Table 5.
Multi-model inference analysis for prediction of PTE.
Model | Predictors | Estimate | SE | p-Value | AICc | Delta | Weight |
---|---|---|---|---|---|---|---|
1 | Temporal lobe injury | 3.03 | 0.96 | 0.002* | 48.30 | 0.00 | 0.69 |
+ Skull fracture | 1.92 | 0.87 | 0.028* | ||||
+ Early seizure | 2.35 | 1.13 | 0.038* | ||||
2 | Temporal lobe injury | 2.83 | 0.86 | 0.001* | 51.40 | 3.04 | 0.15 |
+ Skull fracture | 1.88 | 0.82 | 0.022* | ||||
3 | Temporal lobe injury | 2.57 | 0.86 | 0.003* | 51.60 | 3.22 | 0.14 |
+ Early seizure | 2.27 | 1.05 | 0.031* |
Abbreviations: SE — Standard Error, AICc — second order Akaike information criterion, GCS — Glasgow Coma Score.
p-value is statistically significant after running generalized linear models and a multi-model inference analysis.