]. Nanostructuring of BiVO4/WO heterojunctions has led to near
theoretical maximum photocurrent generation of BiVO4 material [138].

A recent study showed that band gap engineering techniques could allow photocathodes to carry
out the water reduction reaction step of a PEC cell by using molecular beam epitaxy. Growing a
wide band gap oxide of strontium titanate (SrTiO3), to a 4 nm thick layer acts as a protection layer
for silicon as well as a tunneling junction for charge transport. The substrate being p-type silicon is
matched with SrTiO3 lattice, so a perfect interface with very low density of defect can be fabricated. A
maximum photocurrent density of 35 mAcm´2 was attained under a broad-spectrum illumination at
100 mWcm´2 as well as an open circuit potential of 450 mV [139]. Liao et al. synthesized cobalt(II)
oxide (CoO) nanoparticles with shifted band edge position that could achieve solar-to-hydrogen
efficiency of around 5% [140].

UV active semiconductors can be turned into visible light active materials by addition of cations
and anions. Coupling wide and narrow band gap materials to get the right spectrum for full spectrum
harvesting is utilized by co-catalysts such as CuO/ZnO [141]. Doping could favorably affect band
gaps of photocatalysts due to successful band gap reduction of the photo-anode.
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4. Photocatalyst Materials

4.1. Design and Description

As previously mentioned, a suitable photocatalyst for overall water splitting should have a band
gap of at least 1.23 eV with no photocorrosion. In terms of water splitting, high crystallinity and
small particle size are desired to minimize the recombination of photo-generated electrons and holes.
Metal oxides, sulfides, nitrides, and phosphates with d0 and d10 metal cations have been employed as
water splitting catalysts. Group I, and Group II metals along with some lanthanides form perovskite
materials can also be used to catalyze photochemical water splitting. The band structure of different
types of semiconductors with respect of the redox potentials of water splitting are summarized in
Figure 3. To improve solar energy efficiency, modification of photocatalysts by doping with some
transition metal cations such as Ni2+, Cr3+, and V5+ can help to increase the visible light response.
To prohibit the energy decreasing backward reaction of water splitting and increase the hydrogen
production yield, suitable co-catalysts including RuO2, NiO, Au and Pt can be used. In this section,
we will focus on heterogeneous photocatalysts including TiO2, metal oxides, metal sulfides, and
metal nitrides.
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4.2. TiO2

Since Fujishima and Honda first demonstrated that TiO2 was a promising photo-anode for UV
light-driven photocatalytic water splitting [34], which has been widely studied in many photocatalytic
reactions due to its chemical stability, low cost, environmentally friendly nature, and tunable electronic
energy band gap [143–147]. Figure 4 shows a band gap illustration of TiO2.

The valence band of TiO2 is more positive than E0
ox of O2/H2O (1.23 V vs. NHE, pH = 0), while

the conduction band is more negative than E0
red of H+/H2 (0 eV vs. NHE, pH = 0) [148]. However,

TiO2 materials suffer from two major drawbacks. One is the fast charge carrier recombination, which
results in the release of unproductive energy. Another one is the inability to harvest visible light [149],
since TiO2 can only be excited by UV light due to its wide band gap of 3.0–3.2 eV, which only covers
5% of the solar spectrum [14]. To enable visible light harvesting and prevent the recombination
of photogenerated electron-hole pairs, proper modification should be performed. In this section,
suitable modification methods will be introduced, including doping, making heterojunctions with
other semiconductors or metals, and structural changes.
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Doping TiO2 with other elements can change the optical properties and suppress the charge
recombination adequately [150]. A variety of metals and non-metals have been doped into TiO2

materials. Anionic doping of TiO2 has been extensively reported by various dopant elements such us
B, C, N, F, S, and Cl [151,152]. Luo and co-workers [153] have synthesized Br and Cl co-doped TiO2

via a hydrothermal method, in which a titanium chloride is used as titanium source and incorporated
bromide by hydrobromic acid. The unique Br and Cl-doped TiO2 exhibits an extended light absorption
into the visible light region, in which the non-metal dopants were proven to be the key factor to narrow
the band gap. The resulting material showed an enhanced solar light-induced water splitting activity.

The other alternative method to extend the photocatalytic activity of TiO2 to visible light region
is to dope this material with carbon. For instance, Faria et al. have reported doping of TiO2 with
carbon nanotubes (CNTs) [154]. Although different mechanisms have been proposed to explain this
enhancement, the mechanism of synergic effect of carbon on TiO2 remains unclear. Three mechanisms
have been explored to describe the synergetic effect of carbon on TiO2. The first possible mechanism
is carbon can play the role of an electron sink, which can effectively prevent the recombination
process [155]. Another mechanism proposes carbon as a photosensitizer, which can pump electrons
into TiO2 conduction band [156]. Besides the proposed mechanisms, carbon can also act as template to
disperse the TiO2 particles and hinder the agglomeration of TiO2 nanoparticles [157].

Unlike non-metal ion doping, metallic dopants usually introduce additional energetic levels in
the band gap, which reduce the energy barrier and induce a new optical absorption edge [158,159].
Piskunov et al. [152] have reported enhancement in photocatalytic water splitting activity of
Fe-doped TiO2, where Fe2+/Fe3+ acts as electron-trap centers and Fe3+/Fe4+ acts as hole-trap centers.
Luo et al. [97] have shown at vanadium doping shifts the absorption band to the visible region and the
V4+/V5+ pair efficiently traps the electrons and holes, which suppress the recombination of electron
and holes. Figure 5 represents the schematic band alignment of doped TiO2 semiconductors.

The formation of a semiconductor-semiconductor heterojunction can decrease the charge
recombination rate by yielding long-lived electron-hole pairs [160]. Proper band alignments allow
charge transfer from one semiconductor to another [4]. Resasco et al. [161] have reported a TiO2/BiVO4

host-guest photo-anode system, in which TiO2 acts as an electron acceptor, and BiVO4 serves as a
visible light capturer. Due to the good electron affinity of TiO2 and the small optical band gap of BiVO4

(2.5 eV), the resulting heterojunction as a photo-anode performed better than bare TiO2 or BiVO4

(Figure 6).
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Using a sacrificial agent helps TiO2 in performing either water oxidation or reduction. The
sacrificial agent reacts with one of the charge carriers while the other carrier is in charge of either
oxygen or hydrogen production. Typically, sacrificial agents such as methanol, ethanol and ethylene
glycol, which have, lower oxidation potentials than water are used to inhibit the electron hole pair
recombination in TiO2 [162]. In another scenario the valence band energy level of one semiconductor
is higher than the other while the conduction band energy level is lower than the other semiconductor.
As a result of this band gaps alignment of two semiconductors, a charge separation occurs and
recombination process decreases [163].

In a metal-semiconductor heterojunction structure, noble metals, such as Au, Pt, Pd, Ru, have been
reported to trap photogenerated electrons due to their significant role as electron sinks. Among noble
metals, Au has been studied as the preferred co-catalyst for photocatalytic hydrogen production due to
its high affinity towards photo-generated electrons, high resistance to oxidation, less activity towards
the side reactions of hydrogen production, and the existence of surface plasmon resonance [164–166].
Wu et al. [167] have investigated the anisotropic growth of TiO2 onto Au nanorods, which achieved
an enhanced visible light-induced hydrogen production. The close contact between TiO2 and Au
facilitated the generation of surface plasmon resonance induced electrons. By engineering the structure,
the performance of hydrogen evolution under visible light irradiation could be improved.
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Figure 7 shows the electron transfer pathways between Au nanoparticles and TiO2 semiconductors.
Another method to facilitate the photocatalytic water splitting process in the TiO2 system is by
structural modification. The structure of TiO2 has a significant effect on the photocatalysis performance.
Li et al. [169] have reported that amorphous TiO2 with more defects suffers from a faster charge
recombination rate than high crystalline TiO2. Other than crystallinity, the mesoporous structure of
TiO2 also plays a key role in the study of photo-electrode. Zheng et al. [170] have found at the existence
of a mesoporous structure favors the rapid diffusion of products and suppresses the electron/hole
recombination. Also, the morphology of the photocatalyst has a major effect on the photocatalytic
activity [4]. 1-D TiO2 forms such as nanotubes [152], nanowires [171], and nanofibers [172] have been
studied and show improved photocatalytic activity. Tuning of morphology has attracted considerable
attention due to the change in material morphology that can alter charge carrier diffusion pathways.
Therefore, to improve the photocatalytic hydrogen evolution efficiency of TiO2, modification of its
structure is highly relevant.Molecules 2016, 21, 900 12 of 28 
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Among various strategies to overcome fast charge recombination which leads to low
photocatalytic efficiency [173,174] plasmonic photocatalysis is the most promising approach to promote
charge separation and visible light absorption [175,176]. Nanoparticles of Au [177–180], Ag [181] and
Pd [182] have been applied to improve visible and near-infrared (NIR) absorption and generate surface
plasmon resonance (SPR) hot electrons [176]. The plasmonic properties of metallic nanoparticles
(normally Au and Ag) are very attracting due to their ability to promote catalytic reactions. Oscillation
of the conduction band in the plasmonic structures results is localized surface plasmonic resonance
(LSPR) which finally leads to hot electron generation through non-radiative decay of plasmons. These
electrons assist catalytic reactions [183]. Wang et al. have discussed two mechanisms that surface
plasmon can enhance the electron-hole formation and separation: (1) local electromagnetic field
enhancement (LEMF) in order to enhance interband transition rate through strong local field; and
(2) resonant energy transfer (RET) from the plasmonic dipoles to the e–h pairs in the semiconductor
through a near-field electromagnetic interaction [184]. Composition, shape and environment of noble
metal nanoparticles significantly influenced on their surface plasmon resonance (SPR) property [185].
Among the various Au nanoparticles shapes [186–189], nanorods have been used for H2 evolution.
To make the most of the charge separation of hot electrons, Au nanorods are usually interfaced with
efficient electron acceptors (e.g., TiO2) [167]. Moreover, Au triangular nanoprisms (TNPs) have shown
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different modes of SPR [185]. These anisotropic structures are significantly crucial for the hot electron
transfer [190].

4.3. Metal Oxides

Other than TiO2, a number of other representative metal oxides (such as Fe2O3, WO3, ZnO, Cu2O,
Al2O3, Ga2O3, Ta2O5, CoO and ZrO2) have also been widely studied due to their stability in aqueous
solution and their low cost. However, most metal oxides suffer from large band gaps limiting their
ability to absorb visible light.

In a typical metal oxide, the valence band and conduction band have O 2p and metal s character
and therefore relatively ionic bonded materials have a large band gap [46]: ZnO (3.4 eV) [191], Ga2O3

(4.5 eV) [192], Al2O3 (8.8 eV) [193]. Using transition metal cations with dn electronic configurations
may help overcome this issue, Fe2O3 („2.0 eV) [46,194] and Co3O4 („1.3 eV) [195] have increased
light absorption but lack efficient charge carrier transfer due to small polaron dominated conductivity
and associated high resistivity [196,197]. Using post-transition metals like PbO (2.1 eV) [191,196], SnO
(2.4 eV) [197,198] and Bi2O3 (2.5 eV) [191,199] with occupied s band leads to better photogeneration
of charge carriers however they are indirect semiconductors where optical absorption band edges
vary with the square root of photon energy leading to a less efficient carrier extraction process [46].
Therefore ternary metal oxide compounds have been investigated to overcome these limitations such as
Bi20TiO32 [200], SnNb2O6 [201] and BiVO4 [46,50]. BiVO4 has been investigated for having both a low
band gap (2.4–2.5 eV) and reasonable band edge alignment for the water redox potentials [202]. Both n-
and p-type semiconducting properties have been recorded by BiVO4 as well as high photon-to-current
conversion efficiencies (>40%) [203].

Mishra et al. [204] have reported that Fe2O3 as photocatalytic materials has a proper band gap
of 2.2 eV, which allows photon absorption under visible light irradiation. However, severe bulk
recombination has limited the usage of Fe2O3. Some mechanistic studies also have been conducted
for water oxidation and reduction reactions. Haghighat et al. [205] have studied the mechanism of
water oxidation on iron oxide photocatalysts through evaluating the electron-transfer by changing
the pH and potential space during the process. Morales-Guio et al. have designed an oxidatively
electrodeposited optically transparent photocatalyst of amorphous iron-nickel oxide (FeNiOx) for the
oxygen evolution reaction [206]. It was demonstrated that low loading of FeNiOx and its high activity
at low over potential was achieved in unassisted water splitting with solar-to-hydrogen conversion
efficiencies more than 1.9% and „100% Faradaic.

Similar to Fe2O3, WO3 has been considered as a potential photo-anode material for its suitable
valence band position, which favors a high onset potential for water oxidation. Elsewhere,
Amer et al. [207] have reported ZrO2 modification by deposition of thin layers of ZrN on ZrO2

nanotubes, to prepare core-shell structures for the photo-anode activated under visible light. However,
Moniz et al. [4] found that the main drawback of WO3 is its instability toward anodic photocorrosion.
These low Eg materials (e.g., Fe2O3 and WO3) can be modified including doping with metal cations
or by forming heterojunction structures with other semiconductors [158]. Sivula et al. [208] have
demonstrated a WO3/Fe2O3 photo-anode for water oxidation by using WO3 as a host scaffold to
support Fe2O3 thin layer, due to the suitable band gap alignment between WO3 and Fe2O3 allowing
fast electron transfer at the interfaces of host/guest. They found an increase in the photon absorption
efficiency and a higher surface area of Fe2O3, resulted in a higher activity for water oxidation.

Cobalt oxide (CoO) also shows photocatalytic activity toward H2 evolution [140,209]. Liao et al.,
have reported CoO nanocrystals as photocatalyst for water splitting under visible light [140]. However,
short lifetime and fast deactivation of CoO nanoparticles limit their usage as photocatalyst for
hydrogen evolution. As the morphology of nanostructures can influence on the band-edge positions
of material [210], designing CoO with different morphology such as nanotubes or nanowires could
provide more efficient photocatalyst materials. Zhan et al. developed CoO nanowires on the carbon
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fiber papers with hydrogen generation rate of 81.3 µmol¨g´1¨h´1, which indicate higher chemical
stability in comparison with CoO nanoparticles [209].

SrTiO3 (STO) has also been widely used for hydrogen production as a solid-state photocatalyst
with a band gap of 3.2 eV, which has been explored for the overall water splitting under UV light
irradiation. Since STO is active toward water splitting only in the UV region, the solar to hydrogen
conversion (STH) is low. Doping methods enhance the quantum efficiency of SrTiO3 in the visible light
region [211–213]. Domen et al. have recently reported the photocatalytic behavior of SrTiO3 in the
overall water splitting reaction can significantly be improved by flux-mediated Al doping. Doping Al
in SrTiO3 has improved the photocatalytic activity by 30% at 360 nm. In another study, SrTiO3 is doped
with a small amount of Rh to provide a donor level in the band gap region of SrTiO3: Rh. This prevents
the charge recombination and subsequently facilitates the hydrogen production (2223 µmol¨h´1¨ g´1)
in comparison to pure STO [214].

Tantalum oxide (Ta2O5) has been an attractive semiconductor for photocatalytic water
splitting [215–218]. Due to the wide band gap of Ta2O5 (about 4 eV), it is required to narrow the
band gap with some techniques such as doping with foreign ions. Lu et al. have described Ta2O5

nanowires as an active photocatalysts which generated hydrogen with the rate of 214 mmol¨ g´1¨h´1

under Xe lamp irradiation without any cocatalyst [215]. They have discussed that Ta2O5 nanowires
with low dimensional structures provide higher surface area with favorable carrier transport to harvest
light for H2 production. Very recently, Zhu et al. have reported gray Ta2O5 nanowires which were
modified by aluminum reduction to improve electron density and photoelectrochemical water splitting
properties of the material [218].

4.4. Metal Sulfides

CdS and ZnS are the most studied metal sulfide photocatalysts in the past decades [148].
Compared to metal oxide semiconductors, CdS with narrower band gap (~2.4 eV) is considered
promising as a visible-light-driven photocatalyst for water splitting [99]. However, as a result of rapid
recombination of photogenerated electrons and holes, bare CdS semiconductors usually show low
hydrogen production rates [164]. Moreover, high activity of CdS under light irradiation leads to the
corrosion of semiconductors [163]. To circumvent this problem, CdS materials can be coupled with
other noble metals as co-catalyst or form a heterojunction structure with other semiconductors [219].
In such a case, the photogenerated electrons on the conduction band of CdS can be transferred to
electronic levels of noble metals or be delocalized and transferred between the conduction bands of
semiconductors. Huang et al. [220] have established a hollow bimetallic sulfide material with a very
narrow band gap. The bimetallic metal sulfides exhibit a hydrogen production rate comparable to
Pt when sensitized by Eosin Y dye or coupled with TiO2 and C3N4 semiconductors. Nickel sulfide,
in particular has proven to be tremendously useful in raising the activity of semiconductors when
use as a co-catalyst along with TiO2, CdS, and g-C3N4 [221]. Unlike CdS, wide band gap ZnS (3.6 eV),
responds weakly to visible light [222,223]. Efforts have been made to improve the photoactivity of ZnS
for hydrogen evolution. Li et al. [224] have reported highly active Zn1-xCdxS solid solution systems
for visible-light induced hydrogen production. The band gaps of the solid solution photocatalysts can
easily be tuned by varying the Zn/Cd molar ratios. Compared to bare ZnS with a large band gap, the
narrower band gap of the resulting solid solution photocatalyst favors the absorption of photons under
visible light irradiation. Metal oxides with large band gaps provide higher stability for the composite
material [225]. Some of the metal oxides that have been proposed to combine with CdS are TaON, TiO2

and ZnO [226,227].
Different nanostructures of carbon can also be combined with CdS to promote catalytic behavior

towards water splitting by preventing the charge recombination process. Due to the high conductivity
of the carbon nanostructures, any contact between CdS and carbon can substantially improve the
charge separation and subsequently the catalytic behavior of nanocomposites will be enhanced.
Different strategies have been taken to synthesize the carbon-based CdS from simple mixing of carbon
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and CdS to in-situ growing of the CdS at the surface of graphene oxide using oxygen moieties as
the template [228]. WS2-Au-CuInS2 has also been developed for photocatalytically H2 production
by insertion of gold nanoparticles between of WS2 nanotubes and CuInS2 (CIS) nanoparticles [229].
Introducing Au nanoparticles led to significant enhancement of light absorption. Moreover, H2

evolution efficiency has been reported as the highest one for WS2-Au-CIS due to the more rapidly
photogenerated carrier separation from the type II band structures and the localized surface plasmonic
resonance (LSPR) effect from the Au nanoparticles.

4.5. Nitrides

To efficiently harvest solar light, nitrides and oxynitrides can be applied as photocatalysts for
water splitting [230]. The 2p orbitals corresponding to nitrogen in nitrides have higher energy than
analogous orbitals of oxygen in metal oxides. Consequently, in nitrides lower energy is needed to excite
electrons to the conduction band. A solid solution of GaN and ZnO has been considered as a promising
photocatalyst for water oxidation [231]. Although GaN and ZnO are poor visible light absorbers due to
their large band gaps, after mixing (Ga1-xZnx)(N1-xOx) will have new electronic states that considerably
reduce the band gap [232]. The other well-known catalyst for water splitting is a perovskite-like mixed
oxide of NaTaO3 and SrTiO3, which has a 50% quantum yield for the 280 nm-light [233]. Replacement
of one of the oxygens in these oxides with nitrogen leads to a shift in the absorption edge toward
higher wavelengths (600 nm), which improves their photocatalytic activity under visible light.

Tantalum nitride (Ta3N5) also has been identified as an active photocatalyst for water splitting.
In 2013, Zhen et al., reported a template-free synthesis of Ta3N5 nanorod which was modified with
Co(OH)x to be used as anode for photoelectrochemical cell for water splitting [234]. Elsewhere, Ta3N5

has been modified by partial substitution with Mg2+ and Zr4+ which led to apparent decrease in
onset potential for PEC water oxidation [235]. Such compositional modification could apply to other
semiconductors in order to enhance photocatalytic activity.

Other than the oxynitrides, graphitic carbon nitrides (g-C3N4) also have been utilized as
photocatalysts to produce hydrogen due to their narrow band gap of 2.7 eV that has a conduction
band shallower than hydrogen evolution potential and a valence band potential deeper than the
reversible oxygen evolution potential. g-C3N4 could produce hydrogen from water under visible light
(<540 nm) in the presence of a sacrificial agent (oxidizing agent) without the aid of any noble metal.
However, pristine g-C3N4 shows a low affinity towards photocatalytic reactions. Wang et al. have
reported for the first time a graphitic semiconductor that was synthesized from cyanamide [236] which
showed an absorption edge in the visible light region and steady hydrogen production over 75 h.
Band gap engineering of g-C3N4 has been reported to enhance the photocatalytic properties through
a non-metal (i.e., S, F, B, P) [237] and metal doping (i.e., Pt, Pd, Fe, Zn, Cu) [238] strategy. Moreover,
the charge separation in g-C3N4 can also be enhanced by applying conductive graphene, carbon
nanotubes, and reduced graphene oxide at the interface with g-C3N4 [239]. Martin et al. have shown
nature-inspired semiconductor systems among which the most efficient system consist of g-C3N4 and
WO3 for hydrogen and oxygen evolution (21.2 and 11.0 µmol¨h´1¨g´1, respectively) under visible
light for 24 h [240]. They conclude that g-C3N4 can be considered as a multifunctional photocatalyst
with the ability of application in PEC cells or coupled solar systems.

Recently, Suib et al. have reported a metal-free carbon-based nanocomposite for the hydrogen
evolution under visible light using various precursors which resulted in different morphologies, band
gaps and consequently different photocatalytic activities. Hybridized g-C3N4 with nitrogen doped
graphene quantum dots showed a higher photocatalytic activity for the nanocomposite [241].

5. Theoretical Modeling of Photocatalytic Water Splitting

Theoretical studies concern various aspects [242] of photocatalytic reactions such as light
absorption [243], electron/hole transport [244,245], band edge alignment of semiconductors [246,247]
and surface photoredox chemistry [248]. Density Functional Theory (DFT) [249,250] is extensively
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used as a theoretical method to predict and understand the electronic structure of materials due to high
accuracy, predictive power, modest computational cost [251] and reproducibility [252]. However, one
of the major shortcomings of DFT has been the inaccurate prediction of band gaps. This is because DFT
formulation lacks a proper description of self-interaction and correlation terms. Pragmatic approaches
involve hybrid functional or addition of electron repulsion to selected localized orbitals [242].

Hybrid functionals have better accuracy for band gap prediction and the position of the excited
states but are computationally demanding compared to standard exchange and correlation functional
forms [253]. The proper way to tackle the band gap problem is through many-body perturbation
theory (MBPT) which has a long-standing record of success [254,255]. This approach although being
computationally expensive, provides a standard for comparative studies to develop new methods [253].
One more recent approach known as TB09 has been proposed using a modified version of the
Becke-Johnson exchange potential [256] combined with an LDA correlation [257]. This method along
with variations have been shown to be some of the most accurate approaches found in the literature to
this date relative to computational cost [253,258].

Computational methods are especially helpful for prediction of impurity states induced by
dopants in tuning band gaps in photocatalytic systems such as TiO2 [242]. Time-dependent density
functional theory (TD-DFT) is not widely used, and the numbers of studies implementing these
methods are cluster-based models [4].

Besides predictive power, theoretical and computational tools are capable of advancing our
understanding of various aspects of states. For example, for BiVO4 comprehensive studies investigated
the band structure and density of states [46], electron/hole generation, and migration and energy
profiles of surface reactions [259]. For BiVO4 photoexcited electrons and holes are driven to different
crystal facets [260]. These findings were obtained by comprehensive computational studies that
showed that compared to (011) facets, the (010) facets have lower absorption beyond 420 nm, better
transport of electron/holes, more favorable water absorption, and lower potential energy surfaces for
OER [259]. Theoretical studies like that would lead to rational improvement of band structure and
morphological design of the photocatalytic material.

With advances in accuracy and eventual decrease of computational costs, high-throughput
computational screening is going to be an emerging field. This is going to help with choosing the
optimal components hence slashing the time of discovery of new materials to a fraction of what
now it used. Experimental rapid screening is reported by scanning electron microscopy [52], and
multiplexing counter electrode [261] for photocatalytic material discovery. However, computational
screening studies currently on record related to photoactive materials are rare and very recent, which
highlights the potential of impactful research that could soon emerge in this area [262–264].

6. Conclusions

Hydrogen production from solar energy using photocatalytic active materials has been considered
as one of the most promising steps towards generating clean and renewable alternatives for fossil
fuels. In order to use solar energy more efficiently, different approaches have been employed to shift
photocatalyst activity towards the visible range while retaining stability and efficiency. TiO2 as the
pioneer photocatalyst also has some limitations such as wide band gap, high hydrogen overpotential,
and rapid recombination of produced electron-hole pairs which have been addressed by various
methods including doping, coupling with carbon, noble metal deposition, using dyes, and surface
modifications. Other metal oxides such as iron oxide, zinc oxide, copper oxide also have been discussed
as well as metal sulfides including cadmium sulfides, and zinc sulfides. In addition, nitrides and
nanocomposite materials that have been used as photocatalysts for water splitting have been reviewed.

The current outlook of efficient water splitting relies on an innovative design of photocatalytic
materials. Recent studies on heterojunction photocatalysts have shed light on the nature of charge
transfer. Heterojunctions involving carbon based material is believed to be one of the feasible future
routes to efficient photocatalyst design [4]. The architecture of the heterojunction directly influences the
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activity and could potential lead to great improvements [265,266]. The future direction of photocatalytic
water splitting is more focused on development of an efficient photoanode with band edges that
match the redox potentials of water and with rapid charge-transfer activity under visible light while
maintaining chemical and physical stability [267]. Theoretical and computational models could help us
understand the electronic density of states and band structure and therefore point towards a rational
design of photocatalysts [46]. Computational high throughput screening is an emerging field that will
be utilized in material selection and junction design to yield optimized band structures.
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