Figure 6.
Two example cases with good and bad performance from the validation set at the end of the shape space learning (1. training phase) and their interpolation at different tImaging → Treatment∈[0, 5] values. The first row shows an axial slice of an accurate reconstruction of core at 0h as well as of the penumbra, and as a consequence the non-linear interpolation of both gives a reliable estimation of the true follow-up lesion at its actual tImaging → Treatment value (outlined in purple). The second row shows a case where the temporal progression of the stroke is different, such that the final lesion was much smaller than a interpolation between core and penumbra would suggest.