Abstract
Secretory phospholipases A2 (sPLA2s) are a diverse family of low molecular mass enzymes (13–18 kDa) that hydrolyze the sn-2 fatty acid ester bond of glycerophospholipids to produce free fatty acids and lysophospholipids. We have previously shown that group X sPLA2 (sPLA2-X) had a strong hydrolyzing activity toward phosphatidylcholine in low-density lipoprotein (LDL) linked to the formation of lipid droplets in the cytoplasm of macrophages. Here, we show that group V sPLA2 (sPLA2-V) can also cause the lipolysis of LDL, but its action differs remarkably from that of sPLA2-X in several respects. Although sPLA2-V released almost the same amount of fatty acids from LDL, it released more linoleic acid and less arachidonic acid than sPLA2-X. In addition, the requirement of Ca2+ for the lipolysis of LDL was about 10-fold higher for sPLA2-V than sPLA2-X. In fact, the release of fatty acids from human serum was hardly detectable upon incubation with sPLA2-V in the presence of sodium citrate, which contrasted with the potent response to sPLA2-X. Moreover, sPLA2-X, but not sPLA2-V, was found to specifically interact with LDL among the serum proteins, as assessed by gel-filtration chromatography as well as sandwich enzyme-immunosorbent assay using anti-sPLA2-X and anti-apoB antibodies. Surface plasmon resonance studies have revealed that sPLA2-X can bind to LDL with high-affinity (Kd = 3.1 nM) in the presence of Ca2+. Selective interaction of sPLA2-X with LDL might be involved in the efficient hydrolysis of cell surface or intracellular phospholipids during foam cell formation.
Key words: Secretory phospholipase A2, Low-density lipoprotein, High-density lipoprotein, Phospholipids, Calcium ion
Full Text
The Full Text of this article is available as a PDF (447.0 KB).
Abbreviations used
- Ab
antibody
- apoB
apolipoprotein B
- BSA
bovine serum albumin
- COX
cyclooxygenase
- FCS
fetal calf serum
- HDL
high density lipoprotein
- HPLC
high-performance liquid chromatography
- LDL
low density lipoprotein
- lysoPC
lysophosphatidylcholine
- PBS
phosphate-buffered saline
- PC
phosphatidylcholine
- PLA2
phospholipase A2
- SDS-PAGE
SDS-polyacrylamide gel electrophoresis
- sPLA2
secretory PLA2
- sPLA2-IB
group IB sPLA2
- sPLA2-IIA
group IIA sPLA2
- sPLA2-V
group V sPLA2
- sPLA2-X
group X sPLA2
References
- 1.Vadas P., Pruzanski W. Role of secretory phospholipases A2 in the pathobiology of disease. Lab. Invest. 1986;55:391–404. [PubMed] [Google Scholar]
- 2.Arita H., Nakano T., Hanasaki K. Thromboxane A2: its generation and role in platelet activation. Prog. Lipid Res. 1989;28:273–301. doi: 10.1016/0163-7827(89)90002-7. [DOI] [PubMed] [Google Scholar]
- 3.Balsinde J., Balboa M.A., Insel P.A., Dennis E.A. Regulation and inhibition of phospholipase A2. Annu. Rev. Pharmacol. Toxicol. 1999;39:175–189. doi: 10.1146/annurev.pharmtox.39.1.175. [DOI] [PubMed] [Google Scholar]
- 4.Six D.A., Dennis E.A. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim. Biophys. Acta. 2000;1488:1–19. doi: 10.1016/s1388-1981(00)00105-0. [DOI] [PubMed] [Google Scholar]
