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Abstract

Prolonged, disabling fatigue is the hallmark of chronic fatigue syndrome (CFS). Previous 

neuroimaging studies have provided evidence for nervous system involvement in CFS etiology, 

including perturbations in brain structure/function. In this arterial spin labeling (ASL) MRI study, 

we examined variability in cerebral blood flow (CBFV) and heart rate (HRV) in 28 women: 14 

with CFS and 14 healthy controls. We hypothesized that CBFV would be reduced in individuals 

with CFS compared to healthy controls, and that increased CBFV and HRV would be associated 

with lower levels of fatigue in affected individuals. Our results provided support for these 

hypotheses. Although no group differences in CBFV or HRV were detected, greater CBFV and 

more HRV power were both associated with lower fatigue symptom severity in individuals with 

CFS. Exploratory statistical analyses suggested that protective effects of high CBFV were greatest 

in individuals with low HRV. We also found novel evidence of bidirectional association between 

the very high frequency (VHF) band of HRV and CBFV. Taken together, the results of this study 

suggest that CBFV and HRV are potentially important measures of adaptive capacity in chronic 

illnesses like CFS. Future studies should address these measures as potential therapeutic targets to 

improve outcomes and reduce symptom severity in individuals with CFS.
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Introduction

Prolonged, disabling fatigue is the hallmark of chronic fatigue syndrome (CFS). CFS is most 

commonly regarded as a post-infectious condition whereby an individual experiences a 

cluster of fatigue related symptoms for at least 6 months, including exercise intolerance, 

chronic pain, sleep problems, cognitive impairments, and autonomic symptoms (Fukuda et 

al. 1994). It is estimated that approximately 2.5 million individuals in the US have CFS, 

resulting in associated costs of $17–24 billion annually (Clayton 2015).

Research over the past few decades has described central and autonomic nervous system 

abnormalities associated with CFS, as well as immune system and metabolic changes in 

affected individuals (Komaroff and Cho 2011). Structural and functional neuroimaging 

studies have demonstrated several key findings within this population that provide evidence 

for central nervous system (CNS) involvement in ME/CSF. For example, compared to 

unaffected individuals, testing of patients with CFS has demonstrated evidence for 

microglial activation in brain regions associated with emotion and memory (Nakatomi et al. 

2014), reduced levels of brain derived neurotrophic factor (Sorenson et al. 2014), and 

volumetric reductions in parietal and frontal brain regions (Puri et al. 2012; Shan et al. 2016; 

Okada et al. 2004). Using functional MRI, previous CFS studies have described reduced 

basal ganglia activation (Miller et al. 2014), reduced cortical blood flow (Yoshiuchi et al. 

2006), and altered functional connectivity both at rest and during the performance of a 

cognitive task (Gay et al. 2016; Boissoneault et al. 2016; Boissoneault et al. 2018). Further, 

the results of a systematic review examining autonomic nervous system (ANS) studies in 

patients with CFS suggest that heart rate control is altered in this population, including 

increased prevalence of postural orthostatic tachycardia syndrome (Van Cauwenbergh et al. 

2014). However, it is currently poorly understood how abnormal functional brain and cardiac 

responsiveness contribute to CFS symptoms.

Of particular interest for the present study is previous work about the important role of 

regional brain signal variability (RSV) in health and disease (Garrett et al. 2013), which 

examines tonic, ongoing brain functioning (Pinneo 1966), rather than phasic, stimulus-

driven activity captured by traditional neuroimaging analyses (Garrett et al. 2013). 

Importantly, it has been suggested that existing tonic activity creates the scaffolding on 

which phasic activity can be modulated. As a result, greater RSV is likely protective and 

renders the brain more robust to perturbations, given that it lightens the load of any one 

specific network node (Basalyga and Salinas 2006; Faisal et al. 2008). Additionally, RSV 

also likely reflects moment-to-moment neural flexibility and adaptability, or dynamic range 

(Yang et al. 2012), further supporting the notion that increased variability equates to 

increased neural resilience. Behaviorally, lower RSV has been linked to clinical disease 

states (Takahashi 2013), poorer cognitive performance in healthy adults (Wutte et al. 2011), 

and increased responses to painful stimuli in healthy adults (Rogachov et al. 2016). In 

general, these studies demonstrate that greater RSV is associated with more optimal 

behavioral outcomes, such as better memory performance and reduced central pain 

sensitivity.
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In addition to RSV, which could provide information about CNS adaptability in patients with 

CFS, heart rate signal variability (HRV) has also been proposed as a metric of resilience, i.e. 

greater variability is associated with better ANS functioning (Evans et al. 2013; Ferreira and 

Zanesco 2016). In this regard, a functioning ANS provides optimal cardiovascular system 

regulation through balanced sympathetic and parasympathetic neuronal input. Findings 

related to HRV abnormalities in CFS are equivocal, with some findings suggesting no 

significant difference with healthy controls, and other studies demonstrating aberrant 

functioning in this population (Van Cauwenbergh et al. 2014).

