Abstract
Human serum albumin (HSA) inhibits endothelial apoptosis in a highly specific manner. CNBr fragmentation greatly increases the effectiveness of this activity, suggesting that this type of protection is mediated by a partially cryptic albumin domain which is transiently exposed by intramolecular movement. Advanced glycation end-product (AGE) formation in HSA greatly reduces its intra-molecular movement. This study aimed to determine if this inhibits the anti-apoptotic activity of HSA, and if such inactivation could be reversed by CNBr fragmentation. HSA-AGE was prepared by incubating HSA with glucose, and assessed using the fructosamine assay, mass spectrometry, SDS-PAGE and fluorometry. Low levels of AGE in the HSA had little effect upon its anti-apoptotic activity, but when the levels of AGE were high and the intra-molecular movement was reduced, endothelial cell survival was also found to be reduced to levels equivalent to those in cultures without HSA or serum (p > 0.001). Survival was restored by the inclusion of native HSA, despite the presence of HSA with high levels of AGE. Also, CNBr fragmentation of otherwise inactive HSA-AGE restored the anti-apoptotic activity for endothelium. Apoptosis was confirmed by DNA gel electrophoresis, transmission electron microscopy and fluorescence-activated cell sorting analysis, and there was no evidence for direct toxicity in the HSA-AGE preparations. The results are consistent with the proposed role of intra-molecular movement in exposing the anti-apoptotic domain in HSA for endothelium. The levels of AGE formation required to inhibit the anti-apoptotic activity of HSA exceeded those reported for diabetes. Nonetheless, the data from this study seems to be the first example of reduced protein function due to AGE-restricted intra-molecular movement.
Key words: Apoptosis, Cryptic domain, Endothelium, HSA, HSA-AGE
Full Text
The Full Text of this article is available as a PDF (3.6 MB).
Abbreviations used
- AGE
advanced glycation end product
- HSA
human serum albumin
- HUVEC
human umbilical vein endothelial cells
- PBS
phosphate-buffered saline
- SCS
supplemented calf serum
References
- 1.Araki S., Shimada Y., Kaji K., Hayashi H. Role of protein kinase C in the inhibition by fibroblast growth factor of apoptosis in serum-deprived endothelial cells. Biochem. Biophys. Res. Commun. 1990;172:1081–1085. doi: 10.1016/0006-291X(90)91557-9. [DOI] [PubMed] [Google Scholar]
- 2.Zoellner H., Hou J.Y., Lovery M., Kingham J., Srivastava M., Bielek E., Vanyek E., Binder B.R. Inhibition of microvascular endothelial apoptosis in tissue explants by serum albumin. Microvasc. Res. 1999;57:162–173. doi: 10.1006/mvre.1998.2126. [DOI] [PubMed] [Google Scholar]
- 3.Zoellner H., Hofler M., Beckmann R., Hufnagl P., Vanyek E., Bielek E., Wojta J., Fabry A., Lockie S., Binder B.R. Serum albumin is a specific inhibitor of apoptosis in human endothelial cells. J. Cell Sci. 1996;109:2571–2580. doi: 10.1242/jcs.109.10.2571. [DOI] [PubMed] [Google Scholar]
- 4.Bolitho C., Bayl P., Hou J.Y., Lynch G., Hassel A.J., Wall A.J., Zoellner H. The anti-apoptotic activity of albumin for endothelium is mediated by a partially cryptic protein domain and reduced by inhibitors of G-coupled protein and PI-3 kinase, but is independent of radical scavenging or bound lipid. J. Vasc. Res. 2007;44:313–324. doi: 10.1159/000101777. [DOI] [PubMed] [Google Scholar]
- 5.Djousse L., Rothman K.J., Cupples L.A., Levy D., Ellison R.C. Serum albumin and risk of myocardial infarction and all-cause mortality in the Framingham Offspring Study. Circulation. 2002;106:2919–2924. doi: 10.1161/01.CIR.0000042673.07632.76. [DOI] [PubMed] [Google Scholar]
- 6.Schillinger M., Exner M., Mlekusch W., Amighi J., Sabeti S., Schlager O., Wagner O., Minar E. Serum albumin predicts cardiac adverse events in patients with advanced atherosclerosis — interrelation with traditional cardiovascular risk factors. Thromb. Haemost. 2004;91:610–618. doi: 10.1160/TH03-08-0504. [DOI] [PubMed] [Google Scholar]
- 7.Peters T. All about albumin–biochemistry, genetics and medical applications. San Diego: Academic Press; 1996. [Google Scholar]
- 8.Zoellner H., Hou J.Y., Hochgrebe T., Poljak A., Duncan M.W., Golding J., Henderson T., Lynch G. Fluorometric and mass spectrometric analysis of nonenzymatic glycosylated albumin. Biochem. Biophys. Res. Commun. 2001;284:83–89. doi: 10.1006/bbrc.2001.4924. [DOI] [PubMed] [Google Scholar]
- 9.Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann. Intern. Med. 1984;101:527–537. doi: 10.7326/0003-4819-101-4-527. [DOI] [PubMed] [Google Scholar]
- 10.John W.G., Lamb E.J. The Maillard or browning reaction in diabetes. Eye. 1993;7:230–237. doi: 10.1038/eye.1993.55. [DOI] [PubMed] [Google Scholar]
- 11.Drickamer K. Diabetes: Breaking the curse of the AGEs. Nature. 1996;382:211–212. doi: 10.1038/382211a0. [DOI] [PubMed] [Google Scholar]
- 12.Lee A.T., Cerami A. Role of glycation in aging. Ann. N. Y. Acad. Sci. 1992;663:63–70. doi: 10.1111/j.1749-6632.1992.tb38649.x. [DOI] [PubMed] [Google Scholar]
- 13.Ahmed M.U., Thorpe S.R., Baynes J.W. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J. Biol. Chem. 1986;261:4889–4894. [PubMed] [Google Scholar]
- 14.Wolff S.P., Jiang Z.Y., Hunt J.V. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic. Biol. Med. 1991;10:339–352. doi: 10.1016/0891-5849(91)90040-A. [DOI] [PubMed] [Google Scholar]
- 15.Johnson R.N., Metcalf P.A., Baker J.R. Fructosamine: a new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clin. Chim. Acta. 1983;127:87–95. doi: 10.1016/0009-8981(83)90078-5. [DOI] [PubMed] [Google Scholar]
- 16.Emmanuel C., Foo E., Medbury H., Matthews J., Comis A., Zoellner H. Synergistic induction of apoptosis in human endothelial cells by tumor necrosis factor-α and transforming growth factor-β. Cytokine. 2002;18:237–241. doi: 10.1006/cyto.2002.1042. [DOI] [PubMed] [Google Scholar]
- 17.Smith C.A., Williams G.T., Kingston R., Jenkinson E.J., Owen J.J. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T-cells in thymic cultures. Nature. 1989;337:181–184. doi: 10.1038/337181a0. [DOI] [PubMed] [Google Scholar]
- 18.Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M.A., Lassota P., Traganos F. Features of apoptotic cells measured by flow cytometry. Cytometry. 1992;13:795–808. doi: 10.1002/cyto.990130802. [DOI] [PubMed] [Google Scholar]
- 19.Gerschenson L.E., Rotello R.J. Apoptosis: a different type of cell death. FASEB J. 1992;6:2450–2455. doi: 10.1096/fasebj.6.7.1563596. [DOI] [PubMed] [Google Scholar]
- 20.Raff M.C., Barres B.A., Burne J.F., Coles H.S., Ishizaki Y., Jacobson M.D. Programmed cell death and the control of cell survival: lessons from the nervous system. Science. 1993;262:695–700. doi: 10.1126/science.8235590. [DOI] [PubMed] [Google Scholar]
- 21.Kumar V., Abbas A.K., Fausto N. Robbins and Cotran Pathologic Basis of Disease. Philadelphia: W.B. Saunders Co.; 2004. [Google Scholar]
- 22.Zoellner H., Bielek E., Vanyek E., Fabry A., Wojta J., Hofler M., Binder B.R. Canalicular fragmentation of apoptotic human endothelial cells. Endothelium. 1996;4:177–188. doi: 10.3109/10623329609024694. [DOI] [Google Scholar]
- 23.Xu W., Boadle R., Dear L., Cvejic M., Emmanuel C., Zoellner H. Ultrastructural changes in endothelium during apoptosis indicate low microembolic potential. J. Vasc. Res. 2005;42:377–387. doi: 10.1159/000087213. [DOI] [PubMed] [Google Scholar]
- 24.Chibber R., Molinatti P.A., Rosatto N., Lambourne B., Kohner E.M. Toxic action of advanced glycation end products on cultured retinal capillary pericytes and endothelial cells: relevance to diabetic retinopathy. Diabetologia. 1997;40:156–164. doi: 10.1007/s001250050657. [DOI] [PubMed] [Google Scholar]
- 25.Min C., Kang E., Yu S., Shinn S., Kim Y. Advanced glycation end products induce apoptosis and procoagulant activity in cultured human umbilical vein endothelial cells. Diabetes Res. Clin. Pract. 1999;46:197–202. doi: 10.1016/S0168-8227(99)00094-7. [DOI] [PubMed] [Google Scholar]
- 26.Kowluru R.A. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions. Life Sci. 2005;76:1051–1060. doi: 10.1016/j.lfs.2004.10.017. [DOI] [PubMed] [Google Scholar]
- 27.Xiang M., Yang M., Zhou C., Liu J., Li W., Qian Z. Crocetin prevents AGEs-induced vascular endothelial cell apoptosis. Pharmacol. Res. 2006;54:268–274. doi: 10.1016/j.phrs.2006.06.010. [DOI] [PubMed] [Google Scholar]
- 28.Stefani M. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world. Biochim. Biophys. Acta. 2004;1739:5–25. doi: 10.1016/j.bbadis.2004.08.004. [DOI] [PubMed] [Google Scholar]
- 29.Cantara S., Ziche M., Donnini S. Opposite effects of beta amyloid on endothelial cell survival: role of fibroblast growth factor-2 (FGF-2) Pharmacol. Rep. 2005;57(Suppl):138–143. [PubMed] [Google Scholar]
- 30.Cecchi C., Pensalfini A., Baglioni S., Fiorillo C., Caporale R., Formigli L., Liguri G., Stefani M. Differing molecular mechanisms appear to underlie early toxicity of prefibrillar HypF-N aggregates to different cell types. FEBS J. 2006;273:2206–2222. doi: 10.1111/j.1742-4658.2006.05234.x. [DOI] [PubMed] [Google Scholar]
- 31.Bouma B., Kroon-Batenburg L.M., Wu Y.P., Brunjes B., Posthuma G., Kranenburg O., de Groot P.G., Voest E.E., Gebbink M.F. Glycation induces formation of amyloid cross-beta structure in albumin. J. Biol. Chem. 2003;278:41810–41819. doi: 10.1074/jbc.M303925200. [DOI] [PubMed] [Google Scholar]
- 32.Rondeau P., Singh N.R., Caillens H., Tallet F., Bourdon E. Oxidative stress induced by glycoxidized human or bovine serum albumin on human monocytes. Free Radic. Biol. Med. 2008;45:799–812. doi: 10.1016/j.freeradbiomed.2008.06.004. [DOI] [PubMed] [Google Scholar]
- 33.Hunt J.V., Bottoms M.A., Mitchinson M.J. Oxidative alterations in experimental glycation model of diabetes mellitus are due to protein-glucose adduct oxidation. Some fundamental differences in proposed mechanisms of glucose oxidation and oxidant production. Biochem. J. 1993;291:529–535. doi: 10.1042/bj2910529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Darby I.A., Bisucci T., Hewitson T.D., MacLellan D.G. Apoptosis is increased in a model of diabetes-impaired wound healing in genetically diabetic mice. Int. J. Biochem. Cell Biol. 1997;29:191–200. doi: 10.1016/S1357-2725(96)00131-8. [DOI] [PubMed] [Google Scholar]
- 35.Mizutani M., Kern T.S., Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J. Clin. Invest. 1996;97:2883–2890. doi: 10.1172/JCI118746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Thornalley P.J., Argirova M., Ahmed N., Mann V.M., Argirov O., Dawnay A. Mass spectrometric monitoring of albumin in uremia. Kidney Int. 2000;58:2228–2234. doi: 10.1111/j.1523-1755.2000.00398.x. [DOI] [PubMed] [Google Scholar]