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Abstract

Measuring the catalytic activity of immobilized enzymes underpins development of biosensing, 

bioprocessing, and analytical chemistry tools. To expand the range of approaches available for 

measuring enzymatic activity, we report on a technique to probe activity of enzymes immobilized 

in porous materials in the absence of confounding mass transport artifacts. We measured reaction 

kinetics of calf intestinal alkaline phosphatase (CIAP) immobilized in benzophenone-modified 

polyacrylamide (BPMA-PAAm) gel films housed in an array of fluidically isolated chambers. To 

ensure kinetics measurements are not confounded by mass transport limitations, we employed 

Weisz’s modulus (Φ), which compares observed enzyme-catalyzed reaction rates to characteristic 

substrate diffusion times. We characterized activity of CIAP immobilized in BPMA-PAAm gels in 

a reaction-limited regime (Φ ≪ 0.15 for all measurements), allowing us to isolate the effect of 

immobilization on enzymatic activity. Immobilization of CIAP in BPMA-PAAm gels produced a 

~2× loss in apparent enzyme–substrate affinity (Km) and ~200× decrease in intrinsic catalytic 

activity (kcat) relative to in-solution measurements. As estimating Km and kcat requires multiple 

steps of data manipulation, we developed a computational approach (bootstrapping) to propagate 

uncertainty in calibration data through all data manipulation steps. Numerical simulation revealed 

that calibration error is only negligible when the normalized root-mean-squared error (NRMSE) in 

the calibration falls below 0.05%. Importantly, bootstrapping is independent of the mathematical 

model, and thus generalizable beyond enzyme kinetics studies. Furthermore, the measurement tool 

presented can be readily adapted to study other porous immobilization supports, facilitating 

rational design (immobilization method, geometry, enzyme loading) of immobilized-enzyme 

devices.
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Enzyme immobilization on solid supports has fueled advances in biosensing,1,2 biocatalysis,
3 and proteomics,4,5 among other fields. The history, applications, and available methods of 

enzyme immobilization are vast, as covered in various reviews.6–12 Key design parameters 

(i.e., immobilization method, device geometry, and enzyme loading) determine performance 

(e.g., sensor dynamic range, reactor yield) of devices employing immobilized enzymes. As 

suggested by Nidetzky and colleagues, design should be guided by characterization of 

immobilized enzymes at multiple length scales starting with kinetics measurements.13 Yet, 

kinetics of immobilized enzymes are often studied only after device development. Although 

the use of immobilized enzymes for biosensing, analytical chemistry, and bioprocessing 

applications has increased, methods to characterize the kinetics of immobilized 

enzymes14,15 remain similar to those proposed by Engasser and Horvath in 1973.16 As 

applications benefiting from immobilized enzymes expand, the availability of diverse 

methods to characterize the kinetics of immobilized enzymes is increasingly important.

In contrast to kinetics measurements of enzymes in free solution, immobilized enzyme 

reactions do not necessarily occur under spatially uniform substrate16,17 and pH 

distributions.17,18 In porous materials, partitioning and mass transport limitations may yield 

spatial variation in local reaction rates, obscuring determination of the true kinetics of the 

immobilized enzyme.16–18 Further, immobilization can alter the intrinsic kinetics of the 

enzyme by changing enzyme structure and local microenvironment.19–21 To isolate the 

effect of immobilization on the catalytic activity of an enzyme, confounding factors must be 

evaluated.

Immobilization often improves enzyme stability at the cost of lower catalytic activity.12 

However, strategic selection of enzyme immobilization methods may mitigate losses or 

increase activity upon immobilization.12,22,23 For example, immobilization of enzymes in 

highly activated supports can promote multipoint covalent attachment (MCA), restricting the 

enzyme from adopting inactive conformations post-immobilization.24 Similarly, choice of 

enzyme loading and immobilization matrix can favor partitioning of H+ or OH− ions, 

altering the local pH in the support material relative to the bulk. The changed pH may allow 

the immobilized enzyme to operate in conditions closer to the optimal pH.25 The 

conformation of the enzyme at the time of immobilization can also affect its activity. MCA 

immobilization of lipases in the presence of detergents can increase activity as the enzyme is 

immobilized in an active conformation.26 Immobilization mechanism and selected protocol 

can both have profound effects on the performance of immobilized enzymes, and thus 

require characterization on a case-by-case basis.
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Omission of standard enzymatic activity metrics (e.g., Km, Vmax, kcat)27 or derivation of 

apparent activity metrics from data sets other than reaction progress curves28 can preclude 

utilization of published literature to guide rational selection of immobilization schemes. To 

improve meaningful comparisons across enzyme kinetics studies, minimal reporting 

standards (i.e., STRENDA) have been published, which include aspects of model selection 

and error analysis.29,30 The latter is of particular interest because Km, Vmax, and kcat are not 

directly measurable properties, but rather are estimated from fitting the Michaelis–Menten 

model to initial reaction rates measured at several substrate concentrations, [S]. As a result, 

estimating Km, Vmax, and kcat in standard units requires: (i) calibration correction of the raw 

reaction progress data, (ii) linear regression to estimate initial reaction rates from 

calibration-corrected data, and (iii) nonlinear fitting of the Michaelis–Menten model to the 

initial reaction rate estimates as a function of [S]. The sequential calculations utilized to 

estimate Michaelis–Menten model parameters make propagation of uncertainty techniques 

important in enzyme kinetics studies.

Computational methods are practical alternatives to the derivation of analytical solutions for 

error propagation. While more computationally intensive than its predecessor (i.e., the 

jackknife), bootstrapping is a versatile data resampling technique for estimating uncertainty 

in calculated parameters.31,32 Furthermore, in contrast to the jackknife,33 bootstrapping can 

be applied to calibration experiments.34,35 Bootstrapping generates “pseudo-samples,” or 

bootstrap samples, size-matched to the original data set by sampling with replacement from 

the original data. Parameters of interest (e.g., Km, Vmax, kcat) are calculated from each 

bootstrap sample, yielding a distribution of parameters, whose standard deviation 

approximates the standard error (uncertainty) in the parameter. Crucially, bootstrapping does 

not require exact mathematical expressions for the uncertainty, offering a practical method to 

estimate uncertainty in Michaelis–Menten model parameters. Applied to biological assays, 

Hanson et al.36 and Blukacz et al.37 used bootstrapping simulations to propagate systematic 

measurement error (e.g., pipetting/caliper accuracy) onto estimates of enzyme inhibitor 

potency and biomass production, respectively. Furthermore, bootstrapping methods, which 

focused exclusively on the final step of data analysis, have been used to estimate uncertainty 

in Km and Vmax
38,39 Therefore, a bootstrapping strategy to propagate calibration uncertainty 

onto the Km, Vmax, and kcat estimates would be useful to study kinetics of immobilized and 

free enzymes.

In biological systems, enzymatic activity is regulated through multiple mechanisms; thus, 

protein abundance measurements (e.g., Western blotting) are insufficient to investigate the 

role of enzymes in complex biological networks.40 Building on our group’s microscale 

electrophoretic assays in benzophenone-modified polyacrylamide (BPMA-PAAm) gels,41–43 

we sought to understand the feasibility of quantifying both protein abundance and enzymatic 

activity from single cells. Here, we introduce an analytical method suitable for ascertaining 

the impact of immobilization in BPMA-PAAm gels on the enzymatic activity of calf 

intestinal alkaline phosphatase (CIAP). Our two-component system comprises (i) a thin, 

microfabricated hydrogel film for enzyme immobilization mounted on (ii) a gasket fixture 

defining an array of fluidically isolated hydrogel regions compatible with a standard 

microplate reader. We evaluate the validity of primary assumptions of the Michaelis–Menten 

model and utilize a quantitative framework to assess the presence of mass transport 
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limitations based on measurable properties. We find that our enzyme kinetics measurements 

occur in a reaction-limited regime, allowing us to estimate intrinsic kcat values for CIAP 

immobilized in BPMA-PAAm gels. In addition, we describe a bootstrapping method to 

propagate uncertainty in each step of data analysis onto the final Km, Vmax, and kcat 

estimates and investigate conditions for which calibration uncertainty is non-negligible. As 

bootstrapping is independent of the mathematical model, the error propagation approach can 

be readily modified for applications other than Michaelis–Menten kinetics. Similarly, our 

measurement system can be utilized to investigate the performance of other porous materials 

for enzyme immobilization.

EXPERIMENTAL SECTION

Chemicals/Reagents.

Acetic acid (695092), methanol (322415), 3-(trimethoxysilyl)propyl methacrylate (440159), 

40% T, 3.3% C acrylamide/bis-acrylamide (29:1) (A7802), N,N,N′,N′-

tetramethylethylenediamine (TEMED, T9281), ammonium persulfate (APS, A3678), 

sodium dodecyl sulfate (SDS, L3771), 2-mercaptoethanol (M3148), zinc chloride (ZnCl2, 

208086), and sodium chloride (NaCl, S9888) were purchased from Sigma-Aldrich. 6,8-

Difluoro-4-methylumbelliferyl phosphate (DiFMUP, 6567), 6,8-difluoro-7-hydroxy-4-

methylcoumarin (DiFMU, 6566), ELF97 endogenous phosphatase detection kit (ELF97 

substrate and reaction buffer, E6601), ELF97-alcohol (E6578), biotinylated calf intestinal 

alkaline phosphatase (CIAP, E.C. 3.1.3.1, Cat. No. 29339), AlexaFluor488 labeling kit 

(A20181), and hydrochloric acid (A144S) were acquired from Thermo Fisher Scientific. 

Tris-buffered saline with Tween (20X TBST, 281695) and Tris base (3715-A) were procured 

from Santa Cruz Biotechnology. 0.5 M Tris-HCl pH 6.8 was obtained from Teknova 

(T1568). Magnesium chloride hexahydrate (MgCl2·6H2O, 5580) was purchased from EMD 

Chemicals. Deionized water (18.2 MΩ) was obtained using an Ultrapure water system from 

Millipore. N-[3-[(3-Benzoylphenyl)-formamido]propyl]methacrylamide (BPMA) was 

custom synthesized by PharmAgra.

Fluorescent Protein Calibration.

All gels in this study were fabricated using an SU-8 mold with ~43 μm tall features 

measured with a surface profilometer (Sloan Dektak 3030). CIAP was labeled with 

AlexaFluor488 according to manufacturer’s instructions. Immediately prior to fabricating 

flat BPMA-PAAm gels (8%T, 3.3%C, 3 mM BPMA comonomer) without microwell 

features as described previously,44,45 fluorescently labeled CIAP (CIAP*) was added to gel 

precursor solutions in known concentrations. After fabrication, the gels were exposed to UV 

light using a collimated mercury lamp (~20 mW/cm2 at 365 nm, Optical Associates, Inc.) 

for 5 min and allowed to air-dry overnight. Fluorescence from the dry gels was measured 

with a laser microarray scanner (Genepix 4300A, Molecular Devices). Mean fluorescence 

intensity of select ~42 mm2 gel regions was used to construct a calibration curve (n = 25 

regions per concentration).
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Selective Protein Introduction.

BPMA-PAAm gels were fabricated as described, and stored in 1× TBST at 4 °C. Prior to use 

the gels were dried under a N2 stream, and mounted on gasket fixtures (AHC1 × 16, ArrayIt 

Inc.), creating 8 × 2 arrays of independent 42.3 ± 0.1 mm2 gel regions (Figure 1A). The gel 

regions were rehydrated in 1× TBST for ~20 min, followed by incubation with freshly 

prepared 250 nM solutions of CIAP or CIAP* in 1× TBST. After incubation for 2 h under a 

dark cover at room temperature (RT), the gasket fixtures were exposed to UV light as 

described above. After UV exposure, each gel region was rinsed with fresh 1× TBST 

followed by disassembly of the gasket fixtures. To remove unbound enzyme, the gels were 

washed overnight in 1× TBST at RT with mild agitation under a dark cover. To estimate 

concentration of CIAP in each gel region, CIAP*-containing gels were dried under a N2 

stream and mean fluorescence of each ~42 mm2 region was measured as described above (n 
= 12 gel regions). To investigate immobilization uniformity, we calculated coefficients of 

variation (CV) for all the pixels in each ~42 mm2 region. The mean CV for all regions was 

7.5 ± 1.3%, suggesting CIAP* is uniformly immobilized in each ~42 mm2 region. For 

kinetics experiments, the gels were dried under a N2 stream and remounted on the gasket 

fixtures. Each enzyme-containing gel region was rehydrated in 1× TBST at RT for ~20 min 

prior to use.

Immobilized Enzyme Kinetics Measurements.

To evaluate stability and kinetics parameters of CIAP immobilized in BPMA-PAAm gels, 

fluorescent emission at 448 ± 10 nm of DiFMU upon CIAP-catalyzed dephosphorylation of 

DiFMUP was measured at 20 s intervals for 3 min with 374 ± 4.5 nm excitation and orbital 

agitation (28.8 rpm) between measurements on a microplate reader (Tecan Infinite M200 

Pro). All kinetics measurements were conducted in pairs of adjacent gel regions at RT. 

Rehydrating 1× TBST was aspirated from the CIAP-containing gel while the gasket fixture 

was secured on the measurement stage of the instrument with double-sided tape. DiFMUP 

solutions, prepared in 100 mM Tris, 150 mM NaCl, 50 mM MgCl2, 0.1 mM ZnCl2 buffer 

titrated to pH 7.8 with HCl, were then added over the CIAP-containing gel regions prior to 

starting the measurements. To generate the fluorescent product calibration curve, 

fluorescence of DiFMU solutions prepared in the indicated buffer was measured in enzyme-

free gel regions (n = 7 solutions per concentration). Formation of fluorescent precipitates 

upon CIAP-catalyzed dephosphorylation of ELF97 was measured every 2 min with 500 ms 

exposures at 4 × 4 pixel binning through a 4× magnification objective (Olympus UPlanFLN, 

NA 0.13) on an Olympus IX71 inverted fluorescence microscope equipped with an Andor 

iXon + EMCCD camera, shuttered mercury lamp (X-Cite, Lumen Dynamics), and a DAPI 

long pass emission filter cube (Omega XF02–2). Solutions of ELF97 (250 μM) were 

prepared in manufacturer-provided reaction buffer and complemented with 5 μM ELF97-

alcohol. We reused the silicone gaskets on the gasket fixtures for selective protein loading 

and kinetics measurements. Critical to eliminating unwanted variability due to residual 

activity from CIAP retained on the silicone gaskets, we washed the gaskets in a 0.5 M Tris-

HCl pH 6.8, SDS (2% w/v), 2-mercaptoethanol (0.8% v/v) buffer at 55 °C for ~1 h44 prior to 

starting kinetics measurements (Figure S1).
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Estimates of Parameters and Uncertainties.

Existing functions in MATLAB R2015a were used to calculate calibration parameters, initial 

reaction rates, and Michaelis–Menten model parameters. Linear least-squares regression (y 
= mx + b) was used to generate calibration curves and to estimate initial reaction rates from 

kinetics measurements. For calibration, regressions were weighted according to the 

reciprocal of the variance (1/σ2) of replicate measurements at each concentration. Nonlinear 

least-squares regression of the Michaelis–Menten model (v([S]) =
Vmax[S]
Km + [S] ) to initial reaction 

rates measured at several [S] was used to estimate Km and Vmax. Two methods were used to 

estimate uncertainty in each parameter.

Conventional Method.

The regression functions return estimates of the fit parameters including 95% confidence 

intervals for each parameter of the form:

parameter estimate±t ⋅ Se (1)

where Se is the standard error in the fit parameter and t is the critical t-value for P > 0.05. 

Appropriate t-values were extracted from available tables46 to calculate Se for each fit 

parameter. For uncertainty in Km and Vmax, this method assumes negligible uncertainty in 

the product calibration data as Se only accounts for uncertainty in fitting the Michaelis–

Menten model to the initial reaction rate data.

Bootstrapping Method.

To propagate uncertainty in the product calibration data onto the final estimates Km, Vmax, 

and kcat, we adapted the bootstrapping method described by Jones et al.34,35 for calibration 

experiments. We implement the approach in three stages: (i) calibration correction, (ii) initial 

reaction rate calculation, and (iii) fitting the Michaelis–Menten model. Additional details are 

provided in the included Supporting Information.

Calibration Correction.

Bootstrap samples size-matched to the original calibration data set (n = 35) were generated 

from a pool of adjusted normalized residuals to the weighted linear regression fit by 

sampling with replacement. A new calibration curve was generated from each bootstrap 

sample of residuals, which produced distributions of calibration slope and intercept 

parameters. Each bootstrap calibration curve was applied to each point of the original 

kinetics measurements, producing a set of calibration-corrected kinetics data sets.

Initial Reaction Rate Calculation.

For each time point, bootstrap samples of calibration-corrected kinetics data were generated 

by sampling with replacement from the calibration-corrected kinetics data sets. The initial 

reaction rate for each bootstrap sample of calibration-corrected kinetics data was 

Neira and Herr Page 6

Anal Chem. Author manuscript; available in PMC 2018 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



determined, resulting in a distribution of initial reaction rate values for each set of original 

kinetics data sets.

Fitting the Michaelis–Menten Model.

Bootstrap samples size-matched to the original set of kinetics measurements (n = 64) were 

generated from a pool of adjusted normalized residuals to the mean initial reaction rate for 

each set of original kinetics measurements. The Michaelis–Menten model was fitted to each 

new set of initial reaction rates as a function of [S], generating distributions of Km and Vmax. 

The uncertainty in each term is reported as one standard deviation of the mean of each 

distribution.

RESULTS AND DISCUSSION

Measuring Kinetics of Enzymes Immobilized in Gels.

Immobilized enzymes follow the Michaelis–Menten model,16,17 which relates the initial rate 

of the enzyme-catalyzed reaction to the substrate concentration, [S]. The model parameters, 

Km and Vmax, are descriptors of enzymatic activity. Key assumptions must hold to ensure 

the validity of the Michaelis–Menten model during the course of kinetics measurements, 

namely: (i) the enzyme is stable and (ii) substrate concentration is at steady-state d S
dt ≈ 0 . 

However, even when these assumptions are met, the true (intrinsic) kinetics of an enzyme 

immobilized in a porous matrix may be obscured by partitioning behavior and mass 

transport limitations.16,17 In this study, we sought to measure the catalytic activity of 

enzymes immobilized in hydrogels that may be subject to both partitioning and mass 

transport limitations. Our system is an alkaline phosphatase, a well-characterized47–49 and 

important marker of stem cell pluripotency,50–52 immobilized in a polyacrylamide gel matrix 

(BPMA-PAAm) through benzophenone-mediated covalent attachment. We aimed to 

determine Km and kcat, which are independent of enzyme concentration, and thus directly 

comparable to in-solution controls. As kcat =
Vmax

ET
, estimating kcat requires measuring the 

in-gel enzyme concentration, [ET]. The modular measurement system reported here allows 

for (i) quantitation of immobilized enzyme concentration, (ii) validity assessment of 

Michaelis–Menten model assumptions, and (iii) evaluation of the effects of confounding 

factors on the observed kinetics, as detailed in the following sections.

Quantifying In-Gel Enzyme Concentration.

First, we developed a method to immobilize CIAP in independent regions (42.3 ± 0.1 mm2) 

of preformed BPMA-PAAm gels using a gasket fixture (Figure 1A and B). Upon exposure 

to UV light, the BPMA comonomer in the gel forms covalent C–C bonds with proteins 

through a hydrogen-abstraction and radical recombination process (Figure 1C).53,54 Every 

α-carbon on the polypeptide backbone is a suitable candidate for H-abstraction;53,54 thus, 

enzyme molecules are preferably immobilized in BPMA-PAAm gels through covalent bonds 

anywhere along the enzyme backbone (Figure 1C). As a result, the conformation of the 

enzyme may be affected upon immobilization, and the orientation of the catalytic sites 

relative to the support matrix was not controlled in our study. To verify that CIAP remained 
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catalytically active upon covalent attachment to the gel matrix, we immobilized 

fluorescently labeled CIAP (CIAP*) through a photomask with 1 mm2 slits (Figure 1D) and 

exposed the enzyme-containing gel to a precipitating substrate, ELF97. The normally 

soluble, nonfluorescent ELF97 substrate forms insoluble, fluorescent precipitates upon 

CIAP-catalyzed dephosphorylation.55 Co-localization of fluorescent ELF97 precipitates in 

the 1 mm2 gel regions containing CIAP* (Figure 1D) indicated the immobilized enzyme 

retained catalytic activity and that the reaction occurred in the gel. To quantify the amount of 

CIAP* immobilized in the gel by this method, we fabricated a set of BPMA-PAAm gels 

containing known amounts of CIAP*, and measured fluorescence as a function of [CIAP*] 

to generate a calibration curve (y = 4108.1x + 6547.0, R2 = 0.96). On the basis of the 

calibration results, the estimated [CIAP*] immobilized in each independent gel region was 

1.7 ± 0.2 nM. Since CIAP is a dimeric protein, the total concentration of catalytic sites 

immobilized in each gel region was 3.4 ± 0.4 nM. Direct and independent quantitation of 

immobilized CIAP overcomes some of the limitations of previous reports, which estimate 

the concentration of immobilized CIAP based on theoretical estimates of surface 

coverage47–49 or activity measurements assuming the immobilization process does not alter 

enzymatic activity.27 Furthermore, the effects of thermodynamic partitioning56 and covalent 

immobilization efficiency41,57,58 can be harnessed to tune the concentration of immobilized 

enzyme, [Cimmobilized] (Figure S2). As each enzyme-containing gel region is fluidically 

isolated, multiple [Cimmobilized] can be tested in parallel to determine the [Cimmobilized] range 

required to operate without confounding mass transport limitations.

Assessing Validity of Michaelis–Menten Model Assumptions.

As the Michaelis–Menten model is only valid if the enzyme remains stable through the 

measurement period, we sought to evaluate the stability of CIAP immobilized in BPMA-

PAAm gels. Losses in enzyme stability produce losses in catalytic activity and concomitant 

decreases in enzyme-catalyzed reaction rates.59 As the enzyme is covalently attached to the 

gel, we hypothesized that decreases in enzyme-catalyzed reaction rates are caused solely by 

losses in enzyme stability as opposed to enzyme losses. We based this assumption on our 

previous reports demonstrating that proteins can be immuno-detected in BPMA-PAAm gels 

even after exposure to high temperature (~55 °C),41,60 ionic detergents,41,60 reducing agents,
41,60 and strong acids.42 To evaluate the stability of CIAP covalently bound to BPMA-

PAAm gels, we cyclically exposed CIAP-containing gel regions to fresh 50 μM solutions of 

DiFMUP and monitored formation of fluorescent product for 3 min followed by a 10 min 

wash between measurement cycles. We compared the mean rates of fluorescent product 

formation across 12 cycles of exposure to the substrate using one-way ANOVA, which 

indicated the mean rates were statistically equivalent (P > 0.05) across cycles (Figure 1E). 

Consequently, we conclude that CIAP covalently attached to BPMA-PAAm gels is stable 

over the course of the single initial reaction rate measurements utilized for enzyme kinetics 

experiments. Further investigations of long-term (e.g., days, months) stability of enzymes 

immobilized in BPMA-PAAm gels are still required to determine the utility of this material 

for biosensor applications.

The second assumption for Michaelis-Menten model validity is that concentration of 

substrate remains approximately constant during the measurement period d S
dt ≈ 0 . To 
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evaluate this assumption, we characterized the linearity of the enzyme-catalyzed reaction 

with respect to time. Since, according to the Michaelis–Menten model, the initial rate of the 

enzyme-catalyzed reaction is directly proportional to the substrate concentration, departures 

from linearity could be indicative of substrate depletion d S
dt ≠ 0 , product inhibition, or 

both. We measured the rate of formation of fluorescent DiFMU upon CIAP-catalyzed 

dephosphorylation of DiFMUP, fitted a linear model to the kinetics data, and utilized the 

coefficient of determination (R2) as a metric of linearity. CIAP-catalyzed formation of 

fluorescent DiFMU exhibited linear behavior after an initial lag period with R2 ≥ 0.98 in 158 

of the 160 kinetics measurements conducted in this study (Figure 1F). Given the linearity of 

the rate of formation of DiFMU with respect to time, we conclude that the substrate steady-

state condition d S
dt ≈ 0  holds during the course of the measurements.

We observed lag periods (~40 s) considerably longer than the expected diffusion 

equilibration time for DiFMUP (Figure 1F). The estimated diffusion equilibration time of 

DiFMUP through the gel thickness (τ ≈ L2D−1) was ~18 s, where L is the height of the gel 

(43 μm) and D (10−6 cm2/s) is a conservative estimate of the diffusivity of DiFMUP based 

on reported values for small molecules (≤ 340 Da) in 9.5% T polyacrylamide gels.61 The 

discrepancy arises as the local concentration of DiFMUP in the gel simultaneously depends 

on the rate of diffusive transport from the bulk into the gel and the rate of substrate 

consumption due to the enzyme-catalyzed reaction. Therefore, the lag coincides with a 

transient period preceding a local steady-state in which the local concentration of DiFMUP 

in the gel reaches a constant value. As prescribed by the Michaelis–Menten model, the local 

rate of the enzyme-catalyzed reaction becomes constant when the local concentration of 

substrate in the gel also reaches a constant value. Meeting the local steady-state condition is 

contingent upon minimal changes in the bulk substrate concentration during the 

measurement period, which ensure the diffusive flux of substrate into the gel remains 

constant. Establishing a steady-state in the local substrate concentration in the gel, however, 

is not synonymous with a spatially uniform substrate concentration in the gel.16,17 As a 

result, the linearity of our experimental data indicates that the local substrate concentration 

is temporally invariant during the measurement but offers little information about the spatial 

distribution of substrate within the gel, as discussed next.

Evaluating Effects of Partitioning and Mass Transport Limitations on Observed Kinetics.

The true kinetics of the immobilized catalyst may be confounded by variation in the local, 

in-gel substrate concentration16,17 and in-gel pH.17,18 Partitioning, (external) diffusion of the 

substrate to the liquid-hydrogel interface, and (internal) diffusion of the substrate within the 

porous support may alter the effective concentration of substrate in contact with the 

immobilized enzyme.16–18 Partitioning in porous matrices occurs when enrichment of the 

solute in either the liquid or solid phase is thermodynamically favorable. Electrostatic 

interactions between solutes (i.e., substrate, hydrogen ions) and the porous support can drive 

partitioning to alter the local substrate concentration or pH.16–18 While fixed negative charge 

in polyacrylamide gels has been reported,62 the high ionic strength of the buffer in this study 

is expected to mitigate electrostatically driven partitioning of the substrate and/or hydrogen 

ions into the gel.16–18 Similarly, hydrophobic interactions may drive substrate partitioning, 
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causing the apparent (observed) Km to differ from the intrinsic Km of the immobilized 

enzyme.17,18 If necessary, intrinsic Km values could be estimated as the product of the 

apparent Km and the substrate partitioning coefficient, provided that accumulation of 

product in the support matrix and diffusional limitations are negligible.63

External diffusion limitations arise when the rate of the enzyme-catalyzed reaction at the 

surface of the porous matrix greatly exceeds the rate of transport of substrate to the surface.
16,17 In the absence of convective flow, external diffusion limitations produce a diffusion 

boundary layer of lower substrate concentration than the bulk. Coupling the gasket fixture 

with a microplate reader allowed us to make multiple kinetics measurements simultaneously, 

but prevented us from stirring the substrate solution above each ~42 mm2 gel region through 

conventional means (e.g., magnetic stir bars). Instead, we used the orbital shaking function 

of the instrument to agitate the gasket fixture between consecutive measurements to prevent 

formation of diffusion boundary layers, and thus mitigate external diffusion limitations on 

the observed kinetics. Therefore, we assume external diffusion limitations are negligible and 

focus our analysis on the effect of internal diffusion on the observed kinetics.

Internal diffusion limitations arise when the rate of diffusive transport of substrate in the 

solid is significantly slower than the rate of the enzyme-catalyzed reaction.16,17 As a result, 

the immobilized catalyst may be exposed to varying concentrations of substrate depending 

on its location within the support material. Thus, the local rate of the enzyme-catalyzed 

reaction may vary throughout the solid support. Since direct measurements of the local rate 

of the enzyme-catalyzed reaction are impractical, aggregate (global) rates are employed to 

study the kinetics of immobilized enzymes. In the presence of internal diffusion limitations, 

however, the global rate measurements may underestimate the true catalytic potential of the 

immobilized enzyme. kcat values derived from experimental data subject to internal diffusion 

limitations fail to capture the intrinsic activity of the immobilized enzyme, and thus are not 

comparable to other systems or to in-solution experiments.

To evaluate the presence and severity of internal diffusion limitations on global reaction rate 

measurements, we employed Weisz’s modulus (Φ).64,65 The dimensionless number Φ is 

estimated from measurable quantities relating the rate of the reaction to the rate of diffusive 

transport of the substrate in the solid support.64,65 Roberts et al.66 found that for reactions 

following the Michaelis–Menten model and occurring in slab-shaped solid supports, Φ could 

be defined as

Φ =
L2vobs
DSo

(2)

where L is the characteristic length, vobs is the global reaction rate measured at bulk 

substrate concentration So, and D is the diffusivity of the substrate in the support matrix. 

Internal diffusion limitations are considered negligible when Φ < 0.15, indicating the system 

operates in a reaction-limited regime and the in-gel substrate concentration is spatially 

uniform.64,66 Substituting L and D values mentioned above and mean vobs for each 

concentration tested, we obtained Φ ≪ 0.15. Consequently, we conclude that limitations 
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imposed by partitioning, external diffusion, and internal diffusion do not result in spatial 

variation in local reaction rates, allowing us to isolate the effect of benzophenone-mediated 

immobilization on the apparent enzyme–substrate affinity (Km) and intrinsic catalytic 

activity (kcat) of CIAP. While intrinsic kcat cannot be determined directly if Φ > 0.15, 

effectiveness factor analysis can be utilized to estimate intrinsic values.18,64 Once intrinsic 

kcat and apparent Km values are determined, vobs can be estimated from the Michaelis–

Menten model for different enzyme concentrations, and L values optimized to meet a 

threshold Φ condition. The optimization approach described above is equivalent to diffusion 

distance reduction and enzyme loading minimization strategies common to small particle 

systems.14–16 However, studying enzymes immobilized in adherent films eliminates particle 

damage from aggressive stirring67 and facilitates integration with confocal microcopy 

methods.68–70 The latter is the subject of future work to study the spatial distribution of 

enzyme, substrate, or pH in the support matrix. Taken together, we offer a quantitative 

framework to characterize the kinetics of immobilized enzymes and subsequently guide 

rational design choices (e.g., enzyme loading, geometry) for immobilized-enzyme devices.

Kinetics of Immobilized Calf Intestinal Alkaline Phosphatase.

We next scrutinized the kinetics of CIAP-catalyzed dephosphorylation of DiFMUP in the 

hydrogel reactor. To estimate apparent Km and intrinsic kcat for CIAP immobilized in 

BPMA-PAAm gels, we exposed individual gel regions to DiFMUP solutions (2.5–50 μM) 

and measured formation of fluorescent product with respect to time. Subsequently, we fitted 

the Michaelis–Menten model to the initial reaction rate data to extract estimates of Km, 

Vmax, and kcat (Table 1). We completed a control experiment for CIAP in solution to 

compare the kinetics of the immobilized enzyme relative to the free enzyme (Figure S3). 

Upon benzophenone-mediated attachment of CIAP in thin BPMA-PAAm gel films, we 

observed a ~2× increase in the apparent Km relative to CIAP in solution, which suggests 

lower affinity of the immobilized CIAP for DiFMUP. Similarly, the ~200× decrease in 

intrinsic kcat relative to CIAP in solution suggests that immobilization of CIAP in BPMA-

PAAm gels reduces catalytic activity. The losses in enzyme–substrate affinity and enzymatic 

activity are consistent with previous studies of alkaline phosphatase immobilized on surfaces 

via biotin–streptavidin linkers relative to free solution measurements.47–49 However, direct 

comparisons are confounded by differences in immobilization methods and differences 

between the catalytic activity of enzymes bound to a surface as opposed to a porous matrix. 

We hypothesize that the losses in apparent enzyme–substrate affinity and intrinsic catalytic 

activity upon immobilization in BPMA-PAAm gels result from random orientation of the 

catalytic sites relative to the solid supports,20 changes in enzyme conformation and 

molecular mobility,21 and local microenvironment conditions.19 Next, we explore a 

computational method to estimate the uncertainty in the reported Km, Vmax, and kcat.

Bootstrapping Method for Error Propagation.

We were interested in understanding the effect of calibration error on the final uncertainty 

estimates of Km, Vmax, and kcat values. However, to our knowledge, analytical solutions to 

propagate calibration error onto the final estimates of Michaelis–Menten parameters have 

not been published, and our attempts at deriving analytical solutions quickly became 

intractable. Since propagation of uncertainty through multiple data manipulation steps is not 
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unique to enzyme kinetics studies, we sought to develop a generalizable error propagation 

approach. As a result, we developed a computational approach for error propagation based 

on bootstrapping, which is independent of the mathematical model used to describe the data, 

and thus applicable beyond the Michaelis–Menten model.

We implemented our approach in three stages as illustrated for immobilized enzyme kinetics 

measurements in Figure 2. Equivalent analysis for in-solution control experiments is 

provided in Figure S3. First, we created a fluorescent product calibration curve (Figure 2A) 

and used bootstrapping to obtain distributions of calibration slope and intercept parameters 

(Figure 2B and C). The standard error in the calibration slope and intercept terms were 

± 104 AFU/μM and ± 48.9 AFU, respectively. The bootstrap estimates of uncertainty in the 

calibration parameters were ≤ 10% higher than the standard errors calculated from the 

conventional method (Experimental Section). Next, we applied the bootstrap calibration 

parameter estimates to the raw kinetics data to generate calibration-corrected kinetics data 

sets. We bootstrapped from each calibration-corrected kinetics data set to generate a 

distribution of initial reaction rates for each of the original kinetics data sets (representative 

data in Figure 2D and E). In the last stage, we bootstrapped from the distributions of initial 

reaction rates and fitted the Michaelis–Menten model to each bootstrap sample, producing 

distributions of Km and Vmax (Figure 2F–H). We calculated the standard error in Km and 

Vmax estimates as the standard deviation of the corresponding distribution (Table 1).

For comparison, we estimated uncertainty in Km and Vmax using the conventional method, 

which assumes negligible error in the product calibration data. The uncertainties in Km and 

Vmax calculated from the bootstrap method were ~4× lower than the standard errors 

calculated with the conventional method (Table 1). We hypothesized that neglecting the error 

in the product calibration data is acceptable in instances for which the conventional method 

yields more conservative estimates of the uncertainty in each parameter. To test this 

hypothesis, we simulated increased variability in the original product calibration data, 

generated new estimates of Km and Vmax, and compared the respective parameter 

uncertainties estimated from the conventional and bootstrap methods. To simulate increased 

variability in the original product calibration data, we adjusted the residuals from the mean 

for each concentration in the calibration by a constant factor, and adjusted each observed 

value by its equivalent adjusted residual. The procedure above did not affect the estimated 

calibration slope or intercept, resulting in approximately constant estimates of the 

uncertainty in Km and Vmax with the conventional method (Figure 3). However, the 

increased variability in the product calibration data resulted in increased root-mean-square 

error normalized by the mean of all observations in the calibration curve (NRMSE). We 

propagated the increased variability in the product calibration curve onto the final 

uncertainty estimates in Km and Vmax with the bootstrap method. The results indicated that 

the uncertainty in Km and Vmax obtained from our bootstrapping approach scaled 

proportionally with NRMSE, but at different rates (Figure 3). We conclude that error in the 

product calibration data is only negligible for NRMSE ≤ 0.05%, when the conventional 

method yields more conservative estimates of the uncertainty in both Km and Vmax. In the 

0.05% ≤ NMRSE ≤ 0.06% regime, our bootstrap method provides a more conservative 

estimate of the uncertainty in Km, while underestimating the uncertainty in Vmax by ≤ 1% 

relative to the conventional method (Figure 3). As a result, we conclude that error in the 
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product calibration data is non-negligible when NRMSE > 0.05%, and thus recommend the 

bootstrapping approach to propagate error in the product calibration data onto the final Km 

and Vmax estimates.

CONCLUSIONS

We report on a measurement tool to characterize kinetics of enzymes immobilized in porous 

film arrays. To investigate the effect of immobilization of CIAP in BPMA-PAAm gels, we 

measured the concentration of CIAP immobilized in the gel, assessed the validity of 

Michaelis–Menten model assumptions in our system, and employed a quantitative 

framework to evaluate the presence of confounding mass transfer limitations. In the absence 

of mass transfer limitations, we observed ~2× and ~200× losses in the apparent enzyme 

substrate affinity (Km) and intrinsic catalytic activity (kcat) of immobilized CIAP, 

respectively, relative to in-solution measurements. We hypothesize that the changes in the 

apparent Km and the intrinsic kcat of immobilized CIAP arise from immobilization-induced 

changes in enzyme conformation and molecular mobility,21 as well as hindered access to 

catalytic sites.20 These hypotheses are subject to further study with the density of the gel 

matrix, length of the immobilization linker, concentration of the immobilization monomer, 

and substrate molecular mass as possible experimental variables. The light-activated BPMA-

PAAm immobilization mechanism offers precise spatial control over the distribution of 

immobilized enzyme in the gel, which may be attractive for some biosensor applications. 

However, the substantial decrease in intrinsic catalytic activity of CIAP upon immobilization 

in BPMA-PAAm gels suggests limited utility of this material to study native activity of 

enzymes from cells and/or for industrial applications. Furthermore, the effects of 

immobilization are expected to be enzyme–substrate pair specific, warranting investigation 

of the performance of BPMA-PAAm gels for immobilization of enzymes with important 

diagnostic, industrial, and analytical chemistry applications (e.g., glucose oxidase, 

heparinase, trypsin). Some enzymes may retain a higher fraction of the in-solution activity 

upon immobilization in BPMA-PAAm gels, which may require measurements at multiple 

enzyme concentrations to mitigate formation of substrate gradients. For laboratory-scale 

production of peptide fragments,71 our modular system would ease the purification of 

reaction products because the enzyme catalyst remains immobilized in the hydrogel. 

Moreover, the modular measurement tool presented can be utilized to study other porous 

immobilization supports so long as the material allows for fabrication of adherent films. We 

also present a computational approach to propagate calibration uncertainty onto final 

estimates of enzyme kinetics parameters, which can be readily modified to accommodate 

mathematical models beyond Michaelis–Menten kinetics. Taken together, our measurement 

system and error propagation methods offer generalizable tools with various applications in 

clinical diagnostics, bioprocessing, and analytical chemistry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Measuring kinetics of enzymes immobilized in thin hydrogel film arrays. (A) Photograph of 

gasket fixture defining an array of ~42 mm2 gel regions mounted on a microplate reader 

stage. (B) Cross-sectional schematic of a single gel region containing covalently 

immobilized enzyme fluidically isolated from adjacent regions by the gasket fixture. During 

the immobilization process, the gasket fixture holds a concentrated enzyme solution. After 

immobilization, the gasket fixture is reassembled and filled with substrate solution for 

kinetics measurements. (C) Enzymes are immobilized in BPMA-PAAm gels through the N-

[3-[(3-benzoylphenyl)-formamido]propyl]methacrylamide (BPMA) comonomer upon 

exposure to UV light. (D) Inverted fluorescence micrographs illustrate colocalization of 

fluorescent product of enzyme-catalyzed dephosphorylation of ELF97 substrate with regions 

of gel containing fluorescently labeled immobilized CIAP (scale bar = 0.5 mm). (E) CIAP 

covalently immobilized in BPMA-PAAm gels retains catalytic activity through multiple 

cycles of exposure to fresh DiFMUP (50 μM) substrate solutions, indicating the immobilized 

CIAP is stable through enzyme kinetics measurements. Error bars indicate one standard 

deviation of mean initial reaction rate measurements (n = 8 initial reaction rate 

measurements per cycle). (F) Following an initial lag period, CIAP-catalyzed 

dephosphorylation of DiFMUP is linear (R2 > 0.99), which is consistent with the steady-

state assumption of the Michaelis-Menten model.
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Figure 2. 
Bootstrapping method to propagate calibration error onto final uncertainty estimates of 

Michaelis–Menten model parameters. (A) Product calibration curve (black line) constructed 

from mean calibration slope and intercept of bootstrap samples overlaid with all possible 

calibration curves from bootstrap procedure (gray lines) and means of original calibration 

data (◊, n = 7 per concentration). (B, C) Distributions of product calibration parameters from 

bootstrap procedure. (D) Representative calibration-corrected kinetics data sets from gel 

regions exposed to (Δ) 2.5, (×) 5, and (■) 10 μM DiFMUP solutions overlaid with all 
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possible linear fits from bootstrap calibration-corrected kinetics data sets yielded 

distributions of initial reaction rates (E) extracted from the slope term of the linear fits from 

all bootstrap calibration-corrected kinetics data sets. (F) Michaelis–Menten curve (black 

line) constructed from mean Km and Vmax parameters from all initial reaction rate bootstrap 

samples overlaid with all Michaelis–Menten curves from bootstrap procedure (gray lines) 

and mean initial reaction rates (O, n = 8 initial reaction rate measurements per 

concentration). (G, H) Distributions of Michaelis–Menten model parameters from bootstrap 

procedure. All error bars represent one standard deviation of the mean.
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Figure 3. 
Uncertainty in Michaelis–Menten model parameters scales proportionally with the 

normalized root-mean-square error (NRMSE) of the product calibration data. Estimates of 

uncertainty in Km (▲) and Vmax (•) obtained from the conventional method (solid lines) are 

more conservative than uncertainty estimates produced from generalizable bootstrapping 

approach (dashed lines) for NRMSE ≤ 0.05%, suggesting the uncertainty in the product 

calibration is negligible in that regime.
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