Science. Author manuscript; available in PMC 2018 December 03.

Published in final edited form as:

Science. 2018 September 28; 361(6409): 1356–1358. doi:10.1126/science.aau0382.

Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom

John K. Brunson^{#1,2}, Shaun M. K. McKinnie^{#1}, Jonathan R. Chekan¹, John P. McCrow², Zachary D. Miles¹, Erin M. Bertrand^{2,3}, Vincent A. Bielinski⁴, Hanna Luhavaya¹, Miroslav Oborník⁵, G. Jason Smith⁶, David A. Hutchins⁷, Andrew E. Allen^{2,8,†}, and Bradley S. Moore 1,9,†

¹Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA.

²Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA 92037, USA.

³Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.

⁴Synthetic Biology and Bioenergy Group, J. Craig Venter Institute, La Jolla, CA 92037, USA.

⁵Institute of Parasitology, University of South Bohemia and Biology Center CAS, Branišovská 31, 370 05 eské Bud jovice, Czech Republic.

⁶Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA.

⁷Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.

⁸Integrative Oceanography Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA.

9Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.

Abstract

exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

Author contributions: J.K.B., S.M.K.M., J.R.C., A.E.A., and B.S.M. conceived the project, designed the experiments, analyzed the data, and wrote the paper, with input from all authors. J.K.B., S.M.K.M., J.R.C., and Z.D.M. performed protein expression and did the enzymology experiments. S.M.K.M and J.K.B. performed chemical synthesis and structural characterization of enzymatic products. J.P.M., E.M.B., J.K.B., and A.E.A. performed the transcriptome analyses. V.A.B. designed vectors and expression constructs and assisted with sequencing. H.L. designed the yeast expression experiments. M.O. constructed the phylogeny. G.J.S. provided the P. multiseries isolate 15091C3. D.A.H. provided P. multiseries biomass for RNA sequencing from the DA induction experiments (17) and helped to design RNA sequencing experiments.

Competing interests: The authors declare no competing interests.

Data and materials availability: Transcriptome sequences are deposited in NCBI's Sequence Read Archive, BioProjectIDs SAMN08773590-SAMN08773622. The sequence of the dab cluster as amplified from P. multiseries 15901C3 is deposited in GenBank, accession no. MH202990. Data used to construct fig. S1 are courtesy of the NASA Ocean Biology Processing Group (OBPG) and are available from https://oceancolor.gsfc.nasa.gov. All other data needed to evaluate the paper are present in the supplementary materials.

[#] These authors contributed equally to this work.

[†]Corresponding author. bsmoore@ucsd.edu (B.S.M.); aallen@jcvi.org (A.E.A.).

Oceanic harmful algal blooms of *Pseudo-nitzschia* diatoms produce the potent mammalian neurotoxin domoic acid (DA). Despite decades of research, the molecular basis for its biosynthesis is not known. By using growth conditions known to induce DA production in *Pseudo-nitzschia multiseries*, we implemented transcriptome sequencing in order to identify DA biosynthesis genes that colocalize in a genomic four-gene cluster. We biochemically investigated the recombinant DA biosynthetic enzymes and linked their mechanisms to the construction of DA's diagnostic pyrrolidine skeleton, establishing a model for DA biosynthesis. Knowledge of the genetic basis for toxin production provides an orthogonal approach to bloom monitoring and enables study of environmental factors that drive oceanic DA production.

Oceanic harmful algal blooms (HABs) are intensifying in frequency and severity in association with climate change (1–3). This phenomenon was exemplified in the summer of 2015 when the North American Pacific coast experienced the largest HAB ever recorded, spanning the Aleutian Islands of Alaska to the Baja peninsula of Mexico (fig. S1) (4). This bloom caused widespread ecological and economic devastation, resulting in the deaths of marine mammals and the closure of beaches and fisheries. The dominant algal species in the 2015 HAB were pennate diatoms of the globally distributed genus *Pseudo-nitzschia*, which are often associated with high production of the excitatory glutamate receptor agonist domoic acid (DA; 1). Mammalian consumption of DA-contaminated shellfish exerts its toxicity at the AMPA and kainate ionotropic glutamate receptors of the central nervous system (5, 6). In humans, a high, single-exposure dose of DA can cause amnesic shellfish poisoning (ASP), which involves symptoms of amnesia, seizures, coma, and in extreme cases, death. Even chronic, low-level consumption of DA may lead to kidney damage, cognitive deficit, and impairment of fetal development, making DA outbreaks an important human health problem (7–10). Similar neurotoxic symptoms have been observed in birds and marine mammals such as sea lions, which suffer spatial memory impairment linked to DA consumption, likely leading to increases in sea lion strandings (11).

Although abiotic (12) and biotic (13) factors have been shown to affect toxicity in culture, the biological and physicochemical mechanisms underlying DA production in *Pseudo-nitzschia* are unclear. Moreover, not all *Pseudo-nitzschia* blooms produce DA (12). An understanding of the genetic basis of DA biosynthesis in diatoms would facilitate determination of the cellular pathway that controls oceanic DA production and thereby diatom toxicity.

Stable isotope experiments (14, 15) suggest that DA is composed of glutamic acid (Glu) and geranyl pyrophosphate (GPP) building blocks. No pathway that involves these starting materials to construct the characteristic pyrrolidine ring of DA has been previously characterized, and thus, our ability to predict candidate bio-synthetic genes using traditional bioinformatic methods was limited. However, we postulated that a redox enzyme, such as a cytochrome P450 (CYP450), generates the 7′-carboxylic acid of DA through three successive oxidations, a reaction common in all branches of life (Fig. 1A) (16).

To identify putative DA biosynthetic genes, we examined patterns of transcriptional activity under previously established conditions—phosphate limitation and elevated CO_2 (17)—that stimulate DA production. We created a differential expression dataset for nearly 20,000

Pseudo-nitzschia multiseries RNA transcripts (table S1). A small fraction (~500; 2.5%) showed consistent up-regulation under phosphate limitation (fig. S2 and table S2), and further refinement of this subset to include genes that were also up-regulated with increasing partial pressure of CO₂ (PCO₂) highlighted only 43 (0.22%) transcripts (table S3). A CYP450 gene showed the highest fold change of all analyzed transcripts under the high PCO₂ and low-phosphate DA-inducing condition (Fig. 1B). This transcript was the only annotated CYP450 gene out of 20 total within the *P. multiseries* genome (220 Mbp; Joint Genome Institute accession no. PRJNA32659) that showed increased transcription (fig. S3 and table S4). When mapped to the public *P. multiseries* genome, this CYP450 was localized to a compact genomic island spanning ~8 kb that possesses three other similarly upregulated genes that are indicative of canonical gene clustering more typically observed in bacterial- and fungal-specialized metabolism (Fig. 1C) (18). Genomic organization in diatoms is not generally typified by clustering of metabolic genes (19, 20). However, clusters of transcriptionally coregulated genes, sensitive to Fe and Si limitation, have been reported (21, 22). The annotated gene functions suggest involvement in terpenoid and redox biochemistry, which are two predicted hallmarks for DA biosynthesis. These gene candidates for DA biosynthetic (Dab) enzymes were annotated as dabA (terpene cyclase), dabB (hypothetical protein), dabC [α -ketoglutarate (α KG)–dependent dioxygenase], and dabD (CYP450) (Fig. 1C). We independently sequenced this gene cluster from an environmental isolate of *P. multiseries* in order to validate its conservation (GenBank accession no. MH202990).

Despite the rarity of the pyrrolidine kainoid skeleton in nature, the putative *dab* gene functions enabled us to initially map our genes onto the suggested biosynthetic pathway (14, 15). We hypothesized that DabA catalyzes the first committed step of DA biosynthesis: *N*-prenylation of L-Glu with GPP to form *N*-geranyl-L-glutamic acid (L-NGG; **2**). DabC and DabD would perform subsequent oxidative reactions (Fig. 2).

We began in vitro validation of the *dab* genes with *dabA*, which contains a chloroplast transit peptide sequence and an intron but low similarity to any characterized protein in the National Center for Biotechnology Information (NCBI) database. Structural prediction by using Phyre2 (23) suggested that DabA may possess a terpene cyclase–like fold, and phylogenetic analysis intimated an evolutionary history related to red algal and bacterial genes (fig. S4). Among diatoms, *dabA* appears restricted to *Pseudo-nitzschia* spp. We expressed recombinant His₆-DabA without the N-terminal transit peptide in *Escherichia coli* and purified the enzyme using Ni²⁺ affinity and size-exclusion chromatography (fig. S5). In vitro, DabA catalyzes the *N*-geranylation of L-Glu to form L-NGG (2) in a Mg⁺²-dependent manner (Fig. 3A). DabA interrogation with structurally similar substrates shows modest promiscuity toward prenyl pyrophosphates but high specificity for Glu (fig. S6). Recently, L-NGG was isolated in low abundance from the DA-containing red alga *Chondria armata* and shown through labeling experiments in *P. multiseries* to be a precursor to DA (24). These observations further implicate *dabA* as a gene that encodes a major step in DA biosynthesis.