For the present study, we used arterial spin labeling (ASL) MRI to quantify RSV in 

individuals with CFS compared to healthy individuals to determine its relationship with self-

reported fatigue and HRV. Whereas the more commonly used blood-oxygenation level 

dependent (BOLD) fMRI is mostly an indirect measure of metabolic brain activity, ASL 

allows for direct quantification of cerebral blood flow (CBF) (ml/100 g/min). Using ASL 

permitted us to characterize RSV as variance in CBF (i.e., CBFV) and its association with 

ANS/cardiovascular variability. We hypothesized that CFS patients would demonstrate lower 

CBFV and HRV than HC. Furthermore, we hypothesized that increased CBFV and HRV 

would be associated with lower levels of fatigue in individuals with CFS.

Methods

Participants

Thirty-four women were recruited for this study, including 17 individuals with CFS and 17 

healthy controls (HC). CFS participants met Centers for Disease Control criteria for chronic 

fatigue syndrome (Fukuda et al. 1994) and were excluded from the study if they reported a 

history of any other condition confounding the CFS diagnosis including multiple sclerosis, 

congestive heart disease, hypothyroidism, inflammatory muscle disease, or significant 

psychiatric illness (e.g., major depression or psychosis). In addition, the subjects could not 

have been diagnosed with an auto-immune disease or diabetes. Chronic fatigue had to be 

present for at least 6 months. Similar exclusion criteria were applied to HC participants, with 

the exception that reports of fatigue lasting longer than 6 months or any chronic pain 

condition were exclusionary. Individuals screened for both groups were allowed to 

participate if they had well-controlled hypertension or hypothyroidism. Overall, 18% of CFS 

patients were on antihypertensives and 12% on thyroid replacement therapy. Similarly, 12% 

of HC took antihypertensives and 18% took thyroid replacements. All individuals with 

contraindications for MRI (including ferromagnetic implants, pregnancy, and 

claustrophobia) were excluded. Qualifying individuals were asked to get a full night’s sleep 

(≥ 6 h), refrain from drinking caffeinated beverages on the day of the imaging session, 

abstain from alcohol use or other psychoactive substances in the 24 h prior to the study, and 

discontinue any medications except anti-hypertensives, thyroid replacement medications, 

and/or vitamins 24 h prior to laboratory sessions. HRV and MRI data were collected during 

separate sessions within the same week.
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Clinical and affective measures

During screening, participants reported perceived role and physical function ranging from 

“no impairment in function” to “no function at all” using visual analog scales (VAS; 0–100). 

They also completed the Pittsburgh Sleep Quality Index (PSQI), which measures sleep 

quality over the past month (Buysse et al. 1989). PSQI total scores ≤5 are associated with 

good sleep quality, whereas higher scores are related to poor sleep. Immediately prior to 

scanning, all participants rated their overall pain, depression, anxiety, and fatigue on a VAS 

(0–100). These VAS ranged from “no pain/depression/anxiety/fatigue at all” to “most 

intense pain/depression/anxiety/fatigue imaginable” (Price et al. 1994).

HRV analysis

Subjects were connected to an electrocardiogram (ECG) measuring system while resting 

supine [Lifecard system (Space Lab Healthcare, Snoqualmie, WA)] to record ECG signals 

over 15 min for subsequent analysis of HRV components. Throughout the quiet resting 

period, ECG signals were collected with the Lifecard CF recoding system via electrodes 

attached to the extremities and chest. Subsequently, the data were downloaded to a computer 

and analyzed. HRV indices were calculated using the Impresario software (Space Lab 

Healthcare, Snoqualmie, WA). The ECG was manually reviewed for any misclassifications 

or errors. Identified erroneous R–R intervals were either replaced with values obtained by 

cubic spline interpolation or deleted depending upon the number of misclassifications. The 

measurements of HRV included time domain indices: standard deviation of all normal RR 

intervals (SDNN) and frequency domain indices. The frequency domain indices were 

calculated after fast Fourier transformation of three 5-min ECG segments, recorded over 15 

min. The highest and lowest values were excluded, and the three remaining values were 

averaged. As recommended by the Task Force of the European Society of Cardiology and 

the North American Society of Pacing and Electrophysiology 1996, the power spectrum 

densities of low frequency (LF) 0.04–0.15 Hz, high frequency (HF) 0.15–0.4 Hz, and the 

low frequency to high frequency ratio (LF/HF) were calculated. For spectral analysis, the 

following variables were obtained: the total power (TP) within the frequency range of 0–0.4 

Hz, LF power within the frequency range of 0.04–0.15 Hz, HF power within the frequency 

range 0.15–0.4 Hz, and VHF power in the frequency range greater than .4 Hz.

Image acquisition

Neuroimaging data were collected using a whole-body Philips Achieva 3 T scanner with a 

32-channel head coil (Koninklijke Philips N.V., Amsterdam, Netherlands). Participants were 

placed head-first into the scanner while lying in a supine position. Scanning sessions 

included a T1-weighted structural MRI scan and two scans utilizing pseudo-continuous ASL 

(pCASL) protocols (Dai et al. 2008; Wu et al. 2007): one 6 min resting-state scan (see 

functional connectivity results reported in (Boissoneault et al. 2016) and one 18 min task-

based scan (Boissoneault et al. 2018). The current report implemented completely unique 

analyses of data from the 6-min resting state pCASL scan only.

Whole brain structural images were acquired using a three-dimensional (3D) T1-weighted 

magnetization-prepared rapid gradient-echo (MP-RAGE) sequence with a field-of-view 

(FOV) of 240 mm, in-plane resolution of 1 mm × 1 mm, 176 contiguous sagittal slices of 1 
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mm thickness, TR/TE/flip angle = 7.2 ms/3.2 ms/8°, and imaging time = 4.56 min. ASL data 

were acquired using a two-dimensional (2D) pseudo-continuous ASL (pCASL) technique 

with a field-of-view (FOV) of 230 mm, in-plane resolution of 3.2 mm × 3.2 mm, 20 axial 

slices of 6 mm thickness, 1 mm interslice gap, and TR/TE/flip angle = 4 s/11 ms/90°. ASL 

was applied at a plane that was 30.5 mm inferior to the lowest imaging slice with a labeling 

time of 1500 ms, and a post labeling delay time of 1800 ms.

Image preprocessing protocol

Imaging data processing and analyses were performed using MATLAB 2015a (MathWorks, 

Natick, MA, USA), SPM12 (Wellcome Department of Cognitive Neurology, UK), and 

ASLtbx (Wang et al. 2008). pCASL scans were corrected for subject motion using a rigid 

body 6-parameter algorithm included in SPM12. To minimize contamination from potential 

spurious motion artifacts due to ASL, tagged and control images were motion corrected 

independently (Wang 2012; Wang et al. 2008). Functional images were then coregistered to 

the T1-weighted images and spatially smoothed with a Gaussian filter of 6 mm full-width-

half-maximum (FWHM) kernel to decrease noise for subsequent image subtraction. Tagged 

and control pairs were subtracted to create 90 perfusion-weighted images for each slice. The 

perfusion-weighted time series of each slice was then averaged to create one mean image of 

cerebral perfusion. The mean perfusion weighted image was used to create a map of CBF 

using ASLtbx, quantified as ml/100 g/min (Wang et al. 2008). For details regarding the 

calculation of CBF estimates, see our previous work (Boissoneault et al. 2016). Four-

dimensional CBF images were masked to remove out-of-brain voxels and normalized to the 

SPM12 MNI template.

Regional cerebral blood flow variability analysis

To assess global and regional cerebral blood flow variability (CBFV), a signal variability 

approach was applied to preprocessed four-dimensional resting state ASL volumes. In this 

procedure, time series of ASL-derived CBF estimates were extracted using masks of 1) the 

whole brain; and 2) a set of 7 a priori identified functional networks as defined by Shirer et 

al. (2012) using the REX toolbox. Functional networks of interest were based on structures 

and networks previously identified as being perturbed in individuals with CFS, or implicated 

in fatigue or impaired cognitive/attention function, including the default mode network 

(DMN), anterior salience network (ASN), higher visual network (HVN), left executive 

control network (LECN), right executive control network (RECN), posterior salience 

network (PSN), and precuneus network (PN) (Caseras et al. 2006; Caseras et al. 2008; Cook 

et al. 2017; Cook et al. 2007; Miller et al. 2014; Okada et al. 2004). CBFV was calculated 

for the whole brain and each network of interest by extracting the standard deviation of each 

time series to be exported to SPSS for analysis. Six participants (3 HC and 3 CFS) were 

excluded from further analysis for technical reasons.

Statistical analysis

SPSS 24 (IBM Corp., Armonk, NY, USA) was used for all statistical analyses. Following 

descriptive statistics for demographic variables, group (i.e., CFS vs. HC) differences in HRV 

and CBFV were assessed using t-tests for independent samples. Pearson’s r correlation 

coefficients were used to characterize the relationship between HRV, CBFV, and self-report 
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measures. Correlations between HRV/CBFV measures and self-report measures were not 

conducted in HC because they lacked clinical symptoms. Finally, potential moderating 

effects of HRV on the relationship between CBFV and fatigue in CFS participants were 

assessed using exploratory multivariate regression. Because univariate analyses indicated 

HRV measures were not normally distributed (skewness and kurtosis >2), these measures 

were log-transformed prior to analysis. Effect sizes are presented for all inference tests as 

Cohen’s d (or dz. for within-subjects comparisons), Pearson’s r, or η2
p, as appropriate.

Results

Demographics and subjective ratings

The final sample included 28 participants (14 CFS). Descriptive statistics of age and 

duration of illness for study participants, as well as PSQI scores and subjective VAS ratings 

of fatigue, depression, anxiety, and pain taken prior to scanning are presented in Table 1. 

Participant groups did not differ in age (p = .84, d = .08). However, as expected, CFS 

participants reported significantly higher levels of fatigue (p < .0001; d = 3.23), pain (p < .

0001; d = 3.01), anxiety (p = .001; d = 2.01), and depression (p = .001, d = 1.41), as well as 

poorer sleep quality (p < .0001; d = 2.34). PSQI total scores did not correlate with fatigue (r 
= −.12, p = .70), depression (r = .18, p = .58), anxiety (r = .26, p = .42), or pain (r = .14, p = .

67) among CFS participants. A paired t-test indicated that overall fatigue ratings between the 

HRV and the fMRI sessions were not statistically different (t24 = .22, p = .83, dz. = .05).

Whole brain CBF measures

An independent t-test indicated no significant differences in whole brain CBF between HC 

and CFS participants (t25 = .17, p = .86, d = .07). This null finding from the same study 

population has been published in a separate analysis (Staud et al. 2018). Whole brain CBF 

did not correlate with fatigue in CFS patients (r = −.04, p = .89).

HRV measures

Group means and SD of heart rate and HRV measures are presented in Table 1. None 

differed significantly between HC and CFS participants (all p > .05).

Across the sample, significant associations were identified between VHF and CBFV in 

several network ROIs, including the higher visual network (r = .43, p = .03), LECN (r = .40, 

p = .05), PSN (r = .39, p = .05), and precuneus network (r = .50, p = .01). VHF was not 

significantly correlated with CBFV in the DMN (r = .36, p = .08), RECN (r = .37, p = .07), 

or whole brain (r = .33, p = .10) (Fig. 1). No other HRV measures were associated with 

whole brain or regional cerebral blood flow variability (CBFV) metrics (all r < .16, all p > .

45).

Among CFS participants, a significant negative association between fatigue ratings and total 

HRV power (TP) (r = −.70, p = .02) was detected (after removal of one outlier) (see Fig. 2). 

Significant correlations were not detected between fatigue and low frequency (LF) (r = −.34, 

p = .28), high frequency (HF) (r = −.16, p = .62), or very high frequency (VHF) (r = −.35, p 
= .26). No significant associations between HRV metrics and other subjective ratings were 
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detected (r < .50, p > .10). No significant correlations between sleep quality measures (PSQI 

total score) and HRV measures were detected (p < .07, p > .83).

CBFV measures

CBFV measures for both groups are presented in Table 1. As with HRV measures, no 

significant group differences were found for CBFV in either whole brain (p = .81, d = .09) or 

any network ROI (all p > .37, all d < .34). Across participants, PSQI did not correlate 

significantly with CBFV (all r > −.25, all p > .21).

Among CFS patients, significant negative correlations were detected between fatigue and 

whole brain CBFV (r = −.54, p = .04), as well as higher visual network CBFV (r = −.53, p 
= .05). Correlations between CBFV in the DMN (r = −.51, p = .06), precuneus (r = −.47, p 
= .09), and RECN networks (r = −.47, p = .09) and fatigue did not achieve significance. 

Associations between ASN/PSN and LECN were weaker (all r > −.42, all p > .13). No other 

significant correlations between self-report and CBFV measures were detected (all r > −.31, 

all p > .28).

Exploratory multiple regression analysis revealed significant main effects of total HRV 

power (TP) (β = −26.34; F1,8 = 6.92, p = .03; η2
p = .46) and whole brain CBFV (p = .03, β 

= −5.95, F1,8 = 6.97, p = .03; η2
p = .47) on fatigue. These effects were qualified by a 

significant interaction, suggesting TP moderated the relationship between whole brain 

CBFV and fatigue ratings (F1,8 = 6.92, p = .05; η2
p = .39; p = .05; η2

p = .39). After 

performing a median split on TP, simple main effects analysis was conducted to determine 

the association between whole brain CBFV and fatigue as a function of TP (‘low’ vs. 

‘high’). There was no apparent association between whole brain CBFV and fatigue in CFS 

participants with high TP (r = .06, p = .91). However, CFS participants with low TP showed 

a strong relationship between whole brain CBFV and fatigue (r = −.98, p = .001). 

Comparisons of Fisher’s r-to-z transformed correlation coefficients indicated the difference 

in correlation between groups was statistically significant (z = −2.89, p = .004). These 

effects are illustrated in Fig. 3. The same pattern of effects was also noted for CBFV in the 

higher visual network.

Discussion

As hypothesized, our results suggest that CBFV was inversely associated with fatigue 

ratings in individuals with CFS. Specifically, global CBFV and CBFV of structures within 

the higher visual network provided the strongest indirect support that high CBFV represents 

a protective factor against fatigue in these patients. Similarly, TP of HRV was negatively 

correlated with fatigue in individuals with CFS, such that greater TP was associated with 

less severe symptomatology. Neither CBFV or TP of HRV were significantly correlated with 

anxiety or depression, providing confidence that the detected relationship between these 

measures and fatigue was relatively specific in our sample, and not reflective of a more 

general association with negative affect.

Mounting evidence suggests that resting- and task-related brain signal variability is a 

potentially important measure of nervous system resilience in chronic illnesses like CFS. 
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Better behavioral performance in healthy individuals and attenuated symptom severity in 

clinical populations have been associated with greater variability of fMRI signals in task or 

symptom associated brain regions (Garrett et al. 2013; Takahashi 2013), suggesting that 

neural networks with higher RSV may be less prone to functional perturbations. A similar 

relationship was also observed between measurements of HRV and behavioral functioning in 

healthy individuals and patients (Van Cauwenbergh et al. 2014; Hildebrandt et al. 2016). 

Similarly, previous work has shown that neurovisceral integration (i.e., neural regulation of 

the cardiovascular system) is related to cognitive performance, so that higher resting HRV is 

associated with adaptive prefrontal top-down control of visual perception and attention 

(Thayer et al. 2009).

To the best of our knowledge, this study is the first to examine CBFV and HRV in the 

context of fatigue in patients with CFS. Despite expected group differences in fatigue, we 

did not observe significant differences in the time domains of HRV or CBFV across the 

whole brain or within specific a priori network nodes. However, we identified a novel 

association across participant groups between the frequency domains of HRV, i.e. power in 

the VHF range and CBFV in several network ROIs, including the higher visual network. 

Furthermore, CFS participants showed an inverse relationship between CBFV in the whole 

brain and higher visual network and fatigue, so that patients who reported less severe levels 

of fatigue had higher CBFV. Although trending associations between fatigue and CBFV in 

other examined networks were suggestive of similar relationships, they did not, however, 

achieve statistical significance in our sample.

The relationship between measurements of HRV and fatigue can be informative because 

HRV represents a physiological marker of ANS functioning and resilience (Goldstein et al. 

2011). Furthermore, it can be used as a proxy to measure the extent to which ANS function 

might contribute to CFS symptoms (Van Cauwenbergh et al. 2014). Although we did not 

identify group-level differences in specific time or frequency domains of HRV, the combined 

variability across all frequencies (TP) was negatively correlated with fatigue in individuals 

with CFS such that greater TP was associated with less severe symptomatology. Because TP 

is the combined variance of each of the HRV frequency bands, it may collectively reflect 

sympathetic and parasympathetic function (Reyes del Paso et al. 2013). Our results suggest 

that lower TP, and hence lower autonomic reactivity, is associated with more severe 

symptomatology in CFS individuals. Therefore, TP may be a potentially important factor to 

integrate in the physiological assessment of CFS and related conditions. Second, our results 

suggest that TP might reflect capacity for resilience.

In addition to testing the unique relationships between CBFV and HRV with fatigue, we 

found that the association between fatigue and global CBFV was moderated by TP, i.e. only 

CFS participants with low TP showed this effect. Thus, we speculate that, in CFS 

participants with low ANS reactivity, high CBFV may be critically important for providing 

symptom resilience. Overall, these findings are consistent with previous studies 

demonstrating that higher variability of functional brain activity (RSV) is associated with 

more optimal behavioral outcomes in patients with multiple sclerosis (Petracca et al. 2017). 

Although it is currently unclear whether RSV and/or CBFV are modifiable factors, future 
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studies should address these measures as potential therapeutic behavioral and pharmacologic 

targets for individuals with CFS.

Study strengths and limitations

Our data suggest that CBF and HRV may reflect resilience in CFS patients. Additionally, our 

analyses demonstrate that CBFV and HRV are not independent factors, but are connected. 

Another strength of our study is that we directly measured CBFV of CFS patients using 

ASL. In contrast to blood oxygenation level dependent (BOLD) fMRI, which can only 

indirectly assess changes in cerebral blood flow, use of ASL MRI allowed us to measure the 

temporal dynamics in blood flow, thought to directly reflect changes in neuronal activity 

(Chen et al. 2015).

However, the study does have certain limitations. Because of our relatively small sample size 

and the large number of correlations needed to test hypotheses regarding the relationship 

between HRV, CBFV, and CFS symptomatology, these associations should be regarded as 

preliminary until replicated with a larger sample. Furthermore, it is unclear whether the 

relationship between CBFV and fatigue might change over time because the study was 

cross-sectional. It is also not clear whether the effects we detected are specific to CFS 

symptomatology or if the relationship between CBFV and fatigue might be present in 

individuals with other conditions where fatigue is a major complaint (e.g., cancer, congestive 

heart failure, multiple sclerosis). Finally, associations between CBFV, HRV, and fatigue were 

bivariate correlations; therefore, directionality and causality of effects cannot be assumed. 

Although it is likely that CBFV is causally related to subjective ratings of fatigue in 

individuals with CFS, and not vice versa, the same directionality relationship cannot be 

inferred between HRV and CBFV measures.

Conclusions

Our data provide evidence that fatigue symptom severity in CFS is negatively associated 

with variabilities of CBF and heart rate. In addition, there is a positive association between 

VHF power of the HRV spectrum and CBFV of several key neural networks, some of which 

have been associated with chronic fatigue. Future studies are needed to investigate whether 

abnormal ANS function and/or CBFV are causal factors for CFS and related fatiguing 

disorders.
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Fig. 1. 
Scatterplots demonstrating significant associations between log-transformed HRV power in 

the VHF band and CBFV in several brain networks, including a LECN (r = .40, p = .05), b 
higher visual network (r = .43, p = .03), c precuneus network (r = .50, p = .01), and d PSN (r 
= .39, p = 05). HRV: Heart Rate Variability; CBFV: Cerebral Blood Flow Variability: LECN: 

Left executive control network; PSN: Posteror salience network
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Fig. 2. 
Scatterplot showing the significant correlation between log-transformed total PSD and VAS 

ratings of fatigue in CFS (after outlier removal, denoted by *; r = −.70, p = .02; with outlier, 

r = −.32, p = .32). PSD: Power spectrum density
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Fig. 3. 
Scatterplot illustrating TP as a moderator of the association between whole brain CBFV and 

fatigue in CFS participants. In patients with low TP, we detected a strong negative 

association between CBFV and fatigue (r = −.98; solid line). This relationship was not 

apparent in patients with relatively high TP (r = .06; dashed line). TP: Total HRV power; 

CBFV: Cerebral Blood Flow Variability
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