Skip to main content
Cellular & Molecular Biology Letters logoLink to Cellular & Molecular Biology Letters
. 2009 Feb 4;14(2):336–346. doi: 10.2478/s11658-009-0006-4

Potassium currents in human myogenic cells from healthy and congenital myotonic dystrophy foetuses

Ewa Nurowska 1,, Andrew Constanti 2, Beata Dworakowska 1, Vincent Mouly 3, Denis Furling 3, Paola Lorenzon 4, Tiziana Pietrangelo 4,5, Krzysztof Dołowy 1, Fabio Ruzzier 4
PMCID: PMC6275736  PMID: 19194665

Abstract

The whole-cell patch clamp technique was used to record potassium currents in in vitro differentiating myoblasts isolated from healthy and myotonic dystrophy type 1 (DM1) foetuses carrying 2000 CTG repeats. The fusion of the DM1 myoblasts was reduced in comparison to that of the control cells. The dystrophic muscle cells expressed less voltage-activated K+ (delayed rectifier and non-inactivating delayed rectifier) and inward rectifier channels than the age-matched control cells. However, the resting membrane potential was not significantly different between the control and the DM1 cells. After four days in a differentiation medium, the dystrophic cells expressed the fast-inactivating transient outward K+ channels, which were not observed in healthy cells. We suggest that the low level of potassium currents measured in differentiated DM1 cells could be related to their impaired fusion.

Key words: Potassium channels, Myoblast fusion, Congenital myotonic dystrophy, Patch-clamp

Full Text

The Full Text of this article is available as a PDF (632.9 KB).

Abbreviation

DM1

myotonic dystrophy type 1

DMED

differentiation medium

DMPK

dystrophia myotonica protein kinase

IK(DR)

delayed rectifier current

IK(IR)

inward rectifier current

IK(TO)

transient outward K+ current

TEACl

tetraethylammonium chloride

References

  • 1.Brook J.D., McCurrach M.E., Harley H.G., Buckler A.J., Church D., Aburatani H., Hunter K., Stanton V.P., Thirion J.P., Hudson T., Sohn R., Zemelman B., Snell R.G., Rundle S.A., Crow S., Davies J., Shelbourne P., Buxton J., Jones C., Juvonen V., Johnson K., Harper P.S., Shaw D.J., Housman D.E. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell. 1992;68:799–808. doi: 10.1016/0092-8674(92)90154-5. [DOI] [PubMed] [Google Scholar]
  • 2.Fu Y.H., Pizzuti A., Fenwick R.G., King J., Rajnarayan S., Dunne P.W., Dubel J., Nasser G.A., Ashizawa T., De Jong P., Wieringa B., Korneluk R., Perryman M.B., Epstein H.F., Caskey T.C. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science. 1992;255:1256–1258. doi: 10.1126/science.1546326. [DOI] [PubMed] [Google Scholar]
  • 3.Mahadevan M., Tsilfidis C., Sabourin L., Shutler G., Amemiya C., Jansen G., Neville C., Narang M., Barcelo J., O’Hoy K., Leblond S., Earle-Macdonald J., de Jong P.J., Wieringa B., Korneluk R.G. Myotonic dystrophy mutation: an unstable CTG repeat in the 3-prime untranslated region of the gene. Science. 1992;255:1253–1255. doi: 10.1126/science.1546325. [DOI] [PubMed] [Google Scholar]
  • 4.Taneja K.L., McCurrach M., Schalling M., Housman D., Singer R.H. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J. Cell. Biol. 1995;128:995–1002. doi: 10.1083/jcb.128.6.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Davis B.M., McCurrach M.E., Taneja K.L., Singer R.H., Housman D.E. Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc. Natl. Acad. Sci. USA. 1997;94:7388–7393. doi: 10.1073/pnas.94.14.7388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Furling D., Lemieux D., Taneja K., Puymirat J. Decreased levels of myotonic dystrophy protein kinase (DMPK) and delayed differentiation in human myotonic dystrophy myoblasts. Neuromuscul. Disord. 2001;11:728–735. doi: 10.1016/s0960-8966(01)00226-7. [DOI] [PubMed] [Google Scholar]
  • 7.Savkur R.S., Philips A.V., Cooper T.A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet. 2001;29:40–47. doi: 10.1038/ng704. [DOI] [PubMed] [Google Scholar]
  • 8.Charlet-B N., Savkur R.S., Singh G., Philips A.V., Grice E.A., Cooper T.A. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol. Cell. 2002;10:45–53. doi: 10.1016/s1097-2765(02)00572-5. [DOI] [PubMed] [Google Scholar]
  • 9.Ho T.H., Charlet-B N., Poulos M.G., Singh G., Swanson M.S., Cooper T.A. Muscleblind proteins regulate alternative splicing. EMBO J. 2004;23:3103–3112. doi: 10.1038/sj.emboj.7600300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Mankodi A., Takahashi M.P., Jiang H., Beck C.L., Bowers W.J., Moxley R.T., Cannon S.C., Thornton C.A. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell. 2002;10:35–44. doi: 10.1016/s1097-2765(02)00563-4. [DOI] [PubMed] [Google Scholar]
  • 11.Jacobs A.E., Benders A.A., Oosterhof A., Veerkamp J.H., van Mier P., Wevers R.A., Joosten E.M. The calcium homeostasis and the membrane potential of cultured muscle cells from patients with myotonic dystrophy. Biochim. Biophys. Acta. 1990;1096:14–19. doi: 10.1016/0925-4439(90)90006-b. [DOI] [PubMed] [Google Scholar]
  • 12.Behrens M.I., Jalil P., Serani A., Vergara F., Alvarez O. Possible role of apamin-sensitive K+ channels in myotonic dystrophy. Muscle Nerve. 1994;17:1264–1270. doi: 10.1002/mus.880171104. [DOI] [PubMed] [Google Scholar]
  • 13.Mounsey J.P., Mistry D.J., Ai C.W., Reddy S., Moorman J.R. Skeletal muscle sodium channel gating in mice deficient in myotonic dystrophy protein kinase. Hum. Mol. Genet. 2000;9:2313–2320. doi: 10.1093/oxfordjournals.hmg.a018923. [DOI] [PubMed] [Google Scholar]
  • 14.Bernareggi A., Furling D., Mouly V., Ruzzier F., Sciancalepore M. Myocytes from congenital myotonic dystrophy display abnormal Na+ channel activities. Muscle Nerve. 2005;31:506–509. doi: 10.1002/mus.20235. [DOI] [PubMed] [Google Scholar]
  • 15.Farkas-Bargeton E., Barbet J.P., Dancea S., Wehrle R., Checouri A., Dulac O. Immaturity of muscle fibers in the congenital form of myotonic dystrophy: its consequences and its origin. J. Neurol. Sci. 1998;83:145–159. doi: 10.1016/0022-510x(88)90064-0. [DOI] [PubMed] [Google Scholar]
  • 16.Furling D., le Lam T., Agbulut O., Butler-Browne G.S., Morris G.E. Changes in myotonic dystrophy protein kinase levels and muscle development in congenital myotonic dystrophy. Am. J. Pathol. 2003;162:1001–1009. doi: 10.1016/s0002-9440(10)63894-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Sahgal V., Bernes S., Sahgal S., Lischwey C., Subramani V. Skeletal muscle in preterm infants with congenital myotonic dystrophy. Morphologic and histochemical study. J. Neurol. Sci. 1983;59:47–55. doi: 10.1016/0022-510x(83)90080-1. [DOI] [PubMed] [Google Scholar]
  • 18.Furling D., Coiffier L., Mouly V., Barbet J.P., St Guily J.L., Taneja K., Gourdon G., Junien C., Butler-Browne G.S. Defective satellite cells in congenital myotonic dystrophy. Hum. Mol. Genet. 2001;10:2079–2087. doi: 10.1093/hmg/10.19.2079. [DOI] [PubMed] [Google Scholar]
  • 19.Timchenko N.A., Iakova P., Cai Z.J., Smith J.R., Timchenko L.T. Molecular basis for impaired muscle differentiation in myotonic dystrophy. Mol. Cell. Biol. 2001;21:6927–6938. doi: 10.1128/MCB.21.20.6927-6938.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Amack J.D., Paguio A.P., Mahadevan M.S. Cis and trans effects of the myotonic dystrophy (DM) mutation in a cell culture model. Hum. Mol. Genet. 1990;8:1975–1984. doi: 10.1093/hmg/8.11.1975. [DOI] [PubMed] [Google Scholar]
  • 21.Bernheim L., Liu J.H., Hamann M., Haenggeli C.A., Fischer-Lougheed J., Bader C.R. Contribution of a non-inactivating potassium current to the resting membrane potential of fusion-competent human myoblasts. J. Physiol. 1996;493:129–141. doi: 10.1113/jphysiol.1996.sp021369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Bijlenga P., Occhiodoro T., Liu J.H., Bader C.R., Bernheim L., Fischer-Lougheed J. An ether-a-go-go K+ current, Ih-eag, contributes to the hyperpolarization of human fusion-competent myoblasts. J. Physiol. 1998;512:317–323. doi: 10.1111/j.1469-7793.1998.317be.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Liu J.H., Bijlenga P., Fischer-Lougheed J., Occhiodoro T., Kaelin A., Bader C.R., Bernheim L. Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion. J. Physiol. 1998;510:467–476. doi: 10.1111/j.1469-7793.1998.467bk.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Fischer-Lougheed J., Liu J.H., Espinos E., Mordasini D., Bader C.R., Belin D., Bernheim L. Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. J. Cell. Biol. 2001;153:677–686. doi: 10.1083/jcb.153.4.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Liu J.H., König S., Michel M., Arnaudeau S., Fischer-Lougheed J., Bader C.R., Bernheim L. Acceleration of human myoblast fusion by depolarization: graded Ca2+ signals involved. Development. 2003;130:3437–3446. doi: 10.1242/dev.00562. [DOI] [PubMed] [Google Scholar]
  • 26.Edom F., Mouly V., Barbet J.P., Fiszman M.Y., Butler-Browne G.S. Clones of human satellite cells can express in vitro both fast and slow myosin heavy chains. Dev. Biol. 1994;164:219–229. doi: 10.1006/dbio.1994.1193. [DOI] [PubMed] [Google Scholar]
  • 27.Harhun M.I., Jurkiewicz A., Jurkiewicz N.H., Kryshtal D.O., Shuba M.F., Vladimirova I.A. Voltage-gated potassium currents in rat vas deferens smooth muscle cells. Pflugers. Arch. 2003;446:380–386. doi: 10.1007/s00424-002-0986-7. [DOI] [PubMed] [Google Scholar]
  • 28.Snyders D.J. Structure and function of cardiac potassium channels. Cardiovasc. Res. 1999;42:377–390. doi: 10.1016/s0008-6363(99)00071-1. [DOI] [PubMed] [Google Scholar]
  • 29.Nurowska E., Dworakowska B., Kloch M., Sobol M., Dołowy K., Wernig A., Ruzzier F. Potassium currents in human myogenic cells from donors of different ages. Exp. Gerontol. 2006;41:635–640. doi: 10.1016/j.exger.2006.04.004. [DOI] [PubMed] [Google Scholar]
  • 30.Zhou M., Liu Z., Hu C., Zhang Z., Mei Y. Developmental regulation of a Na(+)-activated fast outward K+ current in rat myoblasts. Cell. Physiol. Biochem. 2004;14:225–230. doi: 10.1159/000080331. [DOI] [PubMed] [Google Scholar]
  • 31.Conley E.C., Brammar W.J. The ion channel factsbook. San Diego London Boston New York Sydney Tokyo Toronto: Academic Press; 1999. Voltage-gated channels; p. 211. [Google Scholar]
  • 32.Widmer H., Hamann M., Baroffio A. Expression of a voltage-dependent potassium current precedes fusion of human muscle satellite cells (myoblasts) J. Cell. Physiol. 1995;162:52–63. doi: 10.1002/jcp.1041620108. [DOI] [PubMed] [Google Scholar]

Articles from Cellular & Molecular Biology Letters are provided here courtesy of BMC

RESOURCES