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ABSTRACT: The arc of drug discovery entails a multiparameter
optimization problem spanning vast length scales. The key parameters range
from solubility (angstroms) to protein−ligand binding (nanometers) to in vivo
toxicity (meters). Through feature learninginstead of feature engineering
deep neural networks promise to outperform both traditional physics-based
and knowledge-based machine learning models for predicting molecular
properties pertinent to drug discovery. To this end, we present the
PotentialNet family of graph convolutions. These models are specifically
designed for and achieve state-of-the-art performance for protein−ligand
binding affinity. We further validate these deep neural networks by setting new
standards of performance in several ligand-based tasks. In parallel, we introduce a new metric, the Regression Enrichment Factor
EFχ

(R), to measure the early enrichment of computational models for chemical data. Finally, we introduce a cross-validation
strategy based on structural homology clustering that can more accurately measure model generalizability, which crucially
distinguishes the aims of machine learning for drug discovery from standard machine learning tasks.

I. INTRODUCTION

Most FDA-approved drugs are small organic molecules that
elicit a therapeutic response by binding to a target biological
macromolecule. Once bound, small molecule ligands either
inhibit the binding of other ligands or allosterically adjust the
target’s conformational ensemble. Binding is thus crucial to any
behavior of a therapeutic ligand. To maximize a molecule’s
therapeutic effect, its affinityor binding free energy (ΔG)
for the desired targets must be maximized, while simulta-
neously minimizing its affinity for other macromolecules.
Historically, scientists have used both cheminformatic and
structure-based approaches to model ligands and their targets,
and most machine learning (ML) approaches use domain-
expertise-driven features.
More recently, deep neural networks (DNNs) have been

translated to the molecular sciences. Training most conven-
tional DNN architectures requires vast amounts of data: for
example, ImageNet1 currently contains over 14 000 000
labeled images. In contrast, the largest publicly available data
sets for the properties of druglike molecules include PDBBind
2017,2 with a little over 4000 samples of protein−ligand
cocrystal structures and associated binding affinity values;
Tox21 with nearly 10 000 small molecules and associated
toxicity end points; QM8 with around 22 000 small molecules
and associated electronic properties; and ESOL with a little
over 1000 small molecules and associated solubility values.3

This scarcity of high-quality scientific data necessitates
innovative neural architectures for molecular machine learning.
Successful DNNs often exploit relevant structure in data,

such as pixel proximity in images. Predicting protein−ligand
binding affinity seems to resemble computer vision problems.
Just as neighboring pixels connote closeness between physical
objects, a binding pocket could be divided into a voxel grid.
Here, neighboring voxels denote neighboring atoms and blocks
of empty space. Unfortunately, this 3D convolutional approach
has several potential drawbacks. First, inputs and hidden
weights require much more memory in three dimensions.
Second, since the parameters grow exponentially with the
number of dimensions, the model suffers from the “curse of
dimensionality”:4 while image processing may entail a square
32 filter, the corresponding filter for volumetric molecule
processing has 33 parameters.
In contrast, graph convolutions use fewer parameters by

exploiting molecular structure and symmetry. Consider a
carbon bonded to four other atoms. A 3D convolutional neural
network (CNN) would need several different filters to
accommodate the subgroup’s symmetrically equivalent ori-
entations. However, a graph convolution as described in refs
5−8 is symmetric to permutations and relative location of each
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of the four neighbors, thereby significantly reducing the
number of model parameters. The use of graph convolutional
approaches to learn molecular properties is reminiscent of the
familiar canon of chemoinformatics algorithms such as Morgan
fingerprints,9 SMILES strings,10 and the Ullman algorithm for
substructure search,11 all of which enrich chemical descriptions
by propagating information about neighboring atoms.
In this paper, we first review a subset of DNN architectures

applicable to protein−ligand interaction. Through the
mathematical frameworks above, we contextualize our
presentation of new models that generalize a graph
convolution to include both intramolecular interactions and
noncovalent interactions between different molecules. We
describe a staged gated graph neural network, which
distinguishes the derivation of differentiable bonded atom
types from the propagation of information between different
molecules. Finally, we address a potential shortcoming of the
standard benchmark in this spacenamely, treating the
PDBBind 2007 core set as a fixed test setby choosing a
cross-validation strategy that more closely resembles the reality
of drug discovery. Though more challenging, this benchmark
may better reflect a given model’s generalization capacity.

II. NEURAL NETWORK ARCHITECTURES
First, we briefly review a subset of DNN architectures
applicable to protein−ligand interaction to motivate the new
models we present and test at the end of the paper.
II.A. Ligand-Based Scoring Models. II.A.1. Fully Con-

nected Neural Networks. The qualitatively simplest models
for affinity prediction and related tasks incorporate only
features of ligands and ignore the macromolecular target(s).
Such a model could entail a fully connected neural network
(FCNN), in which each molecule is represented by a flat
vector x containing f 0 features. Then, these features are
updated through “hidden” layers h by applying nonlinear
activation functions.
The training data for such a network consists of a set of N

molecules, each represented by a vector of length f 0, which
have a one-to-one correspondence with a set of N affinity
labels. Domain-expertise-driven flat vector features might
include integer counts of different types of predetermined
functional groups (e.g., carboxylic acids, aromatic rings), polar
or nonpolar atoms, and other ligand-based features. Chem-
informatic featurizations include extended circular fingerprints
(ECFP)12 and ROCS.13,14

II.A.2. Graph Convolutional Neural Networks. In convolu-
tional neural networks (CNNs), each layer convolves the
previous layer’s feature map with linear kernels followed by
elementwise nonlinearities, producing new features of higher
complexity that combine information from neighboring
pixels.15 A graph convolutional neural network (GCNN)
analogously exploits the inherent structure of data.16 We can
represent a given graph that contains N nodes, f in features per
node, and a single edge type, as consisting of node features x
and symmetric adjacency matrix A, which designates whether a
pair of nodes belong to each other’s neighbor sets N. Consider
the molecule propanamide (Figure 1). For the carbonyl
carbon, the relevant row of the feature matrix x might be [1, 0,
0] to represent its element, and the corresponding row of the
adjacency matrix A might be [0, 1, 0, 1, 1] to indicate its bonds
to three neighbor atoms.
A graph convolution update, as summarized in ref 8, entails

applying a function at each node that takes the node and its

neighbors as input and outputs a new set of features for each
node. It can be written as
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where hi
(t) represents the node features of node i at hidden

layer t, N(vi) represents the neighbors of node i, and U(t) and
m(t) are the update and message functions, respectively, at
hidden layer t. When there are multiple edge types, we must
define multiple message functions, m(t,e), which is the message
function at layer t for edge type e ∈ [1, ···, Net].
Our models are primarily inspired by the gated graph neural

networks (GGNNs).7 At all layers, the update function is the
familiar gated recurrent unit (GRU). Message functions are
simple linear operations that are different for each edge type
but also the same across layers:
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where A(e) is the adjacency matrix, and W(e) the weight matrix,
respectively, for edge type e.
Unlike conventional FCNNs, which learn nonlinear

combinations of the input hand-crafted features, the update
described in eq 2 learns nonlinear combinations of more basic
features of a given atom with the features of its immediate
neighbors. Information propagates through increasingly distant
atoms with each graph convolution, and the GRU enables
information to be added selectively. Ultimately, the GGNN
contains and leverages both per-node features via the feature
matrix x and structural information via the adjacency matrix A.
In both classification and regression settings, GCNNs
terminate in a “graph gather” step that sums over the rows
of the final embeddings and is invariant to node ordering. The
subsequent FCNNs produce output of desired size ( fout). This
completes the starting point for the graph convolutional
update used in this paper:

Figure 1. Visual depiction of the gated graph neural network with
atoms as nodes and bonds as edges. The small molecule propanamide
is chosen to illustrate the propagation of information among the
different update layers of the network.
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II.A.3. Generalization to Multitask Settings. Predicting
affinity for multiple targets by GCNN can be implemented by
training either different models for each target or by training a
single multitask network. The latter setting has a last weight

matrix ∈ ×
−W FC T f( ) ( )M FCM 1 , where T denotes the number of

targets in the data set. The corresponding multitask loss
function would be the average binary cross-entropy loss across
the targets
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II.B. Structure-Based Scoring Models. Since the advent
of biomolecular crystallography by Perutz et al.,17 the drug
discovery community has sought to leverage structural
information about the target in addition to the ligand.
Numerous physics-based approaches have attempted to realize
this, including molecular docking,18−21 free energy perturba-
tion,22 and quantum mechanics/molecular mechanics (QM/
MM),23 among others. More recent approaches include RF-
Score,24,25 NN-Score,26 Grid Featurizer,3 three-dimensional
CNN approaches,27,28 and Atomic Convolutional Neural
Networks.29

II.B.1. PotentialNet Architectures for Molecular Property
Prediction. To motivate architectures for more principled
DNN predictors, we invoke the following notation and
framework. First, we introduce the distance matrix

∈ ×R N N( ) , whose entries Rij denote the distance between
atomi and atomj. Thus far, the concept of adjacency, as
encoded in a symmetric matrix A, has been restricted to
chemical bonds. However, adjacency can also encompass a
wider range of neighbor types to include noncovalent
interactions (e.g., π−π stacking, hydrogen bonds, hydrophobic
contact). Adjacency need not require domain expertise:
pairwise distances below a threshold value can also be used.
Regardless of a particular scheme, we see how the distance
matrix R motivates the construction of an expanded version of
A. In this framework, A becomes a tensor of shape N × N ×
Net, where Net represents the number of edge types.

If we order the rows by the membership of atomi to either
the protein or ligand, we can view both A and R as block
matrices, where the diagonal blocks are self-edges (i.e., bonds
and noncovalent interactions) from one ligand atom to
another ligand atom or from one protein atom to another
protein atom, whereas off-diagonal block matrices encode
edges from the protein to the ligand and from ligand to
protein. For illustration purposes, we choose the special case
where there is only one edge type, Net = 1:
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where Aij is 1 for neighbors and 0 otherwise, and ∈ ×A N N .
Within this framework, we can mathematically express a spatial
graph convolutiona graph convolution based on notions of
adjacency predicated on Euclidean distanceas a general-
ization of the GGNN characterized by the update, eq 2.
In addition to edge type generalization, we introduce

nonlinearity in the message portion of the graph convolutional
layer:
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where NN(e) is a neural network for each edge type e and
N(e)(hi) denotes the neighbors of edge type e for atom/node i.
Finally, we generalize the concept of a layer to the notion of

a stage that can span several layers of a given type. The staged
PotentialNet consists of three main steps: (1) covalent-only
propagation, (2) dual noncovalent and covalent propagation,
and (3) ligand-based graph gather (see Figure 2). Stage 1,
covalent propagation, entails only the first slice of the

Figure 2. Visual depiction of multistaged spatial gated graph neural
network. Stage 1 entails graph convolutions over only bonds, which
derives new node (atom) feature maps roughly analogous to
differentiable atom types in more traditional forms of molecular
modeling. Stage 2 entails both bond-based and spatial distance-based
propagation of information. In the final stage, a graph gather
operation is conducted over the ligand atoms, whose feature maps are
derived from bonded ligand information and spatial proximity to
protein atoms.
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adjacency matrix, A(1), which contains a 1 at entry (i, j) if there
is a bond between (atomi, atomj) and a 0 otherwise. Intuitively,
stage 1 computes a new set of vector-valued atom types hi

(b) for
each of the N atoms in the system based on their local
networks of bonded atoms (see Figure 3). Subsequently, stage

2 entails propagation based on both the full adjacency tensor A
which begins with the vector-valued atom types hi

(sp) computed
in eq 1. While stage 1 computes new bond-based “atom types”
for both amino acid and ligand atoms, stage 2 passes both
bond and spatial information between the atoms. For instance,
if stage 1 distinguishes an amide carbonyl oxygen from a
ketone carbonyl oxygen, stage 2 might communicate in the first
layer that that carbonyl oxygen is also within 3 Å of a hydrogen
bond donor (see Figure 4). Finally, in stage 3 a graph gather is
performed solely on the ligand atoms. The ligand-only graph
gather is made computationally straightforward by the block
matrix formulation described in eq 5.

PotentialNet, stage 1
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PotentialNet, stage 2
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PotentialNet, stage 3
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where i(b), j(b), i(sp), j(sp) are (b)ond and (sp)atial neural
networks, and hj

(sp) denotes the feature map for the jth atom at
the end of stage 2.
A theoretically attractive concept in eq 7 is that atom

typesthe 1 × f b per-atom feature mapsare derived from
the same initial features for both ligand and protein atoms. In
contrast to molecular dynamics force fields,30 whichfor
historical reasonshave distinct force fields for ligands and for
proteins which then must interoperate (often poorly) in
simulation, our approach derives the physicochemical proper-
ties of biomolecular interactions from a unified framework.
To further illustrate this, PotentialNet stage 1 and stage 2

exploit different subsets of the full adjacency tensor A.

III. MEASURING EARLY ENRICHMENT IN
REGRESSION SETTINGS FOR VIRTUAL SCREENING

Traditional metrics of predictor performance suffer from
general problems and drug discovery-specific issues. For
regressors, both R2the “coefficient of determination”and
the root-mean-square error (RMSE) are susceptible to single
data point outliers. The RMSE for both classifiers and
regressors account for neither the training data distribution
nor the null model performance. The area under the receiver
operating characteristic curve (AUC)31 does correct this

Figure 3. PotentialNet stage 1 exploits only covalent or bonded
interaction edge types encoded in the first slices of the last dimension
of the adjacency tensor A.

Figure 4. PotentialNet stage 2 exploits both bonded and nonbonded
interaction edge types spanning the entirety of the last dimension of
the adjacency tensor A.
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deficiency in RMSE for classifiers. However, all aforemen-
tioned metrics are global statistics that equally weight all data
points. This property is particularly undesirable in drug
discovery, which is most interested in predicting the tails of
a distribution: while model predictions are made against an
entire library containing millions of molecules, one will only
purchase or synthesize the top scoring molecules. In response,
the cheminformatics community has adopted the concept of
early enrichment. Methods like BEDROC32 and LogAUC33

weight the importance of the model’s highest performers more
heavily.
III.A. Proposed Metric: EFχ

(R). At present, this progress in
early enrichment measurement has been limited to classi-
fication and has yet to include regression. Therefore, we
propose a new metric for early enrichment in regression, the
Regression Enrichment Factor, EFχ

(R), analogous to EFχ. For a
given target

∑ ∑
χ σ χ

=
·

− ̅ =
·χ

χ χ· ·

N

y y

y N
zEF

1
( )

1R

i

N
i

i

N

i
( )

(10)

in which yi values, the experimental (observed) measurement
for sample i, are ranked in descending order according to ŷi, the
model (predicted) measurement for sample i. In other words,
we compute the average z-Score for the observed values of the
top χ% scoring samples. We prefer this approach to computing,
for example, 1/χ·N∑i

χ·N(yi − y̅), which has units that are the
same as yi (i.e., log(Ki) values). Unfortunately, this
unnormalized approach depends on the distribution in the
data set. For instance, in a distribution of log(Ki) measure-
ments, if the maximum deviation from the mean is 1.0, the best
a model can possibly perform would be to achieve an EFχ

(R) of
1.0.
We normalize through division by σ(y), the standard

deviation of the data. This allows comparison of model
performance across data sets with a common unit of
measurement but different variances in those measurements.
The upper bound is therefore equal to the right-hand side of eq
10, where the indexed set of molecules i constitutes the subset
of the χ·N most experimentally active molecules. This value is
dependent on both the distribution of the training data as well
as the value χ. The EFχ

(R) is an average over χ·N z-scores, which
themselves are real numbers of standard deviations away from
the mean experimental activity.34

IV. RESULTS
IV.A. Cross-Validation Strategies. It is well-known that

the performance of DNN algorithms is highly sensitive to
chosen hyperparameters. Such sensitivity underscores the
criticality of rigorous cross-validation.35,36 Several recent
papers, including works that claim specifically to improve
binding affinity prediction on the PDBBind data set,37,38

engage in the practice of searching hyperparameters directly on
the test set. Compounding this problem is a fundamental
deficiency of the main cross-validation procedure used in this
subfield that is discussed below.
While there are newer iterations of the PDBBind data set,

e.g., ref 2, we choose to evaluate performance on PDBBind
200739,40 to compare performance of our proposed architec-
tures to previous methods. In previous works, the PDBBind
2007 data set was split by (1) beginning with the “refined” set
comprising 1300 protein−ligand cocrystal structures and
associated binding free energy; (2) removing the “core” set

comprising 195 samples to form the test set, with (3) the
remaining 1095 samples serving as the training data. We term
this train−test split “PDBBind 2007, Refined Train, Core Test”
below, and compare performance with RF-Score,25 X-
Score,41,42 and networks 7−9 described in this work.
One drawback to train−test split is possible overfitting to the

test set through hyperparameter searching. Another limitation
is that train and test sets will contain similar examples. Whereas
it is typical in other machine learning disciplines for the train
and test set examples to be drawn from the same statistical
distributions, such a setting is not necessarily desirable in a
molecular machine learning setting.43 Drug discovery
campaigns typically involve the synthesis and investigation of
novel chemical matter. To accurately assess the generalizability
of a trained model, the cross-validation strategy should reflect
how that model will be deployed practically. In context of this
reasoning, the “Refined Train, Core Test” strategy is not
optimal for cross-validation. For example, ref 44 showed that
systematically removing samples from the PDBBind 2007
refined set with structural or sequence homology to the core
(test) set significantly attenuated the performance of recent
ML-based methods for affinity prediction.
Therefore, we propose and investigate a cross-validation

strategy that splits all data into three distinct foldstrain,
validation, and test subsetswith agglomerative hierarchical
clustering based on pairwise structural and sequence homology
of the proteins as distance metrics.45,46 Figure 5 contrasts this
technique with other common splitting methods for ligand

Figure 5. Notional comparison of cross-validation splitting
algorithms. The first four vertical panels from the left depict simple
examples of random split, stratified split, time split, and scaffold split.
The rightmost panel depicts a toy example of the agglomerative split
proposed in this work. Both scaffold split and agglomerative split
group similar data points together to promote the generalizability of
the network to new data. Scaffold split uses the algorithm introduced
by Bemis and Murcko47 to group ligands into common frameworks.
The agglomerative split uses hierarchical agglomerative clustering to
group ligand−protein systems according to pairwise sequence or
structural similarity of the proteins. This figure is adapted from ref 3
with permission from the Royal Society of Chemistry.
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binding studies. Both sequence and structural similarity
measures are described in ref 44. The agglomerative clustering
procedure is described in detail in ref 45 and is a specific case
of the method introduced in ref 46. Our cross-validation on the
PDBBind 2007 refined set with sequence similarity resulted in
978 train samples, 221 valid samples, and 101 test samples
(75%−17%−8%); meanwhile, clustering on structural sim-
ilarity yielded 925 train samples, 257 valid samples, and 118
test samples (71%−20%−9%). A Supporting Information file is
provided with the two sets of train, validation, and test
assignments.
IV.B. Performance of Methods on Benchmarks. On the

standard PDBBind 2007 “Refined Train, Core Test” bench-
mark, the PotentialNet Spatial Graph Convolution achieves
state-of-the-art performance as reflected by several metrics.
PotentialNet outperforms RF-Score and X-Score according to
Pearson and Spearman correlation coefficients. The Pearson
correlation score for eqs 7−9 is within error of the reported
score for TopologyNet, the heretofore top performing model
on this benchmark. However, a key caveat must be noted with
respect to this comparison: all cross-validation for this Article,
including all of our results reported in Tables 1−3, was
performed such that performance on the test set was recorded
for the hyperparameter set that performed most highly on the
validation set. In contrast, in the TopologyNet study,37 models
were trained on a combination of the validation and training
sets and evaluated directly on the test set. Performance for
TopologyNet37 therefore reflects a train−validation type split
rather than a train−validation−test split, which likely inflated
the performance of that method.

Intriguingly, the gap in performance between the Potential-
Net Spatial Graph Convolution and the other tested statistical
models changes considerably on the agglomerative structure
and sequence split benchmarks. On sequence split, RF-Score
achieves the best overall performance, followed by a statistical
tie between the Staged Spatial Graph Convolution, eqs 7−9 ,
and X-Score, followed by the ligand-only graph convolutional
control. Meanwhile, on structure split, PotentialNet achieves
the highest overall performance, followed by RF-Score,
followed by a statistical tie of X-Score, and the graph
convolutional ligand-only control.
It is noteworthy that the PotentialNet Spatial Graph

Convolutions (eqs 7−9) perform competitively with other
compared methods when the proposed Spatial Graph
Convolutions are predicated on very simple, per-atom features
and pure notions of distance whereas RF-Score, X-Score, and
TopologyNet all directly incorporate domain-expertise-driven
information on protein−ligand interactions.

IV.B.1. Sanity Check with a Traditional RNN. Given the
unreasonable effectiveness of deep learning methods in mostly
unstructured settings, it is important to justify our incorpo-
ration of domain knowledge over a purely deep learning-based
approach. To do this, we trained a bidirectional long short-
term memory (LSTM) network, a commonly used recurrent
neural network (RNN) that handles both past and future
context well. We represented the protein−ligand complexes
using a sequential representation of protein−ligand complexes
in PDBBind: proteins were one-hot encoded by amino acid,
and ligands were similarly encoded on a character-level using
their SMILES string representation. The test Pearson
correlation coefficient corresponding to the best validation

Table 1. Benchmark: PDBBind 2007, Refined Train, Core Testa

model Test R2 Test EFχ
(R) Test Pearson Test Spearman Test stdev Test MUE

PotentialNet 0.668 (0.043) 1.643 (0.127) 0.822 (0.021) 0.826 (0.020) 1.388 (0.070) 0.626 (0.037)
PotentialNet, (ligand-only control) 0.419 (0.234) 1.404 (0.171) 0.650 (0.017) 0.670 (0.014) 1.832 (0.135) 0.839 (0.005)
TopologyNet, no validation set N/A N/A 0.826 N/A N/A N/A
RF-Score N/A N/A 0.783 0.769 N/A N/A
X-Score N/A N/A 0.643 0.707 N/A N/A

aError bars are recorded as standard deviation of the test metric over three random initializations of the best model as determined by average
validation set score. MUE is mean unsigned error. Pearson test scores for TopologyNet are reported from ref 37, and RF- and X-Scores are
reported from ref 44.

Table 2. Benchmark: PDBBind 2007 Refined, Agglomerative Sequence Splita

model Test R2 Test EFχ
(R) Test Pearson Test Spearman Test MUE

PotentialNet 0.480 (0.030) 0.867 (0.036) 0.700 (0.003) 0.694 (0.012) 1.680 (0.061)
ligand-only PotentialNet 0.414 (0.058) 0.883 (0.025) 0.653 (0.031) 0.674 (0.020) 1.712 (0.110)
RF-Score 0.527 (0.014) 1.078 (0.143) 0.732 (0.009) 0.723 (0.013) 1.582 (0.034)
X-Score 0.470 1.117 0.702 0.764 1.667

aError bars are recorded as standard deviation of the test metric over three random initializations of the best model as determined by average
validation set score. MUE is mean unsigned error. X-Score does not have error because it is a deterministic linear model.

Table 3. Benchmark: PDBBind 2007 Refined, Agglomerative Structure Splita

model Test R2 Test EFχ
(R) Test Pearson Test Spearman Test MUE

PotentialNet 0.629 (0.044) 1.576 (0.053) 0.823 (0.023) 0.805 (0.019) 1.553 (0.125)
ligand-only PotentialNet 0.500 (0.010) 1.498 (0.411) 0.733 (0.007) 0.726 (0.005) 1.700 (0.067)
RF-Score 0.594 (0.005) 0.869 (0.090) 0.779 (0.003) 0.757 (0.005) 1.542 (0.046)
X-Score 0.517 0.891 0.730 0.751 1.751

aError bars are recorded as standard deviation of the test metric over three random initializations of the best model as determined by average
validation set score. MUE is mean unsigned error. X-Score does not have error because it is a deterministic linear model.
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score (using the same metric) was 0.518, far worse than our
results and justifying our model’s incorporation of domain
knowledge.
IV.C. Ligand-Based Models.While crystallography, NMR,

and, most recently, cryoelectron microscopy have opened a
new paradigm of structure-based drug design, many critical
tasks of drug discovery can be predicted from the chemical
composition of a given molecule itself, without explicit
knowledge of the macromolecule(s) to which they bind.
Such properties include electronic spectra (important for
parametrizing small molecule force fields for molecular
dynamics simulations, for example), solubility, and animal
toxicity.
Quantum mechanical data sets are particularly ripe for

machine learning algorithms since it is straightforward to
generate training data at some known accuracy. The QM8 data
set,48 which contains several electronic properties for small
molecules in the GDB-8 set, lends itself particularly well for
benchmarking PotentialNet eqs 7−9 since each compound’s
properties are calculated based on the three-dimensional
coordinates of each element. The ESOL solubility49 and
Tox21 toxicity50 data sets map two-dimensional molecular
representations consisting solely of atoms and their bonds to
their respective single-task and multitask outputs, and therefore
serve as validation of our neural network implementations as
well as of the value of incorporating nonlinearity into the
message function.
To summarize, our computational experiments indicate that

PotentialNet leads to statistically significant improvements in
performance for all three investigated ligand-based tasks. For
the QM8 data set, we were able to directly assess the
performance benefit that stems from separating spatial graph
convolutions into distinct stages. Recall that stage I of
PotentialNet, eq 7, propagates information over only bonds
and therefore derives differentiable “atom types”, whereas stage
II of PotentialNet, eq 8, propagates information over both
bonds and different binned distances. We performed an
experiment with QM8 in which stage I was essentially skipped,
and graph convolutions propagated both covalent and
noncovalent interactions without a privileged first stage for
only covalent interactions. Clearly, separating the two stages
led to a significant boost in performance.
For each ligand model investigation we benchmark against

the error suggested upon introduction of the data set, or to
enable direct comparison with previously published ap-
proaches. For extensive benchmarking of various models on
these and other data sets, we refer the reader to ref 3.
IV.C.1. Quantum Property Prediction. Table 4 reports the

performances in mean absolute error (MAE) over 21 786
compounds and 12 tasks in QM8. We utilize MAE for
consistency with the original proposal of the database.48

Multiple PotentialNet variants and two mature deep learning
models, deep tensor neural network51 (DTNN) and message
passing neural network8 (MPNN), are evaluated, in which the
latter two models proved to be successful on quantum
mechanical tasks (e.g., atomization energy3). We restricted
the training length to 100 epochs and performed 100 rounds of
hyperparameter search on PotentialNet models. The staged
spatial PotentialNet model achieved the best performances in
the group, demonstrating strong predictive power on the tasks.
We have also included taskwise results in Appendix B.

IV.C.2. Toxicity. In the multitask toxicity benchmark, we
evaluated the performances of two graph convolutional type
models5,16 and PotentialNet on the Tox21 data set under the
same evaluation pattern (see Table 5). With 100 epochs of
training, PotentialNet demonstrated higher ROC−AUC scores
on both validation and test scores, outperforming Weave and
GraphConv by a comfortable margin.

IV.C.3. Solubility. The same three models are also tested and
compared on a solubility task,49 using RMSE to quantify the
error to compare to previous work.16 PotentialNet achieved
slightly smaller RMSE than Weave and GraphConv (Table 6).
Under the limited 100 epochs training, the final test RMSE is
comparable or even superior to the best scores reported for
Weave and GraphConv (0.465 and 0.52,16 respectively).

V. DISCUSSION
Spatial Graph Convolutions exhibit state-of-the-art perform-
ance in affinity prediction. Whether based on linear regression,
random forests, or other classes of DNNs, all three of RF-
Score, X-Score, and TopologyNet are machine learning models
that explicitly draw upon traditional physics-based features.
Meanwhile, the Spatial Graph Convolutions presented here
use a more principled deep learning approach. Input features
are only basic information about atoms, bonds, and distances.
This framework does not use traditional hand-crafted features,
such as hydrophobic effects, π-stacking, or hydrogen bonding.
Instead, higher-level interaction “features” are learned through
intermediate graph convolutional neural network layers.

Table 4. Quantum Property Prediction with QM8 Data Seta

network Valid MAE Test MAE

spatial PotentialNet, staged 0.0120 0.0118 (0.0003)
spatial PotentialNet, SingleUpdate 0.0133 0.0131 (0.0001)
MPNN 0.0142 0.0139 (0.0007)
DTNN 0.0168 0.0163 (0.0010)

aError bars are recorded as standard deviation of the test metric over
three random initializations of the best model as determined by
average validation set score.

Table 5. Toxicity Prediction with the Tox21 Data Seta

network Valid ROC−AUC Test ROC−AUC

PotentialNet 0.878 0.857 (0.006)
Weave 0.852 0.831 (0.013)
GraphConv 0.858 0.838 (0.001)
XGBoost 0.778 0.808 (0.000)

aError bars are recorded as standard deviation of the test metric over
three random initializations of the best model as determined by
average validation set score.

Table 6. Solubility Prediction with the Delaney ESOL Data
Seta

network Valid RMSE Test RMSE

PotentialNet 0.517 0.490 (0.014)
Weave 0.549 0.553 (0.035)
GraphConv 0.721 0.648 (0.019)
XGBoost 1.182 0.912 (0.000)

aError bars are recorded as standard deviation of the test metric over
three random initializations of the best model as determined by
average validation set score.
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The traditional PDBBind 2007 benchmark uses 1105
samples from the refined set for training and 195 from the
core set for testing. Here, Spatial Graph Convolutions
outperform X-Score and RF-Score and perform comparably
with TopologyNet (even though this searched hyperpara-
meters directly over the test data set). On our proposed
agglomerative clustering cross-validation benchmark, the
choice of sequence or structure split affects relative perform-
ance. On sequence split, RF-Score achieved the highest overall
performance, with Staged Spatial Graph Convolutions and X-
Score statistically tied for second. However, on structure split,
the Staged Spatial Graph Convolutions performed best, with
RF-Score in second place.
While the Pearson correlation was employed in the

preceding performance comparison, instead, comparing
methods through EFχ

(R) tells a mildly different story. On the
agglomerative sequence cross-validation split, in which test
proteins are separated from train proteins based on amino acid
sequence deviation, X-Score statistically ties RF-Score for the
best model, while PotentialNet statistically ties the ligand-only
PotentialNet control for last place at over 0.1 average standard
deviations worse than X-Score and RF-Score for the top 5% of
predictions. Meanwhile, using the agglomerative structure
cross-validation split, PotentialNet exceeds the performance of
X-Score and RF-Score by over 0.5 average standard deviations,
although it is within a statistical tie of the ligand-only
PotentialNet control (which has a surprisingly high variance
in its EFχ

(R)). Taken together, we aver that it is important for
the future of ML-driven structure-based drug discovery to
carefully choose both (1) the cross-validation technique and
(2) the metric of performance on held-out test set to most
accurately reflect the capacity of their models to generalize in
simulated realistic settings.
In light of the continued importance and success of ligand-

based methods in drug discovery, we benchmarked Potential-
Net on several ligand based tasks: electronic property
(multitask), solubility (single task), and toxicity prediction
(multitask). Statistically significant performance increases were
observed for all three prediction tasks. A potentially step
change improvement was observed for the QM8 challenge
which also reinforced the value of the concept of stages that
privilege bonded from nonbonded interactions (see Table 4).
Despite the simpler input featurization, Spatial Graph

Convolutions can learn an accurate mapping of protein−
ligand structures to binding free energies using the same
relatively low amount of data as previous expertise-driven
approaches. We thus expect that as larger sets of training data
become available, Spatial Graph Convolutions can become the
gold standard in affinity prediction. Unfortunately, such larger,
publicly available data sets are currently nonexistent. We thus

call upon academic experimental scientists and/or their
pharmaceutical industry counterparts to release as much
high-quality protein−ligand binding affinity data as possible
so the community can develop and benefit from better affinity
prediction models.
Due to the field’s immense practical applications, our

algorithms must prioritize realizable results over incremental
improvements on somewhat arbitrary benchmarks. We thus
also present a new benchmark score and accompanying cross-
validation procedure. The latter draws on agglomerative
clustering of sequence and structural similarity to construct
challenging train−test splits. Using this proposed cross-
validation schema, on sequence-based splitting (Table 2) we
observe in the Pearson correlation column that RF-Score
exceeds X-Score, and X-Score statistically ties Spatial Graph
Convolutions. For structure-based splitting (Table 3) we
observe that Spatial Graph Convolutions exceeds both RF-
Score and X-Score in the Pearson correlation column. We
highlight the Pearson correlation for consistency with the
literature, but present other metrics in Tables 2 and 3 from
which similar conclusions could be drawn.
This construction (i.e., choice of cross-validation schema)

helps assess models with a practical test set, such as one
containing newly designed compounds on previously unseen
protein targets. Although standard machine learning practice
draws train and test sets from the same distribution, if machine
leaning is to be applied to real-world drug discovery settings it
is imperative that we accurately measure a given model’s
capacity both to interpolate within familiar regions of chemical
space as well as to generalize to its less charted territories.

VI. METHODS

VI.A. Models. DNNs were constructed and trained with
PyTorch.52 Custom Python code was used based on RDKit53

and OEChem54 with frequent use of NumPy55 and SciPy.56

Networks were trained on chemical element, formal charge,
hybridization, aromaticity, and the total numbers of bonds,
hydrogens (total and implicit), and radical electrons. Random
forest and linear regression models (i.e., X-Score) were
implemented using scikit-learn;57 all random forests models
were trained with 500 trees and 6 features per tree, and the
implementation of X-Score is described in ref 44. Hyper-
parameters for PotentialNet models trained for binding affinity,
electronic properties, toxicity, and solubility studies are given
in Table 7; for toxicity and solubility models, only bond graph
convolution layers are employed since there are no 3D
coordinates provided for the associated data sets. For these
three tasks, random splitting was used for cross-validation. For
the RNN sanity check of the ligand binding task, the best-

Table 7. Hyperparameters for Neural Networks (equations 7−9)

network hyperparameter name symbol possible values

PotentialNet gather widths (bond and spatial) f bond, fspatial [64, 128]
PotentialNet number of bond convolution layers bondK [1, 2]
PotentialNet number of spatial convolution layers spatialK [1, 2, 3]
PotentialNet gather width fgather [64, 128]
PotentialNet number of graph convolution layers K [1, 2, 3]
both fully connected widths nrows of W

(FCi) [[128, 32, 1], [128, 1], [64, 32, 1], [64, 1]]
both learning rate [1e−3, 2e−4]
both weight decay [0., 1e−7, 1e−5, 1e−3]
both dropout [0., 0.25, 0.4, 0.5]
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performing LSTM sanity check was constructed with 5 layers,
a hidden size of 32, 10 classes, and a learning rate of 3.45e−4.
VI.B. Cross-Validation on PDBBind 2007 Core Test Set

Benchmark. The core set was removed from the refined set
sorted temporally to create the test set. Up to 8 hyper-
parameters were tuned through random search. K-fold
temporal cross-validation was conducted within the train set
for each hyperparameter set. For each held-out fold, validation
set performance was recorded at the epoch with maximal
Pearson correlation coefficient between the labeled and
predicted values in the validation set. For each hyperparameter
set, the validation score was the average Pearson score over the
K folds using the best epoch for each fold. The set with the
best validation score was then used to evaluate test
performance. The training set was split into K temporal
folds; for each fold, test set performance was recorded at the
epoch with highest validation score. All reported metrics are
given as the median with the standard deviation over K folds in
parentheses.
VI.C. Cross-Validation on PDBBind 2007 Structure

and Sequence Agglomerative Clustering Split Bench-
marks. Agglomerative clustering was performed with Ward’s
method.58 Pairwise distance between PDB proteins was
measured as either 1.0 minus the sequence homology or the
TMScore.59 Within the train set, for each hyperparameter set,
K random splits within the train set were performed. For each
held-out fold, validation set performance was recorded at the
epoch with maximal Pearson correlation coefficient. The set
with the best average Pearson score on the validation set was
used to evaluate test set performance. The training set was
again randomly split into K folds; for each fold, test set
performance was recorded at the epoch at which the held-out
performance was highest according to Pearson score. Metrics
are reported as detailed above.

■ APPENDIX A: COMPUTATIONAL COMPLEXITY OF
NETWORK ARCHITECTURES

Here, we consider the complexity of the various neural
architectures discussed in Section II, starting with the simple
fully connected setting. Forward propagation can be under-
stood as passing an input vector x of length n through h matrix
multiplications, each n( )3 , and h elementwise nonlinear
activation layers, each n( ). Assuming h≪ n, this yields a total
complexity of n( )3 . Since back-propagation involves the same
dimensions and number of layers, just in reverse order, it has
the same complexity as the forward operation.
Complexity analysis for a 2D convolutional neural network,

typical in computer vision tasks, is a bit more involved. An m-
× n-dimensional filter on an M × N image yields m × n
computations on M × N pixels, in total MNmn( ). Using the
fast Fourier transform for optimized processing, a single
convolutional layer will be MN MN( log ), the same
complexity as the entire network. Notice that these operations’
costs grow exponentially with the dimension of Euclidean
datamaking the exploitation of symmetry far more important
for 3D graph data.
The GGNN family of graph convolutional architectures

includes effective optimizations to reduce complexity on
graphs. Let d be the dimension of each node’s internal hidden
representation and n be the number of nodes in the graph. A
single step of message passing for a dense graph requires

n d( )2 2 multiplications. Breaking the d dimensional node

embeddings into k different d
k

dimensional embeddings

reduces this runtime to ( )n d
k

2 2

. As most molecules are

sparse or relatively small graphs, these layers are typically

( )nd
k

2

. Although other optimizations exist, such as utilizing

spectral representations of graphs, the models presented in this
work build around this general GGNN framework with
different nonlinearities and update rules. None of these are
sufficiently computationally expensive enough to alter the total
runtime.

■ APPENDIX B: TASKWISE RESULTS FOR QUANTUM
PROPERTY PREDICTION

In Table 8 we have recorded the test set performances for all
12 tasks in the QM8 data set using the MAE for a deep tensor

neural network51 (DTNN), a message passing neural network8

(MPNN), and the staged and single update Spatial
PotentialNet networks as in Section II.B.1.
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