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Abstract

Significance: Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as an
essential cofactor and substrate for a number of critical cellular processes involved in oxidative phosphorylation
and ATP production, DNA repair, epigenetically modulated gene expression, intracellular calcium signaling,
and immunological functions. NAD+ depletion may occur in response to either excessive DNA damage due to
free radical or ultraviolet attack, resulting in significant poly(ADP-ribose) polymerase (PARP) activation and a
high turnover and subsequent depletion of NAD+, and/or chronic immune activation and inflammatory cytokine
production resulting in accelerated CD38 activity and decline in NAD+ levels. Recent studies have shown that
enhancing NAD+ levels can profoundly reduce oxidative cell damage in catabolic tissue, including the brain.
Therefore, promotion of intracellular NAD+ anabolism represents a promising therapeutic strategy for age-
associated degenerative diseases in general, and is essential to the effective realization of multiple benefits of
healthy sirtuin activity. The kynurenine pathway represents the de novo NAD+ synthesis pathway in mammalian
cells. NAD+ can also be produced by the NAD+ salvage pathway.
Recent Advances: In this review, we describe and discuss recent insights regarding the efficacy and benefits of
the NAD+ precursors, nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide
mononucleotide (NMN), in attenuating NAD+ decline in degenerative disease states and physiological aging.
Critical Issues: Results obtained in recent years have shown that NAD+ precursors can play important pro-
tective roles in several diseases. However, in some cases, these precursors may vary in their ability to enhance
NAD+ synthesis via their location in the NAD+ anabolic pathway. Increased synthesis of NAD+ promotes
protective cell responses, further demonstrating that NAD+ is a regulatory molecule associated with several
biochemical pathways.
Future Directions: In the next few years, the refinement of personalized therapy for the use of NAD+ precursors
and improved detection methodologies allowing the administration of specific NAD+ precursors in the context
of patients’ NAD+ levels will lead to a better understanding of the therapeutic role of NAD+ precursors in
human diseases. Antioxid. Redox Signal. 30, 251–294.
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I. Introduction

Pellagra is a syndrome cause by a diet seriously defi-
cient in synthetic precursors for the essential pyridine

nucleotide nicotinamide adenine dinucleotide (NAD+),
namely niacin (vitamin B3), and tryptophan (75, 117, 255).
This lethal disorder can develop within 60 days of main-
taining a deficient diet due to the absence of free stores of
nicotinic acid (NA) or nicotinamide (NAM) (298). Pellagra is
pathologically characterized by a distinct dark pigmented
skin rash and the three Ds of dermatitis, diarrhea, and de-
mentia (5). Interestingly, the AIDS dementia complex (ADC)
shares some neurological similarities with pellagra in its
clinical presentation (55).

In the last century, pellagra was a common disease in rural
areas in the poorer southern United States, and was attributed
to an unknown infectious pathogen (299). However, it was
Dr. Joseph Goldberger, and his associates, of the U.S. Public
Health Service, who in 1914 examined the hypothesis that
pellagra was due to a dietary deficiency. Subsequently, pel-
lagra was prevented using a diet rich in maize, fresh milk,
eggs, and cured meat in these populations (1, 121). Despite
these advances, it was not until 1937 that Conrad Elvehjem, a
biochemistry Professor, first demonstrated the anti-pellagra
genic effect of NAM and NA on the related black tongue
disease in malnourished dogs (99, 100).

Individuals diagnosed with pellagra-induced dementia can
be successfully treated in the early stages of the disease.
However, untreated pellagra results in irreversible neuro-
logical damage and eventually death (148). This is primarily
due to reduced NAD+ production and availability as NAD+

and its phosphorylated form NADP+ are both essential co-
factors and substrates for numerous biological processes
(365). A focal reduction in NAD+ availability due to in-
creased turnover or reduced synthesis may also be founda-
tional to the pathology seen in other conditions. It seems to fit
the observation of an apparently reversible dementia before
frank pathology in patients with ADC. At present, pellagra is
a rare condition that has been reported in severe cases of
alcoholism and anorexia, or malnourishment in the under-
developed world (21, 332).

Several biochemical studies have shown that an inefficient
production of NAD+, where catabolism exceeds anabolism,
may produce cellular dysfunction simply due to dietary lack
of niacin (27, 325). It may also be due to the rate-limiting
action of cosubstrate-dependent quinolinic acid phosphor-
ibosyltransferase (QPRT) (267, 304). Excess amino acid
leucine inhibits QPRT, which prevents the formation of ni-
acin or NA to nicotinic acid mononucleotide (NAMN) (189).
Reduced tryptophan availability, particularly after chronic
immune activation or in the absence of a tryptophan-rich diet
(i.e., soy, meat, fish, eggs, and peanuts), may also be asso-
ciated with the development of pellagra (217). Essential
differences, however, may be observed between ADC and
pellagra, as the latter develops as a result of a global bodily
deficiency of tryptophan and niacin, while ADC develops as a
result of increased tryptophan and NAD+ catabolism at spe-
cific, although possibly numerous, sites (Fig. 1). Activation
of the tryptophan catabolism may be both positive and neg-
ative in ADC. Immune-activated oxidative tryptophan ca-
tabolism can positively increase cell viability through
increased NAD+ metabolism in brain cells. However, chronic

activation of tryptophan catabolism may occur in response
to increased NAD+ catabolism. Increased astrocyte and
mononuclear phagocyte activation stimulates tryptophan
catabolism to maintain NAD+ levels in the early stages of
immune activation. However, prolonged immune activation
leads to excess macrophage recruitment and activation,
reducing the astrocyte-to-neuronal NAD+ supply, resulting
in pellagra-like neuronal dysfunction, which may be re-
versible in the short term (Fig. 1). The characteristic mood
disorders and depression of end-stage HIV may be due to
increased tryptophan catabolism leading to reduced avail-
ability of tryptophan for catabolism via serotonergic path-
ways (Fig. 1).

It is well known that NAD+ concentrations increase under
conditions associated with reduced energy loads. These in-
clude activities such as fasting, glucose deprivation, caloric
restriction (CR), and exercise (68). However, apart from
pellagra, NAD+ levels decline in animals on high-fat diets,
and during aging and cellular senescence (293). Given that
NAD+ levels are elevated under conditions of increased life
span or health span, decline under conditions of accelerated
aging and/or reduced health span suggests that reduced
NAD+ levels may represent a major contributor to the aging
process (102). Therefore, supplementation with NAD+ and its
precursors may represent a potential therapeutic strategy to
mediate protection against accumulation of inflammation and
highly volