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Abstract

Background: Folate receptors (FRs) facilitate embryonic uptake of folates and are important for
proper early embryonic development. There is accumulating evidence that blocking FR
autoantibodies contribute to developmental diseases. However, genetic factors associated with the
expression of FR autoantibodies remain unknown.

Objective: We investigated the effects of genetic polymorphisms in folate pathway genes on FR
autoantibody titers in women.

Methods: We recruited 302 pregnant women in China. The FR antigen-down immunoassay was
used to measure levels of FR autoantibodies including human immunoglobulin G (1gG) and
immunoglobulin M (IgM) in maternal plasma. Genotypes were identified by matrix-assisted laser
desorption/ionization time of flight mass spectrometry and polymerase chain reaction methods.
General linear model was used to analyze the effects of genetic variants on FR autoantibody
levels.

Results: Significant associations were observed between genotypic variations and levels of FR
autoantibodies. Plasma levels of FR autoantibodies in women with the TT genotype at MTHFR
rs1801133 were significantly higher than those of women with the CC genotype (1gG: p = 0.62,
95% CI 0.21-1.04; IgM: g = 0.42, 95% CI 0.12-0.72). For DNMT3A rs7560488, the level of FR
autoantibody IgG significantly increased in the TT genotype compared with CC genotype (p =
0.90, 95% CI 0.20-1.59). For MTHFDZ2rs828903, genotype GG was associated with elevated
levels of FR autoantibody IgM compared to the AA genotype (f = 0.60, 95% CI 0.10-1.10). No
association was detected between genetic variants of the DHFR gene with FR autoantibodies
levels.
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Conclusion: Genetic variations in MTHFR, DNMT3A, and MTHFDZ genes were associated
with elevated plasma levels of FR autoantibodies.
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INTRODUCTION

Folate is also referred to as vitamin Bg and is known to play important roles during
embryonic development (De-Regil, Pena-Rosas, & Fernandez-Gaxiola, 2015).
Supplementation with folic acid (FA) is recommended for women of child-bearing age to
prevent selected birth defects, including the birth of babies with neural tube defects (NTDs)
(Czeizel & Dudas, 1992). FA is an essential vitamin, meaning that it cannot be synthesized
by the body, and deficiencies are common in the absence of folate supplementation or
fortification programs. The folate receptor alpha (FR—a) has a high affinity for folate, and
functions in the cellular folate uptake (Frye et al., 2016; Rijnboultt et al., 1996). Therefore,
normal binding of folates to the FR—a. is necessary for maternal uptake of folate and
transport to the embryo during early development (Henderson, Perez, & Schenker, 1995;
Piedra-hita et al., 1999; Rosenquist & Finnell, 2001; Weitman, Lark, & Coney, 1992).

There have been reports of maternal expression of an autoantibody (called the FA
autoantibody) that can specifically bind to the FR and adversely affect cellular folate uptake
in rats and humans (Coulam, 2000). Antibodies to FR administered to pregnant rats were
shown to induce embryonic damage, and the distribution of the antibody to the FR in the
embryonic and extra embryonic tissues was similar to that of the FR, suggesting that the FR
antibody can specifically bind to this receptor (da Costa, Sequeira, Rothenberg, & Weedon,
2003). Scientists working in the area of ovarian and breast cancer research determined that
the T-cell activation against FR can produce specific autoantibodies to FR in humans
(Knutson et al., 2006). FR autoantibodies have been related to multiple different diseases,
such as increasing the risk for complex birth defects including NTDs (Cabrera et al.,
2008)and cleft lip and cleft palate (Bliek, Rothenberg, & Steegers-Theunissen, 2006), as
well as autism (Ramaekers, Sequeira, Blau, & Quadros, 2008), and low fertility (Berrocal-
Zaragoza et al., 2009). Rothenberg and colleagues first reported autoantibodies in the plasma
of women who previously had a pregnancy complicated by NTDs that was bound to the FR
and blocked the cellular uptake of folate in vitro (Rothenberg et al., 2004). Subsequently,
several studies have now shown that FR autoantibodies are associated with an elevated risk
of NTDs (Boyles et al., 2011; Cabrera et al., 2008; Yang et al., 2016).

Pathogenic autoimmune responses arise when functional proteins become modified or
damaged and no longer recognized as self. Autoantibodies targeting these altered proteins
may cross-react with the unmodified proteins, causing a loss of function. Two such post-
translational modifications, N-and S-homocysteinylation, are directly tied to folate
metabolism. Insufficient folate in the diet leads to low circulating levels in the blood, which
causes homocysteine (Hcy) levels to rise. It has been reported that high levels of Hcy are
associated with the induction of autoantibodies to N-homocysteinylated self-antigens (Undas
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et al., 2004, 2006). In healthy individuals, reduction in Hcy levels leads to reduction of
autoantibodies targeting N-homocysteinylated proteins (Undas et al., 2006). The pathogenic
implications of homocysteinylated FR are particularly intriguing, considering the potentially
synergistic interaction between reduced folate levels, increased FR homocysteinylation,
increased FR autoantibodies, and impaired folate transport. Therefore, we hypothesized that
genetic variations in folate and Hcy metabolic pathways are associated with higher titers of
FR auto-antibodies. Based on this hypothesis, we targeted genetic polymorphisms in
selected genes involved in one carbon metabolism and methylation reactions including:
5,10-methylenetetrahydrofolate reductase (M THFR), DNA (cytosine-5)-
methyltransferase-3A (DNMT3A), bifunctional methylenetetrahydrofolate dehydrogenase/
cyclohydrolase, mitochondrial (MTHFDZ2), and dihydrofolate reductase (DHFR), in order to
investigate their effects on the levels of FR autoantibodies.

MATERIALS AND METHODS
Study population

The subjects were recruited from a population-based birth defects surveillance system in five
rural counties of Shanxi Province (Taigu, Pingding, Xiyang, Shouyang, and Zezhou) in
northern China between 2011 and 2013. The present study included 99 women with NTD-
affected pregnancies and 203 control women whose pregnancies ended in term healthy
newborns, or in terminated fetuses without congenital malformations. In-person interviews
were performed by trained local health workers at the delivery hospitals within the first week
of delivery or pregnancy termination. Information on maternal social demographic
characteristics, reproductive history and periconceptional folic acid supplementation was
collected. Samples of maternal venous blood were collected at delivery or at the time of the
termination of the pregnancy. Blood cells and plasma were separated by centrifugation for
DNA extraction and genotyping, and for measurement of FR autoantibodies, respectively.
Aliquoted cells and plasma samples were stored at —80°C until they were used for these
analyses. The study was approved by the institutional review board of Peking University and
appropriate signed informed consent was obtained for all study subjects.

Assay for FA autoantibodies

FR autoantibodies were measured by immobilizing FR from human placenta to
immunoassay plates and detecting diluted human serum immunoglobulin G (IgG) and
immunoglobulin M (IgM) with the respective secondary antibodies, as previously
described(YYang et al., 2016).

Identification of genotypes

We selected variants in the folate pathway related genes including: MTHFR, DNMT3A,
MTHFDZ, and DHFR with minimum allele frequency (MAF)>0.1 in the Chinese Han
Beijing population (Table 1). Genomic DNA was prepared from peripheral leukocytes using
Relax Gene blood DNA System (Relax Gene; TIANGEN, Beijing, China). The genotypes at
MTHFR rs1801133 and rs1476413, DNMT3A rs7560488, MTHFDZ2rs828903 and
rs7340453 were determined by using the Sequenom MassARRAY MALDI-TOF (Matrix-
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Assisted Laser Desorption/lonization Time of Flight Mass Spectrometry) system (Sequenom
Inc., San Diego, CA, USA).

The DHFR 19bp-deletion/insertion (rs70991108) was genotyped as follows: Briefly, PCR
used the forward primer 5"-CCACGGTCGGGGTACCTGGG-3" and reverse primer 5'-
AAAAGGGGAATCCAGTCGG-3” for the DHFR 19bp-insertion and the forward primer
5'-ACGGTCGGGGTGGC CGACTC-3" and reverse primer 5'-AAAAGGGGAATCCA
GTCGG-3’ for the DHFR 19bp-deletion. The mixture was denatured at 95°C for 10 min,
and the PCR reaction was performed for 35 cycles under the following conditions:
denaturation at 95°C for 2 min, annealing at 58°C for 30 s, and extension at 72°C for 1 min
and a final extension cycle of 72°C was for 5 min. There were two PCR reactions. PCR
products were analyzed on an agarose gel (3%). A single fragment of 112 base pairs (bp)
was identified as homozygous; two fragments of 112 and 93 bp were identified as
heterozygous (Figure 1).

Statistical analysis

The Hardy-Weinberg equilibrium constant was assessed using the chi-squared (Xz) test.
Pairwise linkage disequilibrium of genetic polymorphisms was estimated using the
Haploview software program (version 4.0). Given that the distribution of the IgG and IgM
was right-skewed, values of the IgG and IgM were transformed using the natural logarithm.
Analysis of variance (ANOVA) was performed to detect differences in FR autoantibody
levels among different study subjects. A general linear model was used to assess any
possible association between genetic polymorphisms and FR autoantibody levels.
Additionally, because the participants included women with NTD-affected pregnancies as
well as women with normal pregnancy outcomes, a stratified analysis by cases and controls
was also performed. A pvalue of <.05 was considered statistically significant. Statistical
analyses were performed using SPSS (SPSS Inc., Chicago, IL), version 22.0 for Windows.

RESULTS

Maternal FR autoantibodies levels with respect to maternal population demographics are
summarized in Table 2. There was no significant difference in FR autoantibodies levels
among women of different maternal age, educational back-ground, occupation,
prepregnancy BMI or between women with and without periconceptional folate
supplementation (p>.05). Multipara women had significantly higher levels of FR
autoantibodies than did primipara women (p<.05).

The MTHFR 1801133 and rs1476413, DNMT3A rs7560488, MTHFDZ rs828903 and
rs7340453, DHFR rs70991108 genotypes were in H-W equilibrium (p>.05) among the study
population. There was no linkage disequilibrium among these genetic polymorphisms (/<.
8). As shown in Table 3, the single nucleotide polymorphisms (SNPs) MTHFR rs1801133,
DNMT3A rs7560488, and MTHFDZ2rs828903 were highly correlated to FR autoantibodies
levels. Plasma FR autoantibody in women with the TT genotype at MTHFR rs1801133were
significantly higher (1gG: p = 0.62, 95% CI 0.21-1.04; IgM: p = 0.42, 95% CI 0.12-0.72)
than those of women with the CC genotype. However, no differences in FR autoantibodies
levels were found between the CT and CC genotypes at MTHFR rs1801133. For DNMT3A
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rs7560488, the level of FR autoantibody 1gG significantly increased in TT genotype (f =
0.90, 95% CI 0.20-1.59) compared with CC genotype, whereas no significant difference was
found between the CT and CC genotypes in terms of the levels of FR autoantibody 1gG, or
between TT/CT and CC in levels of FR autoantibody IgM. At the MTHFD2rs828903 locus,
genotype GG was associated with elevated plasma levels of FR autoantibody IgM (p = 0.60,
95% ClI 0.10-1.10) compared to the AA genotype, whereas no significant difference was
found between the AG and AA genotypes’ levels of FR autoantibody IgM, or between
GG/AG and AA in levels of FR autoantibody 1gG. The SNPs MTHFR 151476413, MTHFDZ2
rs7340453 and DHFR rs70991108 polymorphisms had no association with FR
autoantibodies levels.

Additionally, a stratified analysis was performed on samples from women with NTD-
affected pregnancies and women with normal pregnancies. In NTDs, DNMT3A rs7560488
genotypes were significantly correlated to levels of FR autoantibody 1gG (Table 4). FR
autoantibody 1gG levels were significantly higher in the TT genotype compared with CC of
DNMT3A rs7560488, whereas no significant difference was found between the CC and CT
genotypes in terms of levels of FR autoantibody IgG. No association was found in other
SNPs or with the DHFR rs70991108 polymorphism with respect to FR autoantibodies
levels. In control samples, the SNPs MTHFR rs1801133 and MTHFDZ2rs828903 were
significantly correlated to FR autoantibodies concentrations (Table 4). Among the three
possible genotypes at rs1801133, the FR autoantibody level of women with the TT and CT
genotypes were significantly higher than that of women with the CC genotype, respectively.
For MTHFDZ2rs828903, FR autoantibody IgM levels were significantly higher in the GG
genotype compared with the AA genotype samples. No association was found in other SNPs
or in DHFR rs70991108 polymorphisms related to FR autoantibodies levels.

DISCUSSION

In this study, we identified genomic variations in MTHFR, DNMT3A, MTHFDZ and DHFR
genes, and proposed that variations in the genes of the folate pathway may be important
contributors to the expression of FR autoantibodies levels in women. We found that
variations at MTHFRrs1801133, DNMT3A rs7560488, and MTHFD2rs828903 were
associated with titers of FR autoantibodies.

No previous studies have shown that genetic polymorphisms in the folate and Hcy metabolic
pathway are associated with levels of maternal FR autoantibodies. In our study, we found
that the genotypes of MTHFR polymorphisms were related to the levels of FR
autoantibodies produced. The thermolabile protein MTHFR is of great importance for the
regulation of available 5-MTHF, which serves as the main circulating folate required for
Hcy remethylation (Finnell, Shaw, Lammer, & Volcik, 2002). Mutations at MTHFR
rs1801133 can result in 50%—-60% reduced enzyme activity (van der Put et al., 1998), which
can have significant developmental consequences. Previous studies have shown that Hcy
levels were significantly higher in the TT genotype at MTHFR rs1801133 compared to that
in the CT and CC (Cal, Yin, Yang, Zhang, & Cheng, 2014). The FR protein contains several
putative surface lysine residues which may be susceptible to the posttranslational
modification known as homocysteinylation (Cabrera et al., 2008). Studies have shown the
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potential for the formation of a neo-antigen as the FR is modified, inducing the maternal
system to create autoantibodies against this altered FR protein (Jakubowski, 2005). Our
results demonstrate that mutations at MTHFR rs1801133 were associated with elevated FR
autoantibodies. Plasma FR autoantibody titers in women with the TT genotype at MTHFR
rs1801133 were significantly higher than that of women with the CC genotype. Mutations at
MTHFR 51801133 are related to elevated Hcy concentrations which may promote
homocysteinylation of the FR such that the modified FAs may act as neo-antigens capable of
inducing the production of FR autoantibodies.

DNA (cytosine-5)-methyltransferase-3A (DNMT3A) belongs to a family of genes that
encode enzymes involved in the de novo methylation of S-adenosyl methionine during
development (Ding et al., 2012). The TT genotype at DNMT3A rs7560488 has been
previously found to be associated with an increased risk of myelomeningocele (Pangilinan et
al., 2012). Our study was the first to link the TT genotype at rs7560488 with increased levels
of maternal FR autoantibodies.

MTHFDZ plays an important role in folate metabolism by oxidizing one carbon units and
recycling the folate cofactor required by the glycine-synthesizing enzyme serine
hydroxylmethyltransferase (SHMT2) (Hol et al., 1998). It has been reported that genetic
variations in MTHFDZ2 were associated with an increased risk of NTDs (Shaw et al., 2009).
Our study found that there was a significant difference in the levels of FR autoantibodies
among the three rs828903 genotypes.

DHFR encodes enzymes which are essential for the conversion of folic acid to active folate
needed for one-carbon metabolism (Nazki, Sameer, & Ganaie, 2014). Studies have
investigated a 19bp deletion/insertion with mixed results. One study found that the DHFR
intronic 19-bp deleted allele may be a protective NTD genetic factor (Parle-McDermott et
al., 2007). Another group showed that the deleted allele was modestly associated with an
increased maternal risk of NTDs (Johnson et al., 2004). Unfortunately, neither study
explained just how this variant might functionally influence NTD susceptibility. The
estimated MAF was 0.085 with an absence of cases or controls with homozygote insertions
in the population of our study. There was no association between DHFR 19bp deletion/
insertion (rs70991108) and FR autoantibodies in this study. No assumptions can be made
specifically for the impact of DHFR homozygous insertions for FR autoantibody levels, due
to the general rarity of these individuals in this population.

The identification of high titers of FR autoantibodies in clinical samples with gene
interactions associated with NTD risk provides strengthening support for the biological
significance of autoantibodies beyond mere association. Managing FR autoimmunity can
potentially influence the management of human fertility and pregnancy (Shapira, Sequeira,
& Quadros, 2015). These data also support additional testing of the proposed mechanisms
involving post-translational modification of FR and opens the possibility of developing
intervention strategies that reduce FR autoantibodies before and during critical stages of
development. Reducing the risk of NTDs via FA supplementation or reducing FR
autoantibodies titers and understanding why some pregnancies escape this prevention
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strategy has broad implications for the estimated 300,000 infants born with NTDs annually
worldwide.

In summary, we found that genetic variations in the MTHFR, DNMT3A, and MTHFDZ2
genes were associated with high levels of FR autoantibodies in maternal plasma. Our study
provides the first evidence that genetic variations in the folate pathway may play an
important role in the extent of FR autoantibody production. Further studies are needed to
elucidate the mechanism by which genetic variations in the folate pathway affect the levels
of FR autoantibodies, examine genenutrient-immune interactions and determine why certain
women are prone to produce blocking antibodies.
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FIGURE 1.
Agarose gel electrophoresis for detecting genotypes at DHFR rs70991108. A single

fragment of 112 bp was identified as homozygous; two fragments of 112 and 93 bp were
identified as heterozygous
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