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ABSTRACT

Motivation: The advent of next-generation sequencing technologies
has increased the accuracy and quantity of sequence data, opening
the door to greater opportunities in genomic research.
Results: In this article, we present GNUMAP (Genomic Next-
generation Universal MAPper), a program capable of overcoming
two major obstacles in the mapping of reads from next-generation
sequencing runs. First, we have created an algorithm that
probabilistically maps reads to repeat regions in the genome on
a quantitative basis. Second, we have developed a probabilistic
Needleman–Wunsch algorithm which utilizes _prb.txt and _int.txt
files produced in the Solexa/Illumina pipeline to improve the mapping
accuracy for lower quality reads and increase the amount of usable
data produced in a given experiment.
Availability: The source code for the software can be downloaded
from http://dna.cs.byu.edu/gnumap.
Contact: nathanlclement@gmail.com
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Next-generation sequencing technologies produce fast and accurate
results with base pair level resolution. These technologies are
currently being applied to a diverse set of biological applications
including creating chromatin state maps (Mikkelsen et al., 2007),
performing whole-genome evolutionary analyses (McCutcheon and
Moran, 2007), determining miRNA expression (Morin et al.,
2008), identifying protein–DNA interactions (Johnson et al., 2007),
illuminating histone modification sites (Barski et al., 2007) and
translocation breakpoint identification (Chen et al., 2008). Speed
and quantity of sequenced bases are two areas where next-generation
sequencing outperforms traditional sequencing; but the area in which
next-generation approaches such as the Solexa platform, developed
by Illumina, Inc. (San Diego, CA, USA), provide the greatest benefit
are in the additional information included with each run. Not only
can they provide millions of bases, but for each of these bases,
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intensity and accuracy measures are included, which can then be
translated into a likelihood score at each base.

For most of the applications that use short-read high-throughput
sequencing, tens of millions of DNA or RNA fragments are extracted
from a sample. These fragments are hybridized to a slide and
sequenced to a specified length. A mapping algorithm is then used to
identify the location in a reference genome or transcriptome that was
the most probable source for each segment. If a DNA/RNA sequence
occurs at multiple locations in the genome, it will be impossible to
identify with surety the exact location from which it came. Because
of this difficulty, many mapping algorithms discard any sequences
that map to multiple locations in the genome. If these reads are
discarded, the researcher may miss important genomic features.

As mentioned above, one of the features of next-generation
sequencing technology is the assignment of quality scores to each of
the four nucleotides on all the positions of the sequence. Variations
in chemical processes often result in ambiguous bases, such as
assigning nearly equal probabilities to an A and a C. In addition, the
first few bases in a Solexa sequencing read are very high in quality,
but towards the end of each read, the error rate increases, often
dramatically. Many algorithms will only use the nucleotide with the
highest probability and ‘call’ that location in the read, ignoring the
other three probabilities and the decreasing accuracy near the end
of the read. By following this procedure, if there are more than
a few bases that have lower probability values, the entire read is
discarded. However, if all four probabilities are used in later stages
of the mapping process, even the less-confident reads can be mapped,
resulting in more usable information from the experiment.

Several applications have attempted to solve the mapping
problem. SeqMap (Jiang and Wong, 2008), RMAP (Smith et al.,
2008) and ELAND (included as part of the Solexa/Illumina pipeline)
all create a hash from the reads. This hash is then used to find
matching reads to regions of the genome. Because the genome is not
hashed, there is no way to fairly allocate a read across repeat regions.
MAQ (Li,H. et al., 2008), SOAP (Li,R. et al., 2008) and Novocraft
(unpublished data, http://www.novocraft.com/index.html) also use
a hash map, but the reference genome is hashed instead of the
reads. MAQ allows up to two mismatches in the first 28 bp. More
mismatches are allowed if the Phred-quality score of the entire
read is sufficient (Li,H. et al., 2008). Slider (Malhis et al., 2009)
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gains its speed by lexicographically sorting both the reads and the
windowed regions of the reference genome. To account for inexact
matches (it does not perform gapped alignments), Slider generates
multiple reads with all possible substitutions for each read that
has uncertainty in some read positions, leading to a combinatorial
increase in the number of reads. Bowtie ‘conducts a quality-aware,
greedy, randomized, depth-first search through the space of possible
alignments’ (Langmead et al., 2009). Bowtie is extremely fast, but
makes compromises to achieve that speed. Most notably, if an
exact match does not exist, Bowtie is not guaranteed to map the
read.

A rigorous probabilistic approach to mapping repeat regions and
reads with lower quality scores can result in a significantly larger
number of mapped reads. This can often lead to the identification of
regions of interest on the genome that otherwise would have been
overlooked—for example, mapping to the large number repetitive
genomic elements in mammalian genomes. This article, along
with the Genomic Next-generation Universal MAPper (GNUMAP)
program, focuses on overcoming the aforementioned inaccuracies
for an overall increase in data usage and more accurate read mapping
to a reference genome.

2 APPROACH
Many mapping algorithms discard reads from repeat regions and
do not utilize the quality scores once the base has been ‘called’.
GNUMAP provides a probabilistic approach that utilizes this
additional information to provide more accurate results from fewer
costly sequencing runs.

2.1 Unique mapping position
Accurately mapping reads to repetitive genomic elements is essential
if next-generation sequencing is to be used to draw valid biological
conclusions. For example, a ChIP-seq experiment attempts to
accurately identify small DNA regions interacting with a protein of
interest. Binding motifs often appear in or near repeat regions (Park
et al., 2002; van Helden, 2004), reducing the ability to identify motifs
in these regions. Other applications such as transcription mapping,
alternative splicing analysis and miRNA identification may also
suffer from inaccuracies using such a mapping method. Several
programs (such as RMAP, SeqMap and ELAND) have attempted
to significantly speed up this mapping process through creating a
hash map to efficiently map reads to the genome. Reads are broken
into short, 9–15 bp segments and assigned a numerical value in the
hash map according to their sequence. The genome is then scanned
and the hashing function is used to find corresponding locations for
the genomic sequences in the read hash table. The reads at these
locations are then aligned with the genome until either a match is
found or the alignment is deemed too insignificant to continue. This
strategy of hashing the reads poses a problem when there are multiple
regions in the reference genome that produce the same alignment
score. This approach does not identify all matching regions at the
same time so that the read can be fairly allocated to all of these
regions. This is a significant problem because genomic sequences
contain a large number of repeat regions.

In the human reference genome, <85% of 30 bp sequences are
unique (Butler et al., 2008). On a smaller scale, there are no unique
9 bp sequences. Due to this redundancy, when many programs find

a sequence that matches multiple locations, they erroneously either
discard the sequence or report all matching locations. For example,
assume that an organism’s DNA were sonicated and sequenced,
causing each sequence from the genome to appear exactly once in the
final set of reads. If a read had originated from a repeat region which
occurred three times in the genome, it would also appear three times
in the set of reads. Traditional mapping procedures have attempted
to score these regions in one of three ways: (i) discard all repeat
regions, (ii) record only one position (first or random) for each read
or (iii) record all positions as receiving a hit for each read. Discarding
these reads results in the loss of up to half of the data (Harismendy
et al., 2009). The second method would cause unequal mapping
to some of the repeat regions. The third method would result in
each location having three times the correct score. Since several
algorithms (RMAP, ELAND and SeqMap) hash the reads and then
make a single pass through the genome, there is no way to know how
many genomic locations will match in order to add one third of a read
to each of these locations. The GNUMAP algorithm described below
overcomes this problem by hashing the genome and referencing the
reads one at a time to the genome. This approach allows for the
simultaneous identification of all genomic matches for each read.
GNUMAP then accounts for repetitive elements by assigning a
proportion of the read to relevant genomic matches based on the
relative likelihood that the read maps to each location. It should be
noted that MAQ and SOAP also use an approach that hashes the
genome; however, they do not proportionally assign multi-hit reads
to the genome.

2.2 Information from probability and intensity files
The second problem with current mapping methods for next-
generation sequencing data is the disregard for base-calling
variability and the frequent discard of lower quality data. Several
algorithms (such as MAQ, Bowtie and SOAP) use a single called
base at each position in the read, thus ignoring all uncertainty and
allowing for increased mapping error rates. This means that reads
with a few low-quality bases can lead to an incorrect mapping of a
read. When algorithms apply a quality filter to remove these reads,
as many as half of the reads may be discarded (Harismendy et al.,
2009).

The GNUMAP algorithm effectively incorporates the base
uncertainty of the reads into mapping analysis using a Probabilistic
Needleman–Wunsch algorithm. The Probabilistic Needleman–
Wunsch was developed to improve upon the common dynamic
programming algorithm used for sequence alignment to accurately
use reads with lower confidence values. The algorithm is discussed
further in Section 3 of this article.

3 METHODS
Care must be taken to develop an algorithm that can accurately map millions
of reads to the genome in a reasonable amount of time. In the GNUMAP
algorithm, the genome is first hashed and then stored in a lookup table rather
than hashing the reads. This allows reads to be accounted for in all of the
duplicate genome sites. Next, the reads are efficiently stored as a position-
weight matrix (PWM) so that quality scores can be used when aligning
the read with genomic data. A Needleman–Wunsch alignment algorithm is
modified to use these matrices to score and probabilistically align a read with
the reference genome. Figure 1 is a flowchart which shows the major steps
of the algorithm.
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Fig. 1. A flow-chart of the GNUMAP algorithm. First, the algorithm will incrementally find a k-mer piece in the consensus Solexa read. This k-mer is used
as an index into the hash table, producing a list of positions in the genome with the exact k-mer sequence. These locations are expanded to align the same l
nucleotides from the read to the genomic location. If the alignment score passes the user-defined threshold, the location is considered a hit, and recorded on
the genome for future output.

Step 1: Hashing and storing the genome
Hashing a large portion of the data allows for quick data retrieval while still
maintaining a reasonable amount of memory use. GNUMAP creates a hash
table from the genome instead of the reads, allowing for the computation of
a probabilistic scoring scheme.

The entire genome is hashed based upon either a user-supplied hash
size or the default hash size of nine. A larger hash size will tolerate fewer
mismatches. For example, in a 30 bp read, a hash size of 9 bp will guarantee
that the read is matched to every possible location while still allowing for
three mismatches. Larger hashes will require more memory, but will also
reduce the search space. The amount of memory, B, required based on the
number of bases in the genome, s, and the mer-size of the hash, k, can be
computed as follows:

B=4∗(4k +s). (1)

For example, for a genome (s) of 200 000 bp and a mer-size (k) of 9, the
total memory used (B) will be 4∗ (49 +200000) ≈ 2 Mb of RAM.

Step 2: Processing the reads
One of the novel approaches implemented by GNUMAP lies in the data
structure used for storing the reads. Instead of storing the reads as simple
sequences, or even sequences with an attached probability as in the FASTQ
format, each sequence is stored as a position weight matrix (PWM) (see
Table 1 for an example).

Raw data from the Solexa/Illumina platform are obtained as either an
intensity file or a probability file. From either of these files, it is possible to
compute a likelihood score for any nucleotide of any position on any given
read. There will often be a lack of distinction between the most probable
and another base, such as the ambiguity between G and T seen in position
3 of the PWM in Table 1. Since each read is stored in memory as a PWM,
the information included in each base call allows for the correct mapping of
a given sequence. Converting these bases to a single probability score will
result in the loss of information (Fig. 5c).

Step 3: Score individual matches
In order to match the reads to the reference genome, the reads are first
subjected to a quality filter, removing reads with too many unknown bases.
In order to pass GNUMAP’s quality filter, a sequence (stored as a PWM)
must be able to obtain a positive score when aligned with its own consensus
sequence (the sequence created from using only the most probable bases).
Using this method, very few reads are discarded by the quality filter (usually
only removing reads identified by the Solexa pipeline as having an intensity
of zero at each base).

Table 1. Dynamic Programming (DP) matrix for probabilistic
Needleman–Wunsch

j 0 1 2 3 4 5

PWM A 0.059 0.000 0.172 0.271 0.300
C 0.108 0.320 0.136 0.209 0.330
G 0.305 0.317 0.317 0.164 0.045
T 0.526 0.578 0.375 0.356 0.325

NW T T T T C
0 −2 −4 −6 −8 −10

T −2 0.052 −1.948 −3.948 −5.948 −1000
T −4 −1.844 0.208 −1.792 −3.792 −5.792
C −6 −3.844 −1.792 −0.520 −2.448 −4.448
A −8 −5.844 −3.792 −2.374 −0.978 −2.978
C −10 −1000 −5.792 −4.131 −2.774 −1.318

Aligning the genomic sequence TTCAC and read TTTTC, with the optimal alignment
shown in bold. Also notice the PWM for the sequence, with several fairly ambiguous
positions (especially the final position, probably representing a C, even though the
probabilities for the C and T are nearly equal). The underlined position is computed in
Equation 3.

A sliding window of size k is used to create a hash value which can be used
to find matching positions in the reference genome. The matching genomic
sequence is then aligned to the read using the probabilistic Needleman–
Wunsch algorithm (Table 1).

The probabilistic Needleman–Wunsch score (PNWScore) for read r and
genomic sequence S at position i,j in the dynamic programming matrix NW
can be calculated as:

NWi,j =max

⎧⎨
⎩

NWi−1,j−1 +∑
k∈A,C,G,T PWMk,j ∗costk,Si

NWi−1,j +gapcost
NWi,j−1 +gapcost

(2)

given that costk,j is the cost of aligning the character at position rj with the
character k. For example, using the PWM in Table 1, the calculation of the
score for position 3, 3 in the dynamic programming matrix would be:

max

⎧⎨
⎩

0.208+0.172∗−1+0.136∗1+0.317∗−1+0.375∗−1
−1.792+−2
−1.792+−2

(3)
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(For this example, a match yields a cost of 1, a mismatch yields a cost of
−1 and the cost for a gap is −2. This results in a cost of −0.520 which is
stored at position 3, 3 in the dynamic programming matrix NW .

Step 4: Processing scores
Once the read has been scored against all plausible matches in the genome,
a proportional share of this read will be added to all the matching genomic
locations. In order to compute the hit score at a position in the reference
genome, a posterior probability for each read is computed. For a read r, the
algorithm first finds the n most plausible match locations on the genome,
M1,...,Mn. These matches are scored using the probabilistic Needleman–
Wunch algorithm, to obtain the scores Q1,...,Qn. The value added to the
genome G for each read, r, obtained from each significant match location
Mj , signified by GMj , will then be

GMj =
QMj

nMj QMj +
∑n

k �=j nMk QMk

, (4)

where nMk is the number of times the sequence located at position Mk appears
in the genome.

When using this scoring method, the total score for each sequence at a
particular site in the genome is weighted by its number of occurrences in the
genome. If a given sequence occurs frequently, the value added to a particular
matching site in the final output is down-weighted, removing the bias that
would occur if the match was added to all repetitive regions in the genome.
If, however, there are the same number of duplicate reads as the number of
times the sequence is duplicated in the genome then a whole read will be
added to each of the duplicate locations in the final output.

This scoring technique requires the hashing and storing of the genome
instead of the set of reads. Because the score for a given read is not only
calculated from its alignment score but also by the number of occurrences
of similar regions in the genome, the genome must be scanned for each read
to fairly allocate the read across all matching sites.

Step 5: Create output
After all the reads have been matched and scored on the genome, two output
files are created. The first file identifies the highest scoring match for each
read, and the second file contains the genome in .sgr format for viewing
in the UCSC Genome Browser (http://genome.ucsc.edu/) or Affymetrix’s
Integrated Genome Browser (IGB) (http://www.affymetrix.com).

4 RESULTS
GNUMAP was tested using four datasets—two real and two
simulated. The first dataset is a human ChIP-seq experiment
attempting to identify the in vivo binding sites of the ETS1
transcription factor. The second dataset is a human small RNA
sequencing experiment. In these two examples, we illustrate the
ability for GNUMAP to find biologically relevant features while
maintaining a low false discovery rate as compared with other
mapping algorithms. In addition, in order to justify GNUMAP’s
probabilistic approach, we analyze the overall read quality and
estimate sequencing error rates. We show that GNUMAP is much
less prone to mapping errors than other algorithms based on these
metrics.

In addition, we generated two spike-in datasets that illustrate
GNUMAP’s accuracy in a setting where the correct answer is
known. For the first test dataset, we sampled random simulated reads
from promoter regions from the Caenorhabditis elegans genome.
Thirty-five ‘spikes’ were used as the data and the accuracy of
several mapping algorithms was compared. We also generated a
dataset simulating the specific case where many of the bases are
miscalled by the sequencing method and show that GNUMAP can

still accurately map these reads. For our performance benchmark,
GNUMAP processed 100 000 reads in 47 s and correctly mapped
71 262 of them. As a comparison, MAQ correctly mapped 62 208
in 46.5 s. The performance study shown in Table 3 indicates that
GNUMAP achieves reasonable performance when compared with
other applications, but is able to map significantly more reads.

4.1 Quality score analysis
In order to justify the need for a probabilistic approach to read
mapping, we conducted a quality score analysis on the _prb.txt
files from the ChIP and small RNA datasets [for a similar quality
analysis, see Ossowski et al. (2008) where the authors evaluated an
algorithm that produced spliced alignments of short sequence reads].
The _prb.txt file contains qualities Q that can be transformed into
the probability P of each position being a particular nucleotide using
the formula P=1−1/(10Q/10 +1). We observed that only 71.6%
(ChIP) and 75.9% (small RNA) of the base probabilities were >90%.
This indicates that there are a large number of ambiguous bases in
these data.

We also considered the number of reads that contain only high
probability bases. Only 14.5% (ChIP) and 13.1% (small RNA)
of the reads consisted of base probabilities that were all >90%.
Additionally, only 47.2% (ChIP) and 54.1% (small RNA) reads
contained only probabilities >50%. Therefore, the majority of probes
contain at least one ambiguous base position. The profile of a
random read that represents the typical profile of a read from these
experiments is given in the Supplementary Material. This justifies
the need for a probabilistic alignment algorithm to account for these
ambiguities in an unbiased way. Furthermore, methods that rely
solely on ‘called’ reads will give equal weight to each position
regardless of the unequal uncertainty associated with the positions,
potentially leading to less accurate results.

4.2 Sequencing error analysis
In a Solexa/Illumina sequencing experiment, 5′ and 3′ adapters are
ligated to DNA/RNA fragments as part of the sequencing procedure.
We have observed that multiple 5′ and 3′ adapters often join to
each other without a DNA/RNA fragment between them. In this
case, the sequencing reactions will return the 5′ adapter. A typical
sequencing run will contain hundreds of thousands of such reads.
These reads are ideal for evaluating the sequencing error rate for the
experiment. For genomic DNA, the 5′ adapter sequence is 33 bases
long, and for small RNA experiments the adapter is 20 bases long.
These adapters are constructed so they do not perfectly match any
genomic fragment. For example, the best human match and the small
RNA adapter have only 10 bases in common. For this reason, we
hypothesize that if we see a read that contains a close match to the
adapter sequence, then the read is directly sequencing the adapter.

For our error analysis, we searched for any read (or part
of the read) whose called sequence matched the adapter with
three or less mismatches. We fit a logistic regression model to
estimate the sequencing error rate for each read position, while
also accounting for adapter synthesis and base composition error
rates (model definition and details are given in the Supplementary
Materials). Table 2 contains the estimates for α (transformed back
to probabilities) for several read mapping methods. From the table,
note that the methods that call the reads based on the most probable
base (SeqMap, SOAP, MAQ, Bowtie) have the highest base-calling
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Table 2. Sequencing error rates for the ChIP and RNA experiments

Read mapping method ChIP error rate RNA error rate
(Algorithms) (% data used) (% data used)

Highest intensity base — 2.26
(None) (100)

Most probable base (MPB) 2.29 4.17
(SeqMap, SOAP, MAQ, Bowtie) (100) (100)

MPB + chastity filtering — 4.45
(Solexa Pipeline) (97.8)

MPB + quality filtering 0.83 2.44
(RMAP) (69.8) (64.2)

Probability mapping 0.67 1.64
(GNUMAP, Novo, Slider) (100) (100)

Probability + quality 0.27 1.11
(GNUMAP) (69.8) (64.2)

Notice that the probabilistic mapping (GNUMAP) error rates are lower than those for
other methods. In particular, the error rates for GNUMAP (using all the data) are lower
using than those that incorporate base-calling and filtering (deleting 30–35% of the
data).

errors. This means that these algorithms are already at a disadvantage
(higher error rate) before they even begin mapping the reads. Other
methods first filter out the reads they deem ‘low-quality’ before
mapping. For example, RMAP recommends filtering any read that
does not have at least 10 consecutive bases with Q≥8. In the case
of the data presented here, RMAP filters out 30.2% (ChIP) and
35.8% (RNA) of the reads. It is interesting to note that GNUMAP’s
probabilistic representation of the read results in a lower error rate
without removing any of the data. However, if one insists on filtering
low-quality reads, GNUMAP’s performance is further improved.

Figure 2 shows these values (transformed to probabilities). At
the beginning of the read, the GNUMAP error rate consistently
outperforms all other methods for both datasets. Later in the read,
GNUMAP’s good performance is reduced because the base qualities
are reduced. However, we consider this an advantage, as this means
that the latter bases in the read are given less weight in the read
mapping. Based on Figure 2b most of the other methods have higher
error rates at the beginning of the read, meaning that the latter bases
will have more weight in the mapping (because there are fewer
mismatches), even though the read quality is lower for these bases.

Figure 2a also indicates a potential problem for read filtering based
on quality scores. It is clear that some of the error spikes from the
_prb.txt file are removed, but others are amplified.

4.3 ChIP data
A useful test of a mapping algorithm occurs when real data are
processed with unknown spike regions. For this example we use the
ChIP-seq experiment attempting to identify the in vivo binding sites
of the ETS1 transcription factor. We processed the reads using many
of the algorithms to determine the sensitivity on real data. Figure 3
shows a spike found by GNUMAP that was not found by any of
the other programs. This spike lies in the RALGPS2 gene promoter.
The spike occurs in a highly repetitive region that is rich in ‘GGAA’
motifs that can potentially be bound by ETS1. This is an example
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Fig. 2. Position-specific base-calling error rates for the various methods
(PRB = Most probable base (MPB), INT = Highest intensity base,
RMAP = MBP + quality, GER = MPB + chastity, GNU = Probability,
GNUQ = Probability + quality). Notice that GNU seems to have the best
error rate for the beginning of the read in both cases. In (b) GNUMAP’s
performance worsens but the overall error rate is still smaller. Plus this
means that GNUMAP will rely more on the beginning of the read while
mapping. (a) Indicates that the RMAPQ filtering may not be highly effective
against base-calling errors.

of a repeat region that holds biological significance that would be
missed by most methods.

4.4 Spike-in data
One of the most important end results of the mapping process is to
identify ‘spike’regions in the reference genome with a significant
number of read matches. To compare the accuracy of GNUMAP
and other methods, we created a test dataset with a large number of
known spikes and evaluated the ability of the applications to map the
sequences to these spiked-in regions. Promoter regions (which often
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Fig. 3. The spike found by GNUMAP in the promoter region of the RALGPS2 gene was not found by any other program. This spike is located in a repeat
region and has a ‘GGAA’ motif, indicating that this region may bound by ETS1. Note: The option for SOAP to report every match to a particular location
was used here. This may not give an accurate representation of the method, but does show the noise that would occur if each matching location was reported.

contain repetitive elements) from the 15 Mb C.elegans genome were
used in the comparison dataset. Fifty base-pair windows from these
promoter regions were selected as spiked-in regions, and a random
35 bp sequence within them was inserted into the benchmark dataset.
To correct for errors in the benchmark dataset, these regions were
mapped back to the genome, adding all repeat regions to the list of
expected spikes. Probability and intensity files were created with the
probability of 70% for each called base, simulating quality scores
commonly seen in Solexa/Illumina data.

4.4.1 Visual analysis The sequences were matched with several
different applications available for comparison (RMAP, SOAP,
SeqMap and Novocraft). After the sequences were matched, the
resulting output files were parsed and converted into .sgr format
capable for viewing and comparison using the Affymetrix IGB. The
.sgr files were further processed, creating bins 100 bp in size to show
density as well as magnitude. These files were visually compared
with that of the original and that of GNUMAP (Fig. 4).

Because the majority of these reads came from promoter regions
with a significant number of repetitive regions, differences are
apparent among the several algorithms. As discussed previously,
the two classical options for aligning sequences from repetitive
sequences is to either discard them or count them multiple times. As
shown in Figure 4c, when discarding these sequences (default for
most programs, and included with RMAP’s run), repetitive regions
are missed. In the test dataset, this region consists of two highly
similar sequences which cannot be identified when discarding reads
from repetitive regions.