To investigate the subsequent transformations of L-NGG, we individually interrogated the activity of the DabC and DabD oxygenases toward this substrate. In the presence of Fe²⁺, L-ascorbic acid, and cosubstrate aKG, recombinant DabC purified from *E. coli* cyclized L-

NGG to form three pyrrolidine ring-containing molecules: 7'-methylisodomoic acids A, B, and C, termed dainic acids A, B, and C (5a to 5c), respectively (Fig. 3A and figs. S7 and S8), of which 5a and 5b had been recently isolated from C. armata (24). DabC, however, showed minimal cyclization of other similarly *N*-prenylated glutamic acids (fig. S7). Enzymatic synthesis of the dainic acids was made more amenable through a one-pot coupled assay using L-Glu, GPP, DabA, DabC, and their requisite cofactors and cosubstrates (fig. S9). Despite DabC generating much of the structural diversity observed within the kainoid metabolites (25), the slow rate of L-NGG consumption and failure to go to completion led us to suspect that this enzyme may instead act on an oxidized substrate, placing DabD oxidation ahead of DabC cyclization in the DA biosynthetic pathway. Incubation of L-NGG with Saccharomyces cerevisiae micro-somes that possess coexpressed transmembrane proteins DabD (fig. S10) and *P. multiseries* CYP450 reductase (*Pm*CPR1) generated small but reproducible quantities of 7'-hydroxy-L-NGG (6) and 7'-carboxy-L-NGG (3) (Fig. 3A and fig. S11), which was validated through comparison with synthetic standards. Conversely, the dainic acid isomers were not substrates of the DabD P450 (fig. S11). 7'-carboxy-L-NGG incubation with DabC showed rapid cyclization to the P. multiseries natural product isodomoic acid A (4) (Fig. 3A), which did not occur in the presence of metal chelator ethylenediaminetetraacetic acid (EDTA). When comparing both DabC in vitro substrates for physiological relevance, 7'-carboxy-L-NGG was consumed at a much faster rate than L-NGG, further suggesting that 7'-carboxy-L-NGG is an on-pathway intermediate (Fig. 3B and fig. S12). Our cumulative in vitro biochemical results imply a DA biosynthetic pathway that begins with the DabA-catalyzed geranylation of L-Glu to yield L-NGG, likely in the chloroplast. DabD then performs three successive oxidation reactions at the 7'-methyl of L-NGG to produce 7'-carboxy-L-NGG, which is then cyclized by DabC to generate the naturally occurring isodomoic acid A (Fig. 2). A putative isomerase likely converts isodomoic acid A to DA. We biochemically interrogated the coclustered dabB gene product but did not observe isomerase activity (fig. S13). Further examination of additionally upregulated transcripts did not suggest an obvious candidate gene (fig. S14). We are actively investigating this final isomerization reaction to complete the pathway to DA.

In addition to *Pseudo-nitzschia* spp., the kainoid structure has been observed in other diatom, red macroalgal, and fungal compounds (fig. S15) (12, 26, 27). In silico application of the *dab* genes as a kainoid ring biosynthetic query identified *dabA* and *dabC* homologs in several red algal transcriptomes (28, 29), including the known kainic acid producer *Palmaria palmata* (fig. S16). Like DA, kainic acid (26) is a structurally related glutamate agonist constructed from a shorter terpene substrate without the need of the DabD P450 oxidation.

With the establishment of the DabACD-dependent biosynthetic pathway to isodomoic acid A in *P. multiseries*, we next linked this discovery to the marine environment. We identified *dab* genes with the same genetic organization and high sequence identity in the genome of the known DA-producing *Pseudo-nitzschia multistriata* (fig. S17) (30). Moreover, of the eight publicly available *Pseudo-nitzschia* transcriptomes, only the highly toxic DA-producing species *Pseudo-nitzschia australis* expressed the *dab* genes (figs. S18 and S19) (31). No *dab* homologs were found in any other sequenced microalgal genera. By virtue of its limited distribution, *dabA* thus presents an opportunity for genetic monitoring of the DA-

producing capabilities of *Pseudo-nitzschia* blooms orthogonal to currently established mass spectrometry–based and enzyme-linked immunosorbent assay–based identification approaches. We anticipate that knowledge of the *dab* genes will allow for greater understanding of the basis and diversity of *Pseudo-nitzschia* toxicity, the physiological function of DA, and the environmental conditions that promote HAB formation so that we may better anticipate risk of exposure to this toxic marine natural product.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We acknowledge B. Duggan, A. Mrse, and Y. Su (all University of California, San Diego) for assistance and maintenance of nuclear magnetic resonance and high-resolution mass spectrometry machinery; W. Fenical (Scripps Institution of Oceanography) for helpful discussion and feedback; and M. Kahru (Scripps Institution of Oceanography) for providing processed satellite images.

