Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2008 May 5;13(4):514–525. doi: 10.2478/s11658-008-0020-y

Calcium transport by mammary secretory cells: Mechanisms underlying transepithelial movement

David B Shennan 1,
PMCID: PMC6275681  PMID: 18458827

Abstract

The secretion of calcium into milk by mammary epithelial cells is a fundamentally important process. Despite this, the mechanisms which underlie the movement of calcium across the lactating mammary gland are still poorly understood. There are, however, two models which describe the handling of calcium by mammary epithelial cells. On the one hand, a model which has existed for several decades, suggests that the vast majority of calcium enters milk via the Golgi secretory vesicle route. On the other hand, a new model has recently been proposed which implies that the active transport of calcium across the apical membrane of mammary secretory cells is central to milk calcium secretion. This short review examines the strengths and weaknesses of both models and suggests some experiments which could add to our understanding of mammary calcium transport.

Key words: Calcium, Mammary, Secretion

Full Text

The Full Text of this article is available as a PDF (464.1 KB).

Abbreviations used

PMCA

plasma membrane calcium-ATPase

SERCA

sarco/endoplasmic reticulum calcium-ATPase

SPCA

secretory pathway calcium-ATPase

References

  • 1.Greer F.R., Tsang R.C., Seary J.E., Levin R.S., Steichen J.J. Mineral homeostasis during lactation — relationship to serum 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D, parathyroid hormone, and calcitonin. Am. J. Clin. Nutr. 1982;36:431–437. doi: 10.1093/ajcn/36.3.431. [DOI] [PubMed] [Google Scholar]
  • 2.Neville M.C. Calcium secretion into milk. J. Mammary Gland Biol. Neoplasia. 2005;10:119–128. doi: 10.1007/s10911-005-5395-z. [DOI] [PubMed] [Google Scholar]
  • 3.Neville M.C., Peaker M. Ionized calcium in milk and the integrity of the mammary epithelium in the goat. J. Physiol. 1981;313:561–570. doi: 10.1113/jphysiol.1981.sp013682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Stelwagen K., Farr V.C., Davis S.R., Prosser C.G. EGTA-induced disruption of epithelial cell tight junctions in the lactating caprine mammary gland. Am. J. Physiol. 1995;269:R848–855. doi: 10.1152/ajpregu.1995.269.4.R848. [DOI] [PubMed] [Google Scholar]
  • 5.Grant A.C.G., Gow I.F., Zammit V.A., Shennan D.B. Regulation of protein synthesis in lactating rat mammary tissue by cell volume. Biochim. Biophys. Acta. 2000;1475:39–46. doi: 10.1016/s0304-4165(00)00045-3. [DOI] [PubMed] [Google Scholar]
  • 6.Lee W.J., Monteith G.R., Roberts-Thomson S.J. Calcium transport in the mammary gland: targets for breast cancer. Biochim. Biophys. Acta. 2006;1765:235–255. doi: 10.1016/j.bbcan.2005.12.001. [DOI] [PubMed] [Google Scholar]
  • 7.Wei N., Mi M.T., Zhou Y. Influences of lovastatin on membrane ion flow and intracellular signalling in breast cancer cells. Cell. Mol. Biol. Lett. 2007;12:1–15. doi: 10.2478/s11658-006-0050-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Neville M.C., Watters C.D. Secretion of calcium into milk: review. J. Dairy Sci. 1983;66:371–380. doi: 10.3168/jds.S0022-0302(83)81802-5. [DOI] [PubMed] [Google Scholar]
  • 9.Shennan D.B., Peaker M. Transport of milk constituents by the mammary gland. Physiol. Rev. 2000;80:925–951. doi: 10.1152/physrev.2000.80.3.925. [DOI] [PubMed] [Google Scholar]
  • 10.VanHouten J.N., Neville M.C., Wysolmerski J.J. The calcium receptor regulates PMCA2 activity in mammary epithelial cells: a mechanism for calcium-regulated calcium transport into milk. Endocrinology. 2007;148:5943–5954. doi: 10.1210/en.2007-0850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.VanHouten J.N., Wysolmerski J.J. Transepithelial calcium transport in mammary epithelial cells. J. Mammary Gland Biol. Neoplasia. 2007;12:223–235. doi: 10.1007/s10911-007-9057-1. [DOI] [PubMed] [Google Scholar]
  • 12.Neville M.C., Peaker M. The secretion of calcium and phosphorous into milk. J. Physiol. 1979;290:59–67. doi: 10.1113/jphysiol.1979.sp012759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Twardock A.R., Comar C.L. Calcium and strontium secretion from blood to milk. Am. J. Physiol. 1961;201:645–650. doi: 10.1152/ajplegacy.1961.201.4.645. [DOI] [PubMed] [Google Scholar]
  • 14.Baumrucker C.R., Keenan T.W. Membranes of mammary gland. X. Adenosine triphosphate dependent calcium accumulation by Golgi apparatus rich fractions from bovine mammary gland. Exp. Cell Res. 1975;90:253–260. doi: 10.1016/0014-4827(75)90314-6. [DOI] [PubMed] [Google Scholar]
  • 15.West D.W. Energy-dependent calcium sequestration activity in a Golgi apparatus fraction derived from lactating rat mammary glands. Biochim. Biophys. Acta. 1981;673:374–386. doi: 10.1016/0304-4165(81)90469-4. [DOI] [PubMed] [Google Scholar]
  • 16.Neville M.C., Selker F., Semple K., Watters C. ATP-dependent calcium transport by a Golgi-enriched membrane fraction from mouse mammary gland. J. Membr. Biol. 1981;61:97–105. doi: 10.1007/BF02007636. [DOI] [PubMed] [Google Scholar]
  • 17.Virk S.S., Kirk C.J., Shears S.B. Ca2+ transport and Ca2+-dependent ATP hydrolysis by Golgi vesicles from lactating rat mammary glands. Biochem. J. 1985;226:741–748. doi: 10.1042/bj2260741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Bingham E.W., McGranaghan M.B., Wickham E.D., Leung C.T., Farrell H.M. Properties of [Ca2+ + Mg2+]-adenosine triphosphatases in the Golgi apparatus and microsomes of the lactating mammary glands of cows. J. Dairy Sci. 1993;76:393–400. doi: 10.3168/jds.S0022-0302(93)77358-0. [DOI] [PubMed] [Google Scholar]
  • 19.Watters C.D. A Ca2+-stimulated adenosine triphosphatase in Golgi-enriched membranes of lactating murine mammary tissue. Biochem. J. 1984;224:39–45. doi: 10.1042/bj2240039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Reinhardt T.A., Horst R.L. Ca2+-ATPases and their expression in the mammary gland of pregnant and lactating rats. Am. J. Physiol. 1999;276:C796–C802. doi: 10.1152/ajpcell.1999.276.4.C796. [DOI] [PubMed] [Google Scholar]
  • 21.Faddy H.M., Smart C.E., Xu R., Lee G.Y., Kenny P.A., Feng M., Rao R., Brown M.A., Bissell M.J., Roberts-Thomson S.J., Monteith G.R. Localization of plasma membrane and secretory calcium pumps in the mammary gland. Biochem. Biophys. Res. Commun. 2008;369:977–981. doi: 10.1016/j.bbrc.2008.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Dmitriev R.I., Pestov N.B., Korneeko T.V., Kostina M.B., Shakhparonov M.I. Characterization of second isoform of secretory pathway Ca2+/Mn2+-ATPase. J. Gen. Physiol. 2005;126:71a–72a. doi: 10.1085/jgp.200509303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Prapong S., Reinhardt T.A., Goff J.P., Horst R.L. Ca2+-adenosine triphosphatase protein expression in the mammary gland of preparturient cows. J. Dairy Sci. 2005;88:1741–1744. doi: 10.3168/jds.S0022-0302(05)72847-2. [DOI] [PubMed] [Google Scholar]
  • 24.Anantamongkol U., Takemura H., Suthiphongchai T., Krishnamra N., Horio Y. Regulation of Ca2+ mobilization by prolactin in mammary gland cells: possible role of secretory pathway Ca2+-ATPase type 2. Biochem. Biophys. Res. Commun. 2007;352:537–542. doi: 10.1016/j.bbrc.2006.11.055. [DOI] [PubMed] [Google Scholar]
  • 25.Holt C. An equilibrium thermodynamic model of the sequestration of calcium phosphate by casein micelles and its application to the calculation of the partition of salts in milk. Eur. Biophys. J. 2004;33:421–434. doi: 10.1007/s00249-003-0377-9. [DOI] [PubMed] [Google Scholar]
  • 26.Beery K.E., Hood L.F., Patton S. Formation of casein micelles in Golgi vesicles of mammary tissue. J. Dairy Sci. 1971;54:911–912. doi: 10.3168/jds.S0022-0302(71)85940-4. [DOI] [PubMed] [Google Scholar]
  • 27.Sudlow A.W., Burgoyne R.D. A hypo-osmotically induced increase in intracellular Ca2+ in lactating mouse mammary epithelial cells involving Ca2+ influx. Pflugers Arch. 1997;433:609–616. doi: 10.1007/s004240050321. [DOI] [PubMed] [Google Scholar]
  • 28.Shennan D.B., Grant A.C., Gow I.F. The effect of hyposmotic and isosmotic cell swelling on the intracellular [Ca2+] in lactating rat mammary acinar cells. Mol. Cell. Biochem. 2002;233:91–97. doi: 10.1023/A:1015539026031. [DOI] [PubMed] [Google Scholar]
  • 29.Reinhardt T.A., Filoteo A.G., Penniston J.T., Horst R.L. Ca2+-ATPase protein expression in mammary tissue. Am. J. Physiol. 2000;279:C1595–C1602. doi: 10.1152/ajpcell.2000.279.5.C1595. [DOI] [PubMed] [Google Scholar]
  • 30.Silverstein R.S., Tempel B.L. Atpb2, encoding plasma membrane Ca2+-ATPase TYPE 2, (PMCA2) exhibits tissue-specific first exon usage in hair cells, neurons, and mammary glands of mice. Neuroscience. 2006;141:245–257. doi: 10.1016/j.neuroscience.2006.03.036. [DOI] [PubMed] [Google Scholar]
  • 31.Mather I.H., Keenan T.W. Origin and secretion of milk lipids. J. Mammary Gland Biol. Neoplasia. 1998;3:258–273. doi: 10.1023/a:1018711410270. [DOI] [PubMed] [Google Scholar]
  • 32.Reinhardt T.A., Lippolis J.D., Shull G.E., Horst R.L. Null mutation in the gene encoding plasma membrane Ca2+ATPase isoform 2 impairs calcium transport into milk. J. Biol. Chem. 2004;278:42369–42373. doi: 10.1074/jbc.M407788200. [DOI] [PubMed] [Google Scholar]
  • 33.Shennan D.B. Is the milk-fat-globule membrane a model for mammary secretory cell apical membrane? Exp. Physiol. 1992;77:653–656. doi: 10.1113/expphysiol.1992.sp003630. [DOI] [PubMed] [Google Scholar]
  • 34.Shennan D.B. K+ and Cl− transport by mammary secretory cell apical membrane vesicles isolated from milk. J Dairy Res. 1992;59:339–348. doi: 10.1017/S0022029900030612. [DOI] [PubMed] [Google Scholar]
  • 35.Sweiry J.H., Yudilevich D.L. Asymmetric calcium influx and efflux at maternal and fetal sides of the guinea-pig placenta: kinetics and specificity. J. Physiol. 1984;355:295–311. doi: 10.1113/jphysiol.1984.sp015420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Millar I.D., Calvert D.T., Lomax M.A., Shennan D.B. The mechanism of L-glutamate transport by lactating rat mammary tissues. Biochim. Biophys. Acta. 1996;1282:200–206. doi: 10.1016/0005-2736(96)00054-5. [DOI] [PubMed] [Google Scholar]
  • 37.Shennan D.B., Calvert D.T., Travers M.T., Kudo Y., Boyd C.A.R. A study of L-leucine, L-phenylalanine and L-alanine transport in the perfused rat mammary gland: possible involvement of LAT1 and LAT2. Biochim. Biophys. Acta. 2002;1564:133–139. doi: 10.1016/S0005-2736(02)00410-8. [DOI] [PubMed] [Google Scholar]
  • 38.Quensell R.R., Erickson J., Schultz B.D. Apical electrolyte concentration modulates barrier function and tight junction protein localization in bovine mammary epithelium. Am. J. Physiol. 2007;292:C305–C318. doi: 10.1152/ajpcell.00567.2005. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES