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Abstract

Stochastic epidemic models describe the dynamics of an epidemic as a disease spreads through a 

population. Typically, only a fraction of cases are observed at a set of discrete times. The absence 

of complete information about the time evolution of an epidemic gives rise to a complicated latent 

variable problem in which the state space size of the epidemic grows large as the population size 

increases. This makes analytically integrating over the missing data infeasible for populations of 

even moderate size. We present a data augmentation Markov chain Monte Carlo (MCMC) 

framework for Bayesian estimation of stochastic epidemic model parameters, in which 

measurements are augmented with subject–level disease histories. In our MCMC algorithm, we 

propose each new subject–level path, conditional on the data, using a time–inhomogeneous 

continuous–time Markov process with rates determined by the infection histories of other 

individuals. The method is general, and may be applied to a broad class of epidemic models with 

only minimal modifications to the model dynamics and/or emission distribution. We present our 

algorithm in the context of multiple stochastic epidemic models in which the data are binomially 

sampled prevalence counts, and apply our method to data from an outbreak of influenza in a 

British boarding school.
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1 Introduction

Stochastic epidemic models (SEMs) are classic tools for modeling the spread of infectious 

diseases. A SEM represents the time evolution of an epidemic in terms of the disease 

histories of individuals as they transition through disease states. Incorporating stochasticity 

into epidemic models is important when the disease prevalence is low or when the 

population size is small. In both cases, the stochastic variability in the evolution of an 

epidemic greatly influences the probability and severity of an outbreak, as well as the 

conclusions we draw about its dynamics (Keeling and Rohani, 2008, Allen, 2008). 

Moreover, many questions — e.g., what is the outbreak size distribution? What is the 
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probability that a disease has been eradicated? — cannot be answered using deterministic 

methods (Britton, 2010).

The task of fitting a SEM is typically complicated by the limited extent of epidemiological 

data, which are recorded at discrete observation times, commonly describe just one aspect of 

the disease process, e.g., infections, and usually capture only a fraction of cases. Complete 

subject–level data, which would consist of the exact times at which individuals transition 

through disease states, are of-ten unavailable (O’Neill, 2010). Fitting SEMs in the absence 

of complete subject–level data presents a complicated latent variable problem since it is 

usually impossible to analytically integrate over the missing data (O’Neill, 2002). This 

makes the observed data likelihood for a SEM intractable.

Existing approaches to fitting SEMs with intractable likelihoods have largely fallen into four 

groups: martingale methods, approximation methods, simulation based methods, and data 

augmentation (DA) methods (O’Neill, 2010). Martingale methods estimate the parameters of 

interest using estimating equations based on martingales for the counting processes within 

the SEM, e.g., infections and recoveries (Becker, 1977, Watson, 1981, Sudbury, 1985, 

Andersson and Britton, 2000, Linden-strand and Svensson, 2013). These methods are not 

easily implemented for SEMs with complex dynamics fit to partially observed count data. 

Approximation methods replace the SEM, typically represented as a Markov jump process, 

with a simpler model whose likelihood is more tractable. For example, Roberts and Stramer 

(2001) and Cauchemez and Ferguson (2008) use diffusion processes that approximate the 

SEM dynamics, while Jandarov et al. (2014) use a Gaussian process approximation of a 

related gravity model. Another typical simplification is to discretize time and to construct a 

transition model for the population flow between model compartments at successive times 

(Longini Jr. and Koopman, 1982, Held et al., 2005, Lekone and Finkensta¨dt, 2006, Held 

and Paul, 2012). These methods are computationally efficient and in many cases yield 

sensible estimates. However, the simplifying assumptions used in the various 

approximations are not always appropriate. For instance, the diffusion approximation may 

not be valid in small populations where the system is far from its deterministic limit 

(Andersson and Britton, 2000), while the discretization of time makes it awkward to 

approximate systems in which the observation times are not evenly spaced or the rates of 

transition events span several orders of magnitude (Glass et al., 2003, Shelton and Ciardo, 

2014). Simulation based methods use the underlying SEM to generate epidemic paths that 

serve as the basis for inference. This class of methods includes approximate Bayesian 

computation (ABC) methods (McKinley et al., 2009, Toni et al., 2009), pseudo–marginal 

methods (McKinley et al., 2014), and sequential Monte Carlo (or particle filter) methods 

(Toni et al., 2009, Andrieu et al., 2010, Ionides et al., 2011, Dukic et al., 2012, Koepke et al., 

2016). Within this class of methods, the particle marginal Metropolis–Hastings algorithm of 

Andrieu et al. (2010) stands out in being a general method for Bayesian inference and is 

used as a benchmark method in this paper. Although simulation–based methods have been 

used to fit complex models, they are computationally intensive and suffer from well known 

pitfalls. ABC methods are sensitive to the choice of summary statistic, rejection threshold, 

and prior (Toni et al., 2009). Sequential Monte Carlo methods, on which pseudo–marginal 

methods often rely, are prone to “particle impoverishment” problems (Capp´e et al., 2006, 

Dukic et al., 2012).
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Traditional agent–based DA methods for fitting SEMs, first presented by O’Neill and 

Roberts (1999) and Gibson and Renshaw (1998), target the joint posterior distribution of the 

missing data and model parameters to obtain a tractable complete data likelihood. That the 

augmentation is agent–based refers to the fact that subject–level disease histories, rather than 

population–level epidemic paths, are introduced as latent variables in the model. The 

advantage of the agent– based approach is that household structure and subject–level 

covariates may be incorporated into the model (Auranen et al., 2000, Höhle and Jørgensen, 

2002, Cauchemez et al., 2004, Neal and Roberts, 2004, O’Neill, 2009). Development of DA 

methods for SEMs is of continuing interest, and recent works by Pooley et al. (2015), Qin 

and Shelton (2015), and Shestopaloff and Neal (2016) have presented methods that could 

possibly be applied to epidemic count data. However, their algorithms forgo the flexibility of 

agent–based DA, and in the case of the latter two papers have not been applied to SEMs.

We present an agent–based DA Markov chain Monte Carlo (MCMC) framework for fitting 

SEMs to time series count data. We obtain a tractable complete data likelihood by 

augmenting the data with subject–level disease histories. Our MCMC targets the joint 

posterior distribution of the latent epidemic process and the model parameters as we 

alternate between updating subject– level paths and model parameters. We propose each new 

subject–path, conditionally on the data, using a time–inhomogeneous continuous–time 

Markov chain (CTMC) with rates determined by the disease histories of the other 

individuals. These data–driven path proposals result in highly efficient perturbations to the 

latent epidemic path, and enable us to analyze epidemic count data in the absence of any 

subject–level information. In contrast, traditional agent–based DA MCMC algorithms rely 

on data–agnostic trans–dimensional proposals and suffer from convergence issues as the 

fraction of missing information becomes large (Roberts and Stramer, 2001, McKinley et al., 

2014, Pooley et al., 2015). The de facto need for some subject–level data has precluded the 

use of classical DA machinery in many settings. Thus, our MCMC algorithm enables exact 

Bayesian inference for SEMs fit to datasets that would have been impossible to study with 

existing agent– based DA methods. Finally, our algorithm is not specific to any particular 

SEM dynamics or measurement process, and may be applied, with minimal modifications, 

to a broad class of SEMs.

2 The Data Augmentation Algorithm for an SIR Model

For concreteness and clarity of exposition, we present our Bayesian DA algorithm (BDA) in 

the context of fitting a stochastic Susceptible–Infected–Recovered (SIR) model to 

binomially distributed prevalence counts. We also use our algorithm to fit Susceptible–

Exposed–Infected–Recovered (SEIR) and Susceptible–Infected–Recovered–Susceptible 

(SIRS) models in Sections 3.1, 3.2, and 4, and out-line the minimal adaptations required for 

these models in Section S6 of Supplementary Materials.

The SIR model describes the time evolution of an epidemic in terms of the disease histories 

of individuals as they transition through three states — susceptible (S), infected/infectious 

(I), and recovered (R). Under simple SIR dynamics, each individual becomes infectious 

immediately upon becoming infected, and acquires lifelong immunity upon recovery. For 

simplicity, we assume that the population is closed and mixes homogeneously, and that there 

Fintzi et al. Page 3

J Comput Graph Stat. Author manuscript; available in PMC 2018 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is no external force of infection. Therefore, the epidemic ceases once the pool of infectious 

individuals is depleted.

2.1 Measurement process and data

Our data, Y = {Y1,…,YL}, are disease prevalence counts recorded at times t1,…,tL ∈ [t1,tL]. 

It should not beggar belief that the data could be subject to measurement error, for example 

underreporting in settings where asymptomatic individuals escape detection. Let Sτ, Iτ, and 

Rτ denote the total susceptible, infected, and recovered people at time τ. We model the 

observed prevalence as a binomial sample, with constant detection probability ρ, of the true 

prevalence at each observation time. Thus,

Yℓ | Itℓ
, ρ ∼ Binomial Itℓ

, ρ . (1)

2.2 Latent epidemic process

The data are sampled from a latent epidemic process, X={X1,…,XN}, that evolves 

continuously in time as individuals become infected and recover. The state space of this 

process is 𝒮 = {S,I,R}N, the Cartesian product of N state labels taking values in {S,I,R}. The 

state space of a single subject, Xj, is 𝒮 j = {S,I,R}, and a realized subject–path is of the form

x j(τ) =

S, τ < τI
( j),

I, τI
( j) ⩽ τ < τR

( j)

R, τR
( j) ⩽ τ,

, (2)

where τI
( j) and τR

( j) are the infection and recovery times for subject j (though subject j may 

also never become infected or recover, or may become infected or recover outside of the 

observation period [t1,tL]). We write the configuration of X at time τ as X(τ) = (X1(τ),
…,XN(τ)), and adopt the convention that X(τ) and derived quantities, e.g., Iτ, depend on the 

configuration just before τ. We use τ+ for quantities evaluated just after a particular time. 

The waiting times between transition events are taken to be exponentially distributed, and 

we denote by β and μ the per–contact infectivity and recovery rates. Thus, the latent 

epidemic process evolves according to a time–homogeneous CTMC, with transition rate 

from configuration X to X′ given by

λX, X′ =
βI, if X and X′ differ only in subject j, with X j = S, and X j′ = I,
μ, if X and X′ differ only in subject j, with X j = I, and X j′ = R,
0, for all other configurations X and X′ .

(3)
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At the first observation time, we let X(t1) |pt1
∼ Categorical ({S, I, R}, pt1

), where pt1
 = 

(pS,pI,pR) are the probabilities that an individual is susceptible, infected, or recovered. Let τ 
= {τ0,…,τK+1}, where t1 ≡ τ0 and tL ≡ τK+1, be the (ordered) set of K infection and 

recovery times of all individuals along with the endpoints of the observation period [t1,tL]. 

Let Ⅱ τk ≙ I  and Ⅱ τk ≙ R  indicate whether τk is an infection or recovery time, and let 𝜃 = 

(β,μ,ρ, pt1
) denote the vector of unknown parameters. The complete data likelihood is

L(X, Y |θ) = Pr(Y |X, ρ) × Pr(X(t1) |pt1
) × π(X |X t1 , β, μ)

= ∏
l = 1

L Itℓ
Yℓ

ρ
Yℓ(1 − ρ)

Itℓ
− Yℓ

× pS

St1pI

It1pR

Rt1

× ∏
k = 1

K
βIτk

× 𝕀 τk = I + μ × 𝕀 τk = R exp − τk − τk − 1 βIτk
Sτk

+ μIτk

× exp − tL − τK βI
τK
+S

τK
+ + μI

τK
+ .

(4)

We briefly reconcile what might seem like a discrepancy between the SIR model presented 

above and the lumped construction of the SIR model (see Andersson and Britton (2000)), 

which, for a number of computational and analytical reasons, is somewhat more common. 

Our model describes the time evolution of the subject–level collection of disease histories, 

and thus evolves on the state space of individual disease labels. The lumped SIR model 

describes the time evolution of the vector of compartment counts, the state space of which is 

defined as the partition of the original state space obtained by aggregating the individuals in 

each of the model compartments. The lumped construction would have been appropriate had 

we chosen to augment the data with the compartment counts (for example, as in Pooley et al. 

(2015)). Nonetheless, inference based on the full subject– level model will exactly match 

inference based on the lumped model. We discuss this further in Section S1 of 

Supplementary Materials.

2.3 Subject–path proposal framework

The observed data likelihood in the posterior 

π(θ |Y) ∝ π(Y |θ)π(θ) = ∫ L(Y |X, θ)π(X |θ)π(θ)dπ(X) is analytically intractable for even 

moderately sized N as it involves an extremely high dimensional integral over the collection 

of subject–paths, X. The strategy employed in DA methods is to introduce the subject–paths, 

X, as latent variables in the model. This enables us to work with the tractable complete data 

likelihood given by (4). The joint posterior distribution is

π(θ, X |Y) ∝ Pr(Y |X, ρ) × π(X |X t1 , β, μ) × Pr(X(t1) |pt1
) × π(β)π(μ)π(ρ)π(pt1

), (5)
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where π(β), π(μ), π(ρ), and π pt1
 are prior densities. Our MCMC targets the joint posterior 

distribution, given by (5), as we alternate between updating X|𝜃, Y and 𝜃|X,Y.

Given the current collection of subject–paths, xcur, we propose xnew by sampling the path of 

a single subject Xj, conditionally on the data, using a time–inhomogeneous CTMC with state 

space 𝒮 j and rates conditioned on the collection of disease histories of the other individuals, 

x(-j) = {x1,…,xj−1,xj+1,…,xN}. The proposed collection of paths is accepted or rejected in a 

Metropolis–Hastings step.

Let τ( j) = {τI
( j), τR

( j)} be the (possibly empty) set of infection and recovery times for subject j, 

and define τ( − j) = τ\τ( j) = τ0
( − j), τ1

( − j), …, τM
( − j), τM + 1

( − j) , where t1 ≡ τ0
( − j) and 

tL ≡ τM + 1
( − j) , to be the set of M ⩽ K (ordered) times at which other subjects become infected 

or recover, along with t1 and tL. Let ℐ = ℐ1, …, ℐM + 1  be the intervals that partition 

[t1,tL], i.e. ℐ1 = τ0
( − j), τ1

( − j) , ℐ2 = τ1
( − j), τ2

( − j) , …, ℐM + 1 = τM
( − j), τM + 1

( − j) . Let 

Iτ
( − j) = ∑i ≠ j 𝕀 Xi(τ) = I  be the prevalence at time τ, excluding subject j. Let 

Λ( − j)(θ) = Λ1
( − j)(θ), …, ΛM + 1

( − j) (θ)  be the sequence of rate matrices corresponding to each 

interval in ℐ, where for m = 1,…,M + 1,

Λm
( − j)(θ) =

S
I
R

S I R

−βIτm
( − j) βIτm

( − j) 0

0 −μ μ
0 0 0

. (6)

We can construct the transition probability matrix for subject j over interval Im,

P( j) τm − 1, τm = pa, b
( j) τm − 1, τm a, b ∈ 𝒮 j

,

where pa, b
( j) τm − 1, τm = Pr X j τm = b |X j τm − 1 = a, θ , using the matrix exponential

P( j) τm − 1, τm = exp τm − τm − 1 Λm
( − j)(θ) .

This computation requires an eigen–decomposition of each rate matrix. We may reduce the 

total computational burden by computing the eigen decompositions analytically, and by 

caching the decompositions to avoid duplicate computations. One additional point is that 

while the eigen– values of any SIR rate matrix are always real valued, this is not generally 

true, e.g., it is possible for the rate matrix of an SIRS model to have complex eigenvalues. In 

this case, we obtain a real valued transition probability matrix by first applying a rotation to 
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each rate matrix with complex eigenvalues to obtain its real canonical form (Hirsch et al., 

2013). This is discussed in Section S2 of Supplementary Materials.

By the Markov property, the time–inhomogeneous CTMC density over the observation 

period [t1,tL], denoted π X j |x( − j), θ ≡ π X j |Λ
( − j)(θ); ℐ , can be written as a product of 

time–homogeneous CTMC densities over the inter–event intervals ℐ1, …, ℐM. Thus,

π X j |Λ( − j); ℐ = Pr X j t1 |pt1
∏

m = 1

M
π X j |x j τm − 1 , Λm

( − j)(θ); ℐm . (7)

Similarly, the transition probability matrix over an interval ℐℓ = tℓ − 1, tℓ  can be written as 

the product of transition probability matrices over the sub–intervals in ℐℓ, within which the 

subject– level CTMC is time–homogeneous. Thus, the transition probability matrix over an 

inter–observation interval, ℐℓ = tℓ − 1, tℓ , partitioned by S transition events that define 

inter–event intervals with endpoints given by times 

tℓ − 1 ≡ τℓ, 0
( − j) < τℓ, 1

( − j) < ⋯ < τℓ, S − 1
( − j) < τℓ, S

( − j) ≡ tℓ, is constructed as

P( j) tℓ − 1, tℓ = ∏
s = 1

S
P( j) τℓ, s − 1

( − j) , τℓ, s
( − j) .

The MCMC algorithm for constructing a subject–path proposal proceeds in three steps 

(Figure 2):

1. H4MM step: sample the disease state of the subject under consideration at the 

observation times, conditional on the data and disease histories of other subjects.

2. Discrete time skeleton step: sample the state at times when the time–

inhomogeneous CTMC rates change, conditional on the states sampled in the 

HMM step.

3. Event time step: sample the exact times of transition events conditional on the 

sequence of states sampled in the previous steps.

2.3.1 HMM step—The key to sampling a sequence of disease states at the observation 

times is to rewrite the emission probability, given by (1), as

Yℓ | X j tℓ , Itℓ
( − j), ρ ∼ Binomial 𝕀(X j tℓ = I + Itℓ

( − j), ρ . (8)

The emission probability in (8) only depends on whether subject j is infected at time tℓ, since 

we treat the paths of all other subjects, and the parameters, as fixed. Furthermore, the data 

are conditionally independent of one another, given x and 𝜃, which induces a hidden Markov 

model (HMM) over the joint distribution X and Y (Figure 1b).
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We sample the discrete path of Xj at times t1,…,tL from the conditional distribution of Xj, 

denoted π(Xj|Y,x(-j),𝜃;t1,…,tL), using the stochastic forward–backward algorithm (Scott, 

2002). The algorithm efficiently computes the conditional probabilities of the paths that Xj 

can take through Sj in the forward recursion. A discrete path is then sampled in the 

backward recursion. We provide details about the HMM sampling step in Supplementary 

Material Section S3.

2.3.2 Discrete-time skeleton step—It would be straightforward to sample the exact 

infection and recovery times of subject j, conditional on the sequence of states at times t1,
…,tL, if the subject–level CTMC rates did not possibly vary over each inter–observation 

interval. We may reduce our problem to the time–homogeneous case by first sampling the 

disease state at the intermediate event times when the CTMC rates change, and then 

sampling the full path within each inter–event interval. Consider an inter–observation 

interval, ℐℓ = tℓ − 1, tℓ , containing inter–event intervals whose endpoints are given by 

times tℓ − 1 ≡ τℓ, 0
( − j) < τℓ, 1

( − j) < ⋯ < τℓ, n − 1
( − j) < τℓ, n

( − j) ≡ tℓ. Let τi = τl, i
( − j) and xi = x j(τℓ, i

( − j)). We 

recursively sample Xj at each intermediate event time, beginning at τ1, from the discrete 

distribution with masses

Pr X j τi = xi |X j τi − 1 = xi − 1, X j τn = xn

=
Pr X j τi = xi, X j τi − 1 = xi − 1, X j τn = xn

Pr X j τi − 1 = xi − 1, X j τn = xn

=
Pr X j τi = xi |X j τi − 1 = xi − 1 Pr X j τn = xn |X j τi = xi

Pr X j τn = xn |X j τi − 1 = xi − 1

=
P( j) τi − 1, τi xi − 1, xi

∏k = i
n − 1P( j) τk, τk − 1 xi, xn

∏k = i − 1
n − 1 P( j) τk, τk + 1 xi − 1, xn

.

(9)

2.3.3 Event time step—The final step in constructing a subject–path is to sample the 

exact infection and recovery times given the discrete sequence of states obtained in the 

previous two steps. This amounts to simulating the path of an endpoint–conditioned time–

homogeneous CTMC, a task for which there exist a variety of efficient methods (Hobolth 

and Stone, 2009). When fitting the SIR model, we chose to use modified rejection sampling, 

a modification of Gillespie’s direct algorithm (Gillespie, 1976) that explicitly avoids 

simulating constant paths. This method is known to be efficient when the states differ at the 

endpoints of small time intervals. We used uniformization–based sampling (Hobolth and 

Stone, 2009) when fitting SEIR and SIRS models, which was more robust when sampling 

paths in intervals with multiple transitions. Fast implementations of these methods are 
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available in the ECctmc package in R (Fintzi, 2016). We briefly summarize the algorithms in 

Section S4 of Supplementary Materials.

2.3.4 Metropolis–Hastings step—Having constructed a complete subject–path 

proposal, we decide whether to accept or reject the proposal via a Metropolis–Hastings step. 

It is important to understand that the true distribution of Xj|x(-j),𝜃 is neither Markovian nor 

analytically tractable, and therefore, does not match the time– inhomogeneous CTMC in our 

proposal. Suppressing the dependence on 𝜃, the target distribution of the subject–path 

proposal is π(X |Y) ∝ π(Y |X)π(X). Thus, we accept a proposed subject–path with probability

a
xcur xnew = min π xnew |y

π xcur |y
q xcur |xnew, y
q xnew |xcur, y

, 1

= min π xnew

π xcur
π x j

cur |Λ( − j); ℐ
π x j

new |Λ( − j); ℐ
, 1 .

(10)

Hence, the Metropolis–Hastings ratio is equal to the ratio of population-level time–

homogeneous CTMC densities, multiplied by the ratio of time–inhomogeneous CTMC 

proposal densities (see Supplementary Material Section S5 for the derivation).

2.3.5 Initializing the collection of subject–paths—We initialize the collection of 

subject paths at the start of our MCMC by simulating paths using Gillespie’s direct 

algorithm (Gillespie, 1976) until we have found one under which the data have non–zero 

probability. A sufficient condition for this under the binomial sampling model is that the 

number of infected individuals is greater than the observed prevalence at each observation 

time.

2.4 Parameter updates

One MCMC iteration includes a number of subject–path updates, followed by a set of 

parameter updates. The optimal number of subject–path updates per MCMC iteration is 

specific to the dynamics of the SEM and the epidemic setting (e.g., endemic vs. epidemic, 

high vs. low escape probability), but ultimately boils down to the cost of subject–path 

updates vis–a–vis parameter updates. We discuss this further in Section S7 of 

Supplementary Materials. In the case of the SIR model, as well as the other models we will 

fit in subsequent sections, conjugate priors are available for all our model parameters. Thus, 

we use Gibbs sampling to draw new parameter values from their univariate full conditional 

distributions (see Supplementary Material Section S8).

2.5 Implementation

We provide the R and C++ code base for this paper, along with examples and the code for 

reproducing the results we present in the following sections, in the form of an R package in a 

stable GitHub repository (https://github.com/fintzij/BDAepimodel). Future implementations, 

including ex-tensions to the algorithm presented in this paper, along with improvements to 
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the implementation, will be incorporated into the stemr package (https://github.com/fintzij/

stemr).

3 Simulation Results

3.1 Inference under various epidemic dynamics

We fit SIR, SEIR, and SIRS dynamics to binomially distributed prevalence counts sampled 

from epidemics simulated under corresponding dynamics in populations of 750, 500, and 

200 individuals (details provided in Supplementary Material Section S9). Priors for the rate 

parameters and binomial sampling probability were chosen so that the priors spanned 

reasonable ranges of values (e.g. recovery durations ranging from days to weeks/months 

rather than seconds to eons under extremely diffuse priors), but were otherwise only mildly 

informative, while the initial distribution parameters were assigned informative priors (see 

Supplementary Tables S4, S6, and S8). The three datasets, depicted in Figure 3 along with 

the estimated pointwise posterior prevalence, presented a range of challenges. The SIR 

example was arguably the most “standard” example as the observation period captured the 

exponential growth and decline of the epidemic. Thus, much of the curvature in the latent 

path was reflected in the data. In contrast, data from the outbreak simulated under near–

endemic SEIR dynamics contained very little information about the shape of the epidemic 

curve. The task of disentangling whether the data were sampled with low probability from a 

high–prevalence outbreak, or visa–versa, was further complicated by the inclusion of an 

additional disease state — the exposed state — that was not directly observed. Finally, the 

SIRS model was more computationally challenging for two reasons. First, the recurrent 

nature of the disease process demanded that the disease state at each event time, and the path 

within each inter–event interval, be sampled in the subject–path proposal. Second, it was 

possible for CTMC rate matrices to have complex eigen–decompositions, which made 

computing transition probability matrices more expensive. This affected the optimal number 

of subject–path updates per MCMC iteration (see Supplementary Material Section S7 for 

further discussion of this point). Simulation details, along with minor adaptations to our 

algorithm for fitting the SEIR and SIRS models, are presented in Supplementary Material 

Section S6.

The true epidemic paths and parameter values fell well within the 95% Bayesian credible 

intervals in all three simulations (Figure 3 presents the estimated latent posterior prevalence; 

Figure 4 presents posterior estimates of model parameters; Supplementary Material Figure 

S12 presents estimated latent posterior distributions and true epidemic paths for all model 

compartments). The acceptance rates for subject–path proposals were roughly 92% for the 

SIR model, 91% for the SEIR model, and 77% for the SIRS model. Our posterior estimates 

of the model parameters also closely match estimates obtained using the particle marginal 

Metropolis–Hastings (PMMH) algorithm of Andrieu et al. (2010), implemented using the 

pomp package in R (King et al., 2016). We simulated particle paths in the PMMH algorithm 

in two ways; exactly using Gillespie’s direct algorithm (Gillespie, 1976), and approximately 

using a multinomial modification of τ–leaping (Bretó and Ionides, 2011). In these small 

population examples, the exact algorithm is arguably more appropriate, as the leap 

conditions for τ–leaping may not be met in small populations, but it is also substantially 
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slower. In these simple settings, PMMH tended to outperform our algorithm in terms of log–

posterior effective sample size (ESS) per CPU time. When PMMH particle paths were 

simulated by τ–leaping, the average ESS per CPU compared to BDA was roughly 350× 

greater for the SIR model, 4.4× greater for the SEIR model, and 13× greater for the SIRS 

model. Exact simulation of PMMH particle paths reduced the computational advantage of 

PMMH substantially. In this case, the average log– posterior ESS per CPU time was 10.5× 

greater for PMMH in fitting the SIR model, 2× for the SEIR model, and 0.7× for the SIRS 

model. These comparisons did not include the time required to tune the MCMC for PMMH, 

which was nontrivial. In contrast, our algorithm required no tuning beyond selecting the 

number of subject–paths to update per MCMC iteration. We also note that in fitting the 

models using PMMH, we were required to make several implementation decisions to 

prevent particle degeneracy and to balance speed with precision. These included selecting 

the number of particles and the time–step in the approximate τ–leaping algorithm. For 

example, when using τ–leaping to simulate particle paths, the number of particles required 

to obtain good mixing for the SIRS model fit with PMMH was much higher than for the 

other two models. Details of the PMMH implementations and further results are discussed in 

Supplementary Material Section S9.

3.2 Inference under model misspecification

In practice, every stochastic epidemic model is misspecified with respect to the real world 

epidemic process from which the data arise, and the malignancy of the model 

misspecification is often imposible to diagnose a priori. We can build up an understanding of 

an epidemic’s dynamics by fitting SEMS under a range of dynamics, beginning with simple, 

easily interpretable models. The results of each model are interpretted counterfactually — 

e.g. “If the true epidemic followed SIR dynamics, our best guess of the dynamics that gave 

rise to the data would be…”. The iterative nature of epidemic modeling suggests that some 

minimal criteria for the usefulness of any computational algorithm would be that, for a 

reasonable model, the MCMC should converge to the posterior of the model parameters, and 

that the estimated latent posterior distribution under the hypothetical dynamics should reflect 

the true epidemic.

However, it is precisely the inherent misspecification of SEMs that leads simulation–based 

methods to struggle in many instances, and it is here that we highlight a critical advantage of 

our DA algorithm. Our subject–path proposals are driven, not just by the SEM dynamics, but 

also by the data. This enables us to overcome model misspecification in situations in which 

simulation–based methods degenerate due to their reliance on an adequately accurate model 

for simulating epidemic paths. We demonstrate this in a simple example in which we fit SIR 

and SEIR models to four years of weekly prevalence data sampled from an epidemic 

simulated under time–varying SEIR dynamics, where the latent period, infectious period, 

and per–contact infectivity rate were modulated over four discrete epochs (depicted in 

Figure 5, details presented in Supplementary Material Section S10).

We fit SIR and SEIR models to the data using our DA algorithm, and using PMMH with 

2,500 particles, the paths for which were simulated approximately via τ–leaping with a 

time–step of 1 day. We assigned weakly informative priors for the rate parameters governing 

Fintzi et al. Page 11

J Comput Graph Stat. Author manuscript; available in PMC 2018 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the epidemic dynamics in both models, and informative priors for the binomial sampling 

probability and the initial state probabilities (Supplementary Material Table S11). The 

MCMC chains for models fit with PMMH suffered from severe particle degeneracy and did 

not converge (see Supplementary Material Figures S13 and S15).

Both models fit via DA yield reasonable estimates for the within–subject disease dynamics 

(i.e. the infectious period, as well as the latent period in the case of the SEIR model). The 

posterior median average infectious period duration was estimated to be 292 days (95% BCI: 

263 days, 323 days) under SIR dynamics, and 287 days (95% BCI: 260 days, 318 days) 

under SEIR dynamics. The posterior median average latent period under SEIR dynamics 

was 211 days (95% BCI: 165 days, 260 days). The posterior median estimate of R0 under 

SIR dynamics was 4.05 (95% BCI: 3.40, 4.81), while under SEIR dynamics, the posterior 

median estimate of R0 was 23.8 (95% BCI: 15.1, 37.0). While the true prevalence fell well 

within the pointwise 95% credible interval for both models (Figure 6), we notice that the 

degree of model misspecification drastically affected our ability to estimate the history of the 

numbers of noninfectious people over the course of the epidemic. Under SIR dynamics, we 

drastically overestimate the number of susceptible individuals. The SEIR model much more 

closely resembles the time–varying SEIR model used to simulate the epidemic. Although the 

true path for the number of susceptible still falls outsize the 95% credible interval at times, 

we are still able to reconstruct a reasonabe range of paths for the number of exposed 

individuals. This contrasts with the models fit in Section 3.1, which were not misspecified 

with respect to the true epidemic dynamics. In that case, the complete path of the epidemic 

fell well within the estimated credible intervals for all disease states for all three models 

(Supplementary Material Figure S12). Therefore, we advise caution in reconstructing the 

epidemic history for disease states that were not measured, particularly when severe model 

misspecification is suspected.

3.3 Inference under population size misspecification

Model misspecficiation often extends not only to the SEM dynamics, but also to the 

assumed population size. This is often the case in settings where subject–level data is 

unvailable, for example, in resource limited settings or surveillance settings, and may result 

in biased estimates of the SEM dynamics. This bias is the result of a missmatch between the 

intensive dynamics of the epidemic process, which are a function of the fractions of people 

in the population in each disease state, and the extensive scale of prevalence counts, which 

are not normalized by the population size. Without knowing the true population size, it is 

difficult to know whether the scale of the observed counts reflects a high prevalence/low 

detection rate setting, or visa–versa. Moreover, wrongly assuming too large, or too small, of 

a population size could bias posterior inference of the epidemic dynamics.

We simulated weekly prevalence counts under a binomial measurement process with 

detection probability ρ = 0.3 from an epidemic with SIR dynamics in a population of N = 

1,250 individuals. We then fit SIR models using a series of assumed population sizes under a 

flat prior for the binomial sampling probability and diffuse priors for the epidemic dynamics 

(see Supplementary Material Section S11 for complete simulation details and prior 

specifications), and compared the resulting scaled parameter estimates. The per–contact 
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infectivity rate, β, was rescaled by the population size, N, so that it could be interpreted as 

the rate of disease transmission. We computed R0 using the assumed population size. 

Finally, we scaled the binomial sampling probability by the assumed population size to give 

the expected number of observed infections in a completely infected population.

We are able to obtain approximately valid inference under moderate misspecification of the 

population size. However, estimates of the epidemic dynamics and the case detection 

probability become severely biased as the magnitude of the misspecification increases. 

Furthermore, the widths of the credible intervals for the model parameters shrink as 

misspecification of the population size becomes more severe. The constrained ranges of 

model dynamics also manifest in a narrowing of the widths of the pointwise credible 

intervals for disease prevalence (Figure 8). Under severe misspecification of the population 

size (N = 150), the latent posterior distribution has 95% of its mass within only a narrow 

band of epidemic paths. In contrast, under moderate misspecification of the population size, 

the widths of the latent posterior credible intervals are quite similar to the estimated range 

using the true population size.

There are two final points that we wish to make based on this simulation. The first is that it 

might be possible to deliberately misspecify the true population size in order to speed up 

computation time and still obtain approximately valid inference. The average run time using 

the true population size of 1250 individuals was roughly 2× and 7× longer than the average 

run times in populations of 900 and 500 individuals. Yet, posterior inferences about the 

epidemic dynamics were not substantially affected. Longer run times in large populations 

result from having to sample more subject–paths per MCMC iteration at a relatively higher 

cost per subject–path. The second point is that in situations where the true population size is 

unknown, SEM likelihood–based inference has some robustness to misspecification of the 

population size, at least in a neighborhood of population sizes around the true number of 

individuals. Thus, comparing posterior inferences under a range of population sizes could be 

a useful heuristic diagnostic for population size misspecification.

3.4 Effect of prior specification on posterior inference

Given the relatively limited extent of aggregated prevalence counts compared to a setting in 

which subject–level data are available, we must consider how our choices of prior 

distributions influence our posterior inferences. We simulated an outbreak with SIR 

dynamics in a population of 750 individuals for which R0 = β ×763/μ ≈ 1.84 and the mean 

infectious period was 1/μ = 7 days. We fit SIR models to binomially distributed weekly 

prevalence data, sampled with detection probability ρ = 0.2, under the following four prior 

regimes: Regime 1 — informative priors for all model parameters; Regime 2 — vague priors 

for the rate parameters and an informative prior for the sampling probability; Regime 3 — 

informative priors for the rate parameters and a flat prior for the sampling probability; 

Regime 4 — vague priors for the rate parameters and a flat prior for the sampling 

probability. The same prior for the initial state probabilities was used in all four regimes. 

Complete simulation details and convergence diagnostics are supplied in Section S12.

The true values for all model parameters fell within the 95% credible intervals under all four 

prior regimes. Unsurprisingly, informative priors tended to result in narrower credible 
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intervals for the parameters (Figure 9) as well as for the latent process (Figure 10). The 

strength of prior information about the sampling probability affected the widths of credible 

intervals to a much greater extent than the priors for the rate parameters. Strong prior 

information about the sampling probability also resulted in substantially narrower credible 

intervals for disease prevalence under each of the prior regimes for the rate parameters. In 

contrast, informative priors for the rate parameters yielded only slightly narrower credible 

intervals for disease prevalence when holding constant the strength of the sampling 

probability prior. The effects on the initial state probability parameters seem to reverse this 

pattern, although we caution against overinterpretion given the paucity of data available for 

estimating those parameters. MCMC chains with strong priors for the binomial sampling 

probability also appeared to mix somewhat better than chains with diffuse priors for the 

sampling probabilty (see traceplots in Supplementary Material Section S12.

4 Influenza in a British boarding school

As an application, we analyze data from an outbreak of influenza in a British boarding 

school (Anon., 1978, Davies et al., 1982). This outbreak took place shortly after the Easter 

term began in January 1978, and was estimated to eventually infect roughly 90% of the 763 

boys aged 10–18. Daily counts of the boys who were confined to the infirmary from January 

22nd through February 4th were accessed via the pomp package in R (King et al., 2016), and 

are displayed in Figure 11.

We used our DA algorithm and PMMH to fit SIR and SEIR models with a binomial 

emission distribution to the data (see Supplementary Material Section S13 of the supplement 

for complete details). All of the parameters were assigned diffuse priors, which are plotted 

over the posterior ranges in Figure 12. The PMMH algorithm failed to converge for both 

models, which we suspect was due to a combination of model misspecification and the 

constrained state space of the binomial measurement process. We also fit a set of 

supplementary SIR and SEIR models in Section S13.2, in which we assumed a negative–

binomial emission distribution. This was done in order to facilitate comparison with PMMH, 

although we feel that a negative binomial emission distribution is not appropriate in such a 

closely monitored outbreak setting since it does not rule out over–reporting of cases.

Together, the SIR and SEIR models suggest that cases were detected with high probability 

and that the outbreak, though aggressive, was not atypical given the closed environment in 

which it occurred. The posterior median estimates of the detection probability, roughly 0.98 

for both models (SIR 95% BCI: 0.92, 1.00; SEIR 95% BCI: 0.91, 1.00), suggested that 

while almost all of the infectious boys were detected, a handful of cases went unnoticed. The 

posterior median recovery rate under SIR dynamics corresponds to an average period of 2.16 

days (95% BCI: 1.99, 2.37) during which an infectious boy could transmit an infection to 

other boys before being confined to the infirmary. Under SEIR dynamics, the posterior 

median average infectious period was 2.12 days (95% BCI: 1.95, 2.33), and the posterior 

median average latent period was 1.19 days (95% BCI: 0.84, 1.51). These results are 

consistent with the typical progression of influenza, in which individuals typically incubate 

for between one to four days before symptoms manifest, and are typically infectious for one 

day before, and up to a week after, symptom onset (Centers for Disease Control and 
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Prevention, 2014). The posterior median estimates of R0 were 3.89 (95% BCI: 3.40, 4.47) 

under SIR dynamics, and 10.38 (95% BCI: 7.40, 14.11) under SEIR dynamics. Previous 

analyses of this dataset with trajectory matching estimate R0 to be roughly 3.7 for the SIR 

model and 35.9 for the SEIR model (Wearing et al., 2005, Keeling and Rohani, 2008), 

though we note that these estimates are based on deterministic models that do not properly 

account for distributional properties of the data. Our results for both models are also in 

agreement with estimates of SIR and SEIR model dynamics under a negative binomial 

emission distribution (see Section S13.2).

5 Conclusion

We have presented an agent–based Bayesian DA algorithm for fitting SEMs to disease 

prevalence time series counts. This was previously difficult, if not computationally 

infeasible, to carry out using traditional agent–based DA methods in the absence of subject–

level data. Although we outlined the algorithm in the context of fitting an SIR model to 

binomially distributed prevalence data, our algorithm represents a general solution for fitting 

SEMs to prevalence counts. In simulations and the applied example, we fit SEIR and SIRS 

models to prevalence data, and in the supplement also fit SIR and SEIR models with a 

negative binomial emission distribution to the British boarding school data. We have 

demonstrated that our algorithm yields approximately valid inference when the population 

size is misspecified. Moreover, our algorithm is usable in settings in which simulation– 

based methods, such as PMMH, break down due to misspecification of the SEM. Finally, 

our DA algorithm is carried out entirely at the subject level, making it possible to also 

incorporate subject–level covariates and household structure, or to fit models to subject–

level data.

There are two fundamental limitations of agent-based DA methods from which our 

algorithm is not excepted. First, the bookkeeping required to track the collection of subject–

paths increases in size and complexity as the number of events grows large. Attempts to fit 

stochastic epidemic models in large populations using agent-based DA may be thwarted by 

prohibitive computational overhead. MCMC run times using our implementation, which was 

coded for reliability rather than speed, substantially degraded once the assumed population 

size was greater than a few thousand people. Second, we suspect that MCMC mixing in 

large populations could eventually become too slow for agent–based DA to be of practical 

use, even if solutions could be found for the computational bottlenecks. As the population 

size gets large, perturbations to the likelihood from re-sampling one subject at a time 

become relatively less significant. For this reason, we view extensions for jointly sampling 

multiple subject–paths as a critical step in mitigating slow MCMC mixing in large 

populations.

Finally, we would like to comment on directions for future work that we intend to pursue. 

The DA algorithm in this paper addresses the problem of fitting SEMs to prevalence data. 

This type of data summarizes total number of infections in the population at a particular 

time. However, outbreak data often consist of incidence counts, which are the number of 

new cases accumulated in each inter-observation interval. Extending our DA algorithm to 

accommodate incidence data is an important next step and should be straightforward in 
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situations where the state space for the subject level process is finite — for instance, if a 

subject cannot become reinfected more than once or twice in a given inter-observation 

interval. We also believe it is important to investigate whether there is a way to make our DA 

algorithm more efficient by selecting the subjects whose paths are resampled in each 

iteration in a way that maximizes the perturbation to the population–level path and does not 

invalidate the MCMC. Designing an optimal schedule of subject–path updates could be 

critical to being able to use our algorithm in fitting more complex models to data from 

epidemics in large, structured populations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
(a) SIR dynamics in a population of five subjects. The number of infecteds can increase 

from two to three via an infection of the first or second subject, reaching each of those 

configurations at rate 2β. The number of recovered individuals can increase from one to two 

via a recovery of the third or fourth subject, reaching each of those configurations at rate μ. 

(b) Hidden Markov model for the joint distribution of the latent epidemic process and the 

data. The observations, Yℓ, ℓ = 1,…,L, are conditionally independent given X(t), and Yℓ | Itℓ
, 

ρ ∼ Binomial(Itℓ
, ρ).
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Figure 2: 
Procedure for constructing a subject–path proposal with SIR dynamics. (a) The dashed line 

depicts the number of infected individuals, excluding Xj, the subject whose path is being 

sampled. The observation times, t1,…,t5, and times at which other subjects change disease 

states, τ1,…,τ5, are shown on the bottom axis. Rate matrices of the time–inhomogeneous 

CTMC (top axis) are constant within inter–event intervals (vertical lines). The state space of 

the subject–level process, Xj, is shown on the right axis. (b) HMM step: Sample the state of 

Xj at t1,…,t5, conditional on the data and on the disease histories of other subjects. (c) 

Discrete time skeleton step: Sample the infection status at τ1,…,τ5, conditional on the 

sequence of states sampled in the HMM step. (d) Event time step: Sample the infection and 

recovery times from endpoint-conditioned time–homogeneous CTMC distributions, 

conditional on the sequence of disease states sampled in the HMM and discrete time 

skeleton steps.
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Figure 3: 
Estimated latent posterior distributions of disease prevalence in outbreaks simulated under 

SIR (left), SEIR (middle), and SIRS (right) dynamics. Depicted are the true unobserved 

prevalence (solid line), observed data (dots), pointwise posterior median prevalence (dashed 

line), and pointwise 95% credible intervals (shaded region). Latent posterior estimates are 

based on a thinned sample, with every 250th sample retained.
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Figure 4: 
Posterior medians and 95% credible intervals of parameters in the SIR, SEIR, and SIRS 

models fit with Bayesian data augmentation (BDA) and particle marginal Metropolis– 

Hastings (PMMH) with particle paths simulated approximately (using τ–leaping) and 

exactly (using Gillespie’s direct algorithm). Displayed are estimates of the basic 

reproductive number, R0, the rate parameters, and the binomial sampling probability. In all 

models, β is the per–contact infectivity rate, μ is the recovery rate, and ρ is the binomial 

sampling probability. In the SEIR model, γ denotes the rate at which an exposed individual 

becomes infectious, while in the SIRS model γ denotes the rate at which immunity is lost.
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Figure 5 & Table 1: 
Simulated outbreak with SEIR dynamics that varied over four epochs (shaded regions). 

Weekly prevalence counts (points) were binomially sampled with sampling probability ρ 
“ 0.95 from the true unobserved prevalence (solid line). The table presents the effective 

reproductive number computed based on the number of susceptibles at the beginning of each 

epoch, R0
Eff = β(τ)S(τ)/μ(τ), the mean latent period, 1/γ, and the mean infectious period, 1/μ.
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Figure 6: 
True epidemic path (solid lines), pointwise posterior median estimate of the numbers of 

susceptibles (dashed line), exposed (dotted line), and infected individuals (dash–dotted line) 

and pointwise 95% credible intervals (shaded regions) under SIR and SEIR dynamics.
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Figure 7: 
Posterior medians and 95% credible intervals for the basic reproductive number, R0, 

infectivity rate, recovery rate, and binomial sampling probability scaled by the assumed 

population size. The dashed lines indicate the true values in the population of size 1,250. 

The population size, N, indicates the assumed population size used in fitting the model.
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Figure 8: 
Estimated latent posterior distributions of disease prevalence under SIR dyamics. The true 

population size is 1,250. Depicted are the observed prevalence (dots), pointwise posterior 

median prevalence (dashed line), and pointwise 95% credible intervals (shaded region) all 

scaled by the assumed population size. Latent posterior estimates are based on a thinned 

sample, with every 250th sample retained.
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Figure 9: 
Posterior median estimates and 95% credible intervals for all SIR model parameters under 

four different prior regimes (Table S14). Regimes 1 and 3 set informative priors for the per–

contact infectivity and recovery rates. Regimes 1 and 2 set informative priors for the 

binomial sampling probability. The same mildly informative prior for the initial state 

probabilities was used in all four regimes.
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Figure 10: 
Estimated latent posterior distributions of disease prevalence in outbreaks simulated under 

four prior regimes for SIR model rate parameters and the binomial sampling probability. 

Depicted are the true unobserved prevalence (solid line), observed data (dots), pointwise 

posterior median prevalence (dashed line), and pointwise 95% credible intervals (shaded 

region). Latent posterior estimates are based on a thinned sample, with every 250th sample 

retained.
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Figure 11: 
Boarding school data, pointwise posterior median estimates and pointwise 95% credible 

intervals (grey shaded areas) under SIR and SEIR dynamics of the numbers of susceptible 

boys (dashed line), exposed boys (dotted line), and infected boys (solid line). Posterior 

estimates based on a thinned sample, with every 250th configuration retained.
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Figure 12: 
Posterior density estimates for R0 = βN/μ, the mean latent and infectious periods, 1/γ and 1/

μ, and the binomial sampling probability, ρ, from SIR and SEIR model parameters fit to the 

British boarding school data (solid lines). The posterior median and 95% Bayesian credible 

intervals are drawn below the density plots (solid lines with circles). The implied prior 

densities (dashed lines) for R0 and the latent and infectious periods, and the prior density for 

the binomial sampling probability, are plotted over the posterior ranges.
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