Funding:

This work was supported by grants from the National Science Foundation (NSF OCE-1313747 to B.S.M., NSF-ANT-1043671 to A.E.A., and OCE 1538525 and OCE 1638804 to D.A.H.), the National Institute of Environmental Health Sciences (NIEHS P01-ES021921 to B.S.M.), the U.S. Department of Energy Genomics Science program (DE-SC0008593 and DE-SC0018344 to A.E.A.), the Gordon and Betty Moore Foundation (GBMF3828 to A.E.A. and GBMF4960 to G.J.S.), and the Czech Science Foundation (18–13458S to M.O.) and funding from the National Institutes of Health (Chemical Biology Interfaces—University of California, San Diego, training grant 5T32GM112584 to J.K.B.), the Dickinson-McCrink Fellowship (J.K.B.), the Natural Sciences and Engineering Research Council of Canada (NSERC-PDF to S.M.K.M.), and the Simons Foundation Fellowship of the Life Sciences Research Foundation (J.R.C.).

REFERENCES AND NOTES

- 1. Wells ML et al., Harmful Algae 49, 68–93 (2015). [PubMed: 27011761]
- 2. McKibben SM et al., Proc. Natl. Acad. Sci. U.S.A. 114, 239–244 (2017). [PubMed: 28069959]
- 3. Gobler CJ et al., Proc. Natl. Acad. Sci. U.S.A. 114, 4975–4980 (2017). [PubMed: 28439007]
- 4. McCabe RM et al., Geophys. Res. Lett 43, 10366–10376 (2016). [PubMed: 27917011]
- Stewart GR, Zorumski CF, Price MT, Olney JW, Exp. Neurol 110, 127–138 (1990). [PubMed: 2170163]
- 6. Larm JA, Beart PM, Cheung NS, Neurochem. Int 31, 677–682 (1997). [PubMed: 9364453]
- 7. Funk JA et al., J. Am. Soc. Nephrol 25, 1187-1197 (2014). [PubMed: 24511141]
- 8. Lefebvre KA et al., Harmful Algae 64, 20–29 (2017). [PubMed: 28427569]
- 9. Ramsdell JS, Zabka TS, Mar. Drugs 6, 262–290 (2008). [PubMed: 18728728]
- 10. Grattan LM et al., Toxins (Basel) 10, 103 (2018).
- 11. Cook PF et al., Science 350, 1545-1547 (2015). [PubMed: 26668068]
- 12. Lelong A, Hégaret H, Soudant P, Bates SS, Phycologia 51, 168–216 (2012).
- 13. Sison-Mangus MP, Jiang S, Tran KN, Kudela RM, ISME J 8, 63-76 (2014).
- Ramsey UP, Douglas DJ, Walter JA, Wright JL, Nat. Toxins 6, 137–146 (1998). [PubMed: 10223629]
- 15. Savage TJ, Smith GJ, Clark AT, Saucedo PN, Toxicon 59, 25–33 (2012). [PubMed: 22041653]
- 16. Zhang X, Li S, Nat. Prod. Rep 34, 1061–1089 (2017). [PubMed: 28770915]
- 17. Sun J et al., Limnol. Oceanogr 56, 829-840 (2011).
- 18. Medema MH et al., Nat. Chem. Biol 11, 625–631 (2015). [PubMed: 26284661]
- 19. Armbrust EV et al., Science 306, 79–86 (2004). [PubMed: 15459382]

- 20. Bowler C et al., Nature 456, 239-244 (2008). [PubMed: 18923393]
- 21. Allen AE et al., Proc. Natl. Acad. Sci. U.S.A. 105, 10438–10443 (2008). [PubMed: 18653757]
- 22. Sapriel G et al., PLOS ONE 4, e7458 (2009). [PubMed: 19829693]
- 23. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE, Nat. Protoc 10, 845–858 (2015). [PubMed: 25950237]
- 24. Maeno Y et al., Sci. Rep 8, 356 (2018). [PubMed: 29321590]
- 25. Clayden J, Read B, Hebditch KR, Tetrahedron 61, 5713–5724 (2005).
- 26. Nitta I, Watase H, Tomiie Y, Nature 181, 761-762 (1958).
- 27. Konno K, Shirahama H, Matsumoto T, Tetrahedron Lett. 24, 939-942 (1983).
- 28. Saunders GW, Jackson C, Salomaki ED, Mol. Phylogenet. Evol 119, 151–159 (2018). [PubMed: 29137957]
- 29. Matasci N et al., Gigascience 3, 17 (2014). [PubMed: 25625010]
- 30. Basu S et al., New Phytol. 215, 140-156 (2017). [PubMed: 28429538]
- 31. Keeling PJ et al., PLOS Biol. 12, e1001889 (2014). [PubMed: 24959919]

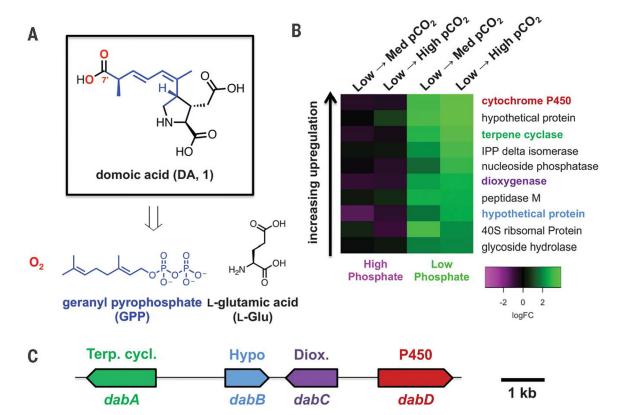


Fig. 1. Identification of domoic acid biosynthetic genes from transcriptomic and genomic data. (A) Structure of DA (1) and its proposed biosynthetic building blocks (14, 15). (B) Ten most up-regulated P. multiseries transcripts under previously reported DA-induction conditions (17). Differential expression changes are each shown with reference to the Pco₂ conditions listed across the top of the heatmap, with phosphate concentrations held constant. (C) DA biosynthesis (dab) gene cluster in the P. multiseries genome.

Fig. 2. Domoic acid (1) biosynthetic pathway based on *dab* gene annotations and in vitro enzyme activities.

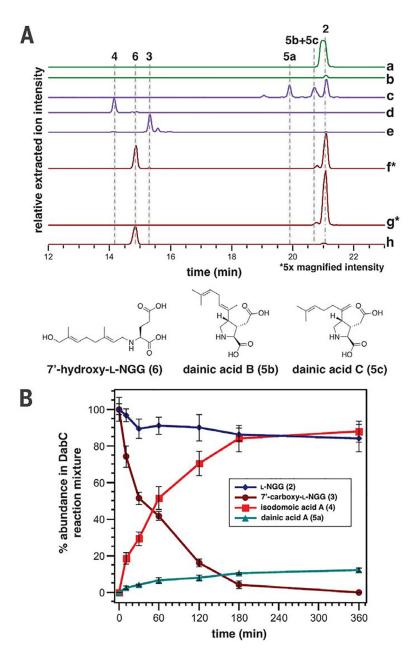


Fig. 3. In vitro characterization of Dab enzymes.

(A) Relative intensities of negative ionization–extracted ion chromatogram liquid chromatography–mass spectrometry traces [(282.1711, 298.1660, 312.1453, 280.1554, 310.1296) \pm 0.01 mass/charge ratio] for in vitro Dab reactions. a, DabA, L-Glu (500 μ M), GPP (500 μ M), MgCl₂ (10 mM); b, DabA, L-Glu(500 μ M), GPP (500 μ M), without MgCl₂; c, DabC, L-NGG (2; 500 μ M), FeSO₄, α KG, L-ascorbic acid; e, DabC, 7′-carboxy-L-NGG (3; 500 μ M), FeSO₄, α KG, L-ascorbic acid; e, DabC, 7′-carboxy-L-NGG (3; 500 μ M), FeSO₄, α KG, L-ascorbic acid, EDTA (1.0 mM); f, DabD and *Pm*CPR1 containing *S. cerevisiae* microsomes, L-NGG (2; 500 μ M), NADPH; g, empty vector *S. cerevisiae* microsomes, L-NGG (2; 500 μ M), NADPH; andh, synthetic 7′-hydroxy-L-NGG (6) standard. Additional enzyme and cosubstrate concentrations can be found in the supplementary

materials. Asterisks indicate that relative extracted ion intensities for traces f and g have been $5 \times$ magnified. (**B**) Comparison of in vitro DabC substrate consumption of L-NGG (2; 1.0 mM) and 7'-carboxy-L-NGG (3; 1.0 mM) and relative formation of respective dainic acid A (**5a**) and isodomoic acid A (**4**) products (n = 3 replicate DabC experiments).