- 5.Lambeau G., Lazdunski M. Receptors for a growing family of secreted phospholipases A2. Trends Pharmacol. Sci. 1999;20:162–170. doi: 10.1016/S0165-6147(99)01300-0. [DOI] [PubMed] [Google Scholar]
- 6.Ishizaki J., Suzuki N., Higashino K., Yokota Y., Ono T., Kawamoto K., Fujii N., Arita H., Hanasaki K. Cloning and characterization of novel mouse and human secretory phospholipase A(2)s. J. Biol. Chem. 1999;274:24973–24979. doi: 10.1074/jbc.274.35.24973. [DOI] [PubMed] [Google Scholar]
- 7.Suzuki N., Ishizaki J., Yokota Y., Higashino K., Ono T., Ikeda M., Fujii N., Kawamoto K., Hanasaki K. Structures, enzymatic properties, and expression of novel human and mouse secretory phospholipase A(2)s. J. Biol. Chem. 2000;275:5785–5793. doi: 10.1074/jbc.275.8.5785. [DOI] [PubMed] [Google Scholar]
- 8.Gelb M.H., Valentin E., Ghomashchi F., Lazdunski M., Lambeau G. Cloning and recombinant expression of a structurally novel human secreted phospholipase A2. J. Biol. Chem. 2000;275:39823–39826. doi: 10.1074/jbc.C000671200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.de Haas G.H., Postema N.M., Nieuwenhuizen W., van Deenen L.L. Purification and properties of an anionic zymogen of phospholipase A from porcine pancreas. Biochim. Biophys. Acta. 1968;159:118–129. doi: 10.1016/0005-2744(68)90249-0. [DOI] [PubMed] [Google Scholar]
- 10.Arita H., Hanasaki K., Nakano T., Oka S., Teraoka H., Matsumoto K. Novel proliferative effect of phospholipase A2 in Swiss 3T3 cells via specific binding site. J. Biol. Chem. 1991;266:19139–19141. [PubMed] [Google Scholar]
- 11.Hanasaki K., Arita H. Characterization of a high affinity binding site for pancreatic-type phospholipase A2 in the rat. Its cellular and tissue distribution. J. Biol. Chem. 1992;267:6414–6420. [PubMed] [Google Scholar]
- 12.Ishizaki J., Hanasaki K., Higashino K., Kishino J., Kikuchi N., Ohara O., Arita H. Molecular cloning of pancreatic group I phospholipase A2 receptor. J. Biol. Chem. 1994;269:5897–5904. [PubMed] [Google Scholar]
- 13.Ohara O., Ishizaki J., Arita H. Structure and function of phospholipase A2 receptor. Prog. Lipid Res. 1995;34:117–138. doi: 10.1016/0163-7827(94)00009-B. [DOI] [PubMed] [Google Scholar]
- 14.Gronroos J.M., Nevalainen T.J. Increased concentrations of synovialtype phospholipase A2 in serum and pulmonary and renal complications in acute pancreatitis. Digestion. 1992;52:232–236. doi: 10.1159/000200958. [DOI] [PubMed] [Google Scholar]
- 15.Green J.A., Smith G.M., Buchta R., Lee R., Ho K.Y., Rajkovic I.A., Scott K.F. Circulating phospholipase A2 activity associated with sepsis and septic shock is indistinguishable from that associated with rheumatoid arthritis. Inflammation. 1991;15:355–367. doi: 10.1007/BF00917352. [DOI] [PubMed] [Google Scholar]
- 16.Elinder L.S., Dumitrescu A., Larsson P., Hedin U., Frostegard J., Claesson H.E. Expression of phospholipase A2 isoforms in human normal and atherosclerotic arterial wall. Arterioscler. Thromb. Vasc. Biol. 1997;17:2257–2263. doi: 10.1161/01.ATV.17.10.2257. [DOI] [PubMed] [Google Scholar]
- 17.Romano M., Romano E., Bjorkerud S., Hurt-Camejo E. Ultrastructural localization of secretory type II phospholipase A2 in atherosclerotic and nonatherosclerotic regions of human arteries. Arterioscler. Thromb. Vasc. Biol. 1998;18:519–525. doi: 10.1161/01.ATV.18.4.519. [DOI] [PubMed] [Google Scholar]
- 18.Schiering A., Menschikowski M., Mueller E., Jaross W. Analysis of secretory group II phospholipase A2 expression in human aortic tissue in dependence on the degree of atherosclerosis. Atherosclerosis. 1999;144:73–78. doi: 10.1016/S0021-9150(99)00045-3. [DOI] [PubMed] [Google Scholar]
- 19.Sartipy P., Johansen B., Gasvik K., Hurt-Camejo E. Molecular basis for the association of group IIA phospholipase A(2) and decorin in human atherosclerotic lesions. Circ. Res. 2000;86:707–714. doi: 10.1161/01.RES.86.6.707. [DOI] [PubMed] [Google Scholar]
- 20.Chen J., Engle S.J., Seilhamer J.J., Tischfield J.A. Cloning and characterization of novel rat and mouse low molecular weight Ca(2+)-dependent phospholipase A2s containing 16 cysteines. J. Biol. Chem. 1994;269:23018–23024. [PubMed] [Google Scholar]
- 21.Bingham C.O., 3rd, Fijneman R.J., Friend D.S., Goddeau R.P., Rogers R.A., Austen K.F., Arm J.P. Low molecular weight group IIA and group V phospholipase A(2) enzymes have different intracellular locations in mouse bone marrow-derived mast cells. J. Biol. Chem. 1999;274:31476–31484. doi: 10.1074/jbc.274.44.31476. [DOI] [PubMed] [Google Scholar]
- 22.Kim Y.J., Kim K.P., Han S.K., Munoz N.M., Zhu X., Sano H., Leff A.R., Cho W. Group V phospholipase A2 induces leukotriene biosynthesis in human neutrophils through the activation of group IVA phospholipase A2. J. Biol. Chem. 2002;277:36479–36488. doi: 10.1074/jbc.M205399200. [DOI] [PubMed] [Google Scholar]
- 23.Cupillard L., Koumanov K., Mattei M.G., Lazdunski M., Lambeau G. Cloning, chromosomal mapping, and expression of a novel human secretory phospholipase A2. J. Biol. Chem. 1997;272:15745–15752. doi: 10.1074/jbc.272.25.15745. [DOI] [PubMed] [Google Scholar]
- 24.Saiga A., Morioka Y., Ono T., Nakano K., Ishimoto Y., Arita H., Hanasaki K. Group X secretory phospholipase A(2) induces potent productions of various lipid mediators in mouse peritoneal macrophages. Biochim. Biophys. Acta. 2001;1530:67–76. doi: 10.1016/s1388-1981(00)00167-0. [DOI] [PubMed] [Google Scholar]
- 25.Morioka Y., Saiga A., Yokota Y., Suzuki N., Ikeda M., Ono T., Nakano K., Fujii N., Ishizaki J., Arita H., Hanasaki K. Mouse group X secretory phospholipase A2 induces a potent release of arachidonic acid from spleen cells and acts as a ligand for the phospholipase A2 receptor. Arch. Biochem. Biophys. 2000;381:31–42. doi: 10.1006/abbi.2000.1977. [DOI] [PubMed] [Google Scholar]
- 26.Morioka Y., Ikeda M., Saiga A., Fujii N., Ishimoto Y., Arita H., Hanasaki K. Potential role of group X secretory phospholipase A(2) in cyclooxygenase-2-dependent PGE(2) formation during colon tumorigenesis. FEBS Lett. 2000;487:262–266. doi: 10.1016/S0014-5793(00)02350-4. [DOI] [PubMed] [Google Scholar]
- 27.Higashino K., Yokota Y., Ono T., Kamitani S., Arita H., Hanasaki K. Identification of a soluble form phospholipase A2 receptor as a circulating endogenous inhibitor for secretory phospholipase A2. J. Biol. Chem. 2002;277:13583–13588. doi: 10.1074/jbc.M108752200. [DOI] [PubMed] [Google Scholar]
- 28.Hanasaki K., Ono T., Saiga A., Morioka Y., Ikeda M., Kawamoto K., Higashino K., Nakano K., Yamada K., Ishizaki J., Arita H. Purified group X secretory phospholipase A(2) induced prominent release of arachidonic acid from human myeloid leukemia cells. J. Biol. Chem. 1999;274:34203–34211. doi: 10.1074/jbc.274.48.34203. [DOI] [PubMed] [Google Scholar]
- 29.Bezzine S., Koduri R.S., Valentin E., Murakami M., Kudo I., Ghomashchi F., Sadilek M., Lambeau G., Gelb M.H. Exogenously added human group X secreted phospholipase A(2) but not the group IB, IIA, and V enzymes efficiently release arachidonic acid from adherent mammalian cells. J. Biol. Chem. 2000;275:3179–3191. doi: 10.1074/jbc.275.5.3179. [DOI] [PubMed] [Google Scholar]
- 30.Murakami M., Kambe T., Shimbara S., Yamamoto S., Kuwata H., Kudo I. Functional association of type IIA secretory phospholipase A(2) with the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan in the cyclooxygenase-2-mediated delayed prostanoidbiosynthetic pathway. J. Biol. Chem. 1999;274:29927–29936. doi: 10.1074/jbc.274.42.29927. [DOI] [PubMed] [Google Scholar]
- 31.Murakami M., Koduri R.S., Enomoto A., Shimbara S., Seki M., Yoshihara K., Singer A., Valentin E., Ghomashchi F., Lambeau G., Gelb M.H., Kudo I. Distinct arachidonate-releasing functions of mammalian secreted phospholipase A2s in human embryonic kidney 293 and rat mastocytoma RBL-2H3 cells through heparan sulfate shuttling and external plasma membrane mechanisms. J. Biol. Chem. 2001;276:10083–10096. doi: 10.1074/jbc.M007877200. [DOI] [PubMed] [Google Scholar]
- 32.Munoz N.M., Kim Y.J., Meliton A.Y., Kim K.P., Han S.K., Boetticher E., O’Leary E., Myou S., Zhu X., Bonventre J.V., Leff A.R., Cho W. Human group V phospholipase A2 induces group IVA phospholipase A2-independent cysteinyl leukotriene synthesis in human eosinophils. J. Biol. Chem. 2003;278:38813–38820. doi: 10.1074/jbc.M302476200. [DOI] [PubMed] [Google Scholar]
- 33.Gesquiere L., Cho W., Subbaiah P.V. Role of group IIa and group V secretory phospholipases A(2) in the metabolism of lipoproteins. Substrate specificities of the enzymes and the regulation of their activities by sphingomyelin. Biochemistry. 2002;41:4911–4920. doi: 10.1021/bi015757x. [DOI] [PubMed] [Google Scholar]
- 34.Hanasaki K., Yamada K., Yamamoto S., Ishimoto Y., Saiga A., Ono T., Ikeda M., Notoya M., Kamitani S., Arita H. Potent modification of low density lipoprotein by group X secretory phospholipase A2 is linked to macrophage foam cell formation. J. Biol. Chem. 2002;277:29116–29124. doi: 10.1074/jbc.M202867200. [DOI] [PubMed] [Google Scholar]
- 35.Ishimoto Y., Yamada K., Yamamoto S., Ono T., Notoya M., Hanasaki K. Group V and X secretory phospholipase A(2)s-induced modification of high-density lipoprotein linked to the reduction of its antiatherogenic functions. Biochim. Biophys. Acta. 2003;1642:129–138. doi: 10.1016/S0167-4889(03)00120-4. [DOI] [PubMed] [Google Scholar]
- 36.Hara S., Shike T., Takasu N., Mizui T. Lysophosphatidylcholine promotes cholesterol efflux from mouse macrophage foam cells. Arterioscler. Thromb. Vasc. Biol. 1997;17:1258–1266. doi: 10.1161/01.ATV.17.7.1258. [DOI] [PubMed] [Google Scholar]
- 37.Hevonoja T., Pentikainen M.O., Hyvonen M.T., Kovanen P.T., Ala-Korpela M. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim. Biophys. Acta. 2000;1488:189–210. doi: 10.1016/s1388-1981(00)00123-2. [DOI] [PubMed] [Google Scholar]
- 38.Reynolds L.J., Hughes L.L., Dennis E.A. Analysis of human synovial fluid phospholipase A2 on short chain phosphatidylcholine-mixed micelles: development of a spectrophotometric assay suitable for a microtiterplate reader. Anal. Biochem. 1992;204:190–197. doi: 10.1016/0003-2697(92)90160-9. [DOI] [PubMed] [Google Scholar]
- 39.Tojo H., Ono T., Okamoto M. Reverse-phase high-performance liquid chromatographic assay of phospholipases: application of spectrophotometric detection to rat phospholipase A2 isozymes. J. Lipid Res. 1993;34:837–844. [PubMed] [Google Scholar]
- 40.Dole V.P., Meinertz H. Microdetermination of long-chain fatty acids in plasma and tissues. J. Biol. Chem. 1960;235:2595–2599. [PubMed] [Google Scholar]
- 41.Chen Y., Dennis E.A. Expression and characterization of human group V phospholipase A2. Biochim. Biophys. Acta. 1998;1394:57–64. doi: 10.1016/s0005-2760(98)00098-8. [DOI] [PubMed] [Google Scholar]
- 42.Schaloske R.H., Dennis E.A. The phospholipase A2 superfamily and its group numbering system. Biochim. Biophys. Acta. 2006;1761:1246–1259. doi: 10.1016/j.bbalip.2006.07.011. [DOI] [PubMed] [Google Scholar]
- 43.Stremler K.E., Stafforini D.M., Prescott S.M., McIntyre T.M. Human plasma platelet-activating factor acetylhydrolase. Oxidatively fragmented phospholipids as substrates. J. Biol. Chem. 1991;266:11095–11103. [PubMed] [Google Scholar]
- 44.Davis B., Koster G., Douet L.J., Scigelova M., Woffendin G., Ward J.M., Smith A., Humphries J., Burnand K.G., Macphee C.H., Postle A.D. Electrospray ionization mass spectrometry identifies substrates and products of lipoprotein-associated phospholipase A2 in oxidized human low density lipoprotein. J. Biol. Chem. 2008;283:6428–6437. doi: 10.1074/jbc.M709970200. [DOI] [PubMed] [Google Scholar]
- 45.Han S.K., Yoon E.T., Cho W. Bacterial expression and characterization of human secretory class V phospholipase A2. Biochem. J. 1998;331(Pt2):353–357. doi: 10.1042/bj3310353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Murakami M., Kudo I. Secretory phospholipase A2. Biol. Pharm. Bull. 2004;27:1158–1164. doi: 10.1248/bpb.27.1158. [DOI] [PubMed] [Google Scholar]
- 47.Rao G.N., Baas A.S., Glasgow W.C., Eling T.E., Runge M.S., Alexander R.W. Activation of mitogen-activated protein kinases by arachidonic acid and its metabolites in vascular smooth muscle cells. J. Biol. Chem. 1994;269:32586–32591. [PubMed] [Google Scholar]
- 48.Tietge U.J., Maugeais C., Lund-Katz S., Grass D., deBeer F.C., Rader D.J. Human secretory phospholipase A2 mediates decreased plasma levels of HDL cholesterol and apoA-I in response to inflammation in human apoA-I transgenic mice. Arterioscler. Thromb. Vasc. Biol. 2002;22:1213–1218. doi: 10.1161/01.ATV.0000023228.90866.29. [DOI] [PubMed] [Google Scholar]
- 49.Lookene A., Savonen R., Olivecrona G. Interaction of lipoproteins with heparan sulfate proteoglycans and with lipoprotein lipase. Studies by surface plasmon resonance technique. Biochemistry. 1997;36:5267–5275. doi: 10.1021/bi962699k. [DOI] [PubMed] [Google Scholar]
- 50.Cseh K., Karadi I., Rischak K., Szollar L., Janoki G., Jakab L., Romics L. Binding of fibronectin to human lipoproteins. Clin. Chim. Acta. 1989;182:75–85. doi: 10.1016/0009-8981(89)90151-4. [DOI] [PubMed] [Google Scholar]
- 51.Carrero P., Gomez-Coronado D., Olivecrona G., Lasuncion M.A. Binding of lipoprotein lipase to apolipoprotein B-containing lipoproteins. Biochim. Biophys. Acta. 1996;1299:198–206. doi: 10.1016/0005-2760(95)00209-x. [DOI] [PubMed] [Google Scholar]
- 52.Fukuchi Y., Kudo Y., Kumagai T., Ebina K., Yokota K. Binding assay of low density lipoprotein to Asp-hemolysin from Aspergillus fumigatus. Biol. Pharm. Bull. 1996;19:1380–1381. doi: 10.1248/bpb.19.1380. [DOI] [PubMed] [Google Scholar]
- 53.Jin L., Shieh J.J., Grabbe E., Adimoolam S., Durbin D., Jonas A. Surface plasmon resonance biosensor studies of human wild-type and mutant lecithin cholesterol acyltransferase interactions with lipoproteins. Biochemistry. 1999;38:15659–15665. doi: 10.1021/bi9916729. [DOI] [PubMed] [Google Scholar]
- 54.Boren J., Lookene A., Makoveichuk E., Xiang S., Gustafsson M., Liu H., Talmud P., Olivecrona G. Binding of low density lipoproteins to lipoprotein lipase is dependent on lipids but not on apolipoprotein B. J. Biol. Chem. 2001;276:26916–26922. doi: 10.1074/jbc.M011090200. [DOI] [PubMed] [Google Scholar]
- 55.Sivaram P., Choi S.Y., Curtiss L.K., Goldberg I.J. An amino-terminal fragment of apolipoprotein B binds to lipoprotein lipase and may facilitate its binding to endothelial cells. J. Biol. Chem. 1994;269:9409–9412. [PubMed] [Google Scholar]
- 56.Choi S.Y., Sivaram P., Walker D.E., Curtiss L.K., Gretch D.G., Sturley S.L., Attie A.D., Deckelbaum R.J., Goldberg I.J. Lipoprotein lipase association with lipoproteins involves protein-protein interaction with apolipoprotein B. J. Biol. Chem. 1995;270:8081–8086. doi: 10.1074/jbc.270.14.8081. [DOI] [PubMed] [Google Scholar]
- 57.Pang L., Sivaram P., Goldberg I.J. Cell-surface expression of an amino-terminal fragment of apolipoprotein B increases lipoprotein lipase binding to cells. J. Biol. Chem. 1996;271:19518–19523. doi: 10.1074/jbc.271.32.19518. [DOI] [PubMed] [Google Scholar]
- 58.Choi S.Y., Pang L., Kern P.A., Kayden H.J., Curtiss L.K., Vanni-Reyes T.M., Goldberg I.J. Dissociation of LPL and LDL: effects of lipoproteins and anti-apoB antibodies. J. Lipid Res. 1997;38:77–85. [PubMed] [Google Scholar]
- 59.Goldberg I.J., Wagner W.D., Pang L., Paka L., Curtiss L.K., DeLozier J.A., Shelness G.S., Young C.S., Pillarisetti S. The NH2-terminal region of apolipoprotein B is sufficient for lipoprotein association with glycosaminoglycans. J. Biol. Chem. 1998;273:35355–35361. doi: 10.1074/jbc.273.52.35355. [DOI] [PubMed] [Google Scholar]
- 60.Segrest J.P., Jones M.K., De Loof H., Dashti N. Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 2001;42:1346–1367. [PubMed] [Google Scholar]