The second option is to report all locations that show a significant
alignment. As shown in Figure 4b, the abnormal spike in the data
occurs as a result of SeqMap reporting all these reads. The mapping
process of GNUMAP has also identified these repetitive locations,
but because of the proportional nature of the scoring algorithm
(step 4 of the algorithm), the spike is significantly reduced. As can
be seen in the figure, reporting all the locations adds significant noise
to the final output.

Instead of discarding repetitive reads or adding them to all
matching locations in the genome, the posterior probability of the
read matching a reference genome location should be proportionally

added to all hit locations (the method employed by both Novocraft
and GNUMAP). Using a probabilistic method allows for important
regions to be expressed while not confusing the analysis with
the overexpression of insignificant regions. Using this method,
there is a relation between the amplitude at a given location
and the number of reads in the original data that matched that
location.

4.4.2 Quantitative analysis In addition to a visual comparison,
a procedure was developed for quantitatively comparing the
differences in the mapping methods (Fig. 5). Each algorithm
produced a set of spikes that were ordered according to the number
of reads that mapped to that location. The top 50 spikes from each
application were compared with the known top 50 spikes (from
the benchmark dataset). For each ordered spike index, i, in an
application, the number of top i spikes occurring in the top 50 spikes
of the real dataset was plotted on the y-axis. If the plot followed
the diagonal line, the algorithm would have an accuracy of 100%,
identifying all correct spikes with no false positives. Falling too
far below the diagonal would imply the occurrence of too many
false positives which washed out the identification of true positives.
RMAP and SeqMap were capable of identifying the highest two
spikes (as evidenced by the fact that their lines follow the diagonal
for the first two points); however, GNUMAP outperformed all other
programs in correctly identifying fewer false positives after all 50
spiked-in regions were processed (Fig. 5a).

These results show that either recording or discarding all
ambiguous locations results in a drastic decrease in positive versus
false positive rates. For the SeqMap repeat-including algorithm, the
high number of false positives washed out nearly every significant
alignment, causing a very poor detection rate. RMAP’s repeat-
discarding algorithm reported so few locations that the true positive
rate was significantly low. The only other algorithm that was capable
of approaching the accuracy of statistical mapping software was
SOAP, with a detection rate nearly equal to that of Novocraft and
GNUMAP. However, when reviewing locations such as in Figure 4c,
it becomes clear that, while the method employed by the SOAP
algorithm is capable of recognizing true positive sequence spikes,
the amplitude at these locations is often incorrect.
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(a)

(b)

(c)

C. elegans chromosome 1 mapped by all programs

False positive introduced by SeqMap

Missed spike by RMAP

Fig. 4. Benchmark real spikes (bottom) compared with SeqMap (Jiang
and Wong, 2008), SOAP (Li,R. et al., 2008), RMAP (Smith et al.,
2008), Novocraft (unpublished data) and GNUMAP. Benchmark data were
constructed by sampling from 1000 promoter regions in the C.elegans
genome. In (b) [an enlargement of the first boxed region in (a)], SeqMap
incremented every location for reads from identical regions, producing a
significant false positive spike. Attempting to remove false positives by
discarding these reads, such as was done by RMAP, results in missing
important information, as can be seen in (c) [an enlargement of the second
boxed region in (a)]. Note: The intention of this figure is not to discuss
the relative mapping capabilities of all currently implemented programs
specifically, but to show the trend that would occur if each of these
read-placement techniques were used.

In this spike-in comparison, Novocraft and GNUMAP performed
similarly because they both utilize a posterior probabilistic scoring
method (as described in step 4 in Section 3). For this reason, both
algorithms are correctly able to discard spurious match locations
and include genuine spikes. However, GNUMAP’s implementation
of a probabilistic Needleman–Wunsch alignment, incorporating the
probabilities of every base at each position, is able to out-perform
Novocraft in several occasions (see Supplementary Material for
further analysis).

5 PERFORMANCE ANALYSIS
Although accuracy is probably the most important feature of a
mapping program, the speed of an algorithm is also important.

0 10 20 30 40 50

0
10

20
30

40
50

Spikes Identified by Algorithm

R
ea

l S
pi

ke
s 

in
 B

en
ch

m
ar

k 
D

at
a 

S
et

GNUMap
Bowtie
Maq
Novocraft
SOAP
SeqMap
RMAP

Fig. 5. Comparison of false positive rates in the detection of Solexa/Illumina
spikes. For each point on the line corresponding to a particular algorithm,
the value on the x-axis indicates the spike number for that algorithm. The
y-axis value for that point indicates the number of spikes actually in the
benchmark dataset. The difference between the number of spikes found by
the algorithm and the diagonal is the number of false positives, i.e. GNUMAP
and Novocraft had the lowest false positive rate. GNUMAP was correctly
able to identify the top 36 spikes in the test dataset. SeqMap and RMAP
performed similarly, as did MAQ and SOAP.

Table 3 presents the results from a benchmark test of several
mapping programs. The ‘Benchmark Data’ columns in the table
show both the time to perform the mapping of 100K reads on a single
chromosome as well as the number of reads correctly mapped. The
reads were sampled from both the promoter and genomic regions
of C.elegans chromosome I, with bias given to promoter regions to
introduce spikes in the data. Various base probabilities (up to three
on each read) were changed in order to simulate miscalled bases.
We included the ‘*’ for the Slider time to indicate that the result was
obtained using different hardware with similar performance since
Slider could not run in the same 64-bit environment as the other tests
did. The ‘*’ on MAQ, Novocraft and RMAP indicates that we were
not able to test using multiple processors. The other programs were
able to use the two quad-core 2.5 GHz Xeon processors available
on the machine. The ‘Human Genome’ columns show the time to
map an actual Solexa lane (11 000 000 reads of input DNA) and
the corresponding number of reads mapped to the whole human
genome.

In this dataset, GNUMAP was able to correctly map ∼9000 more
reads (∼15% increase) than the next best methods (Bowtie, MAQ
and SOAP). However, GNUMAP’s increased accuracy does come
at a cost. While GNUMAP is faster than SeqMap and Slider and
comparable with MAQ, GNUMAP runs at 1/2–1/8 the speed of
Bowtie, SOAP, NovoAlign and RMAP. Performance optimizations
are currently being implemented that should significantly improve
GNUMAP performance. We should also note that, as a result
of Slider’s combinatorial expansion of the reads to account for
mismatches, their algorithm produced more that 500 000 reads to
map, but still only identifying mappings for 58 551 reads in its
histogram.
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Table 3. Performance comparison

Benchmark data Human genome

Program Time # mapped Time # mapped

GNUMap 47.9 s 71 262 985 m 14 s 7 739 321
Bowtie 7.0 s 62 298 14 m 43 s 6 699 526
SOAP 11.7 s 62 208 32 m 20 s 6 764 050
MAQ 46.5 s 62 208 *3488 m 28 s 6 764 054
Slider 16 m 31 s* 58 551 Crashed Crashed
SeqMap 81.2 s 56 326 1703 m 04 s 5 455 538
Novocraft 24.4 s 56 238 *920 m 25 s 5 306 782
RMAP 9.2 s 1202 *295 m 54 s 3 447 086

Bold values show that GNUMAP achieves the best performance.

6 CONCLUSION
Next-Generation sequencing promises to revolutionize biological
research by providing millions of bases of sequenced data per
experiment. The more accurate approach used by GNUMAP can
create a more accurate identification of spike regions in the reference
genome.

Mapping algorithms that discard a large number of next-
generation sequencing reads will bias the results to discriminate
against repeat regions. By utilizing quality information from the
raw reads and proportionally sharing the score for the read across
matching regions of the genome, a better mapping can be performed.

When dealing with the identification of short motifs in promoter
regions, it becomes even more necessary to use all available
information in performing a mapping. With smaller datasets
(mapping to a single chromosome), it is possible to discard reads in
repeat regions while still finding short promoter motifs. However,
when mapping a full Solexa/Illumina run of 10 M reads to a whole
human genome of 4 Gb, the number of repeat regions found for a
short promoter motif will increase. This will cause more reads to
be discarded in the motif region, washing out the motif signal when
compared with surrounding regions.

GNUMAP has been shown to provide comparatively more
accurate mappings of spike regions to a reference genome. It is

able to proportionally share a read that maps to a repeat region
among match locations. By using methods such as a probabilistic
Needleman–Wunsch and statistical mapping algorithms found in
GNUMAP, available data can be more fully utilized, creating more
accurate, cost-efficient results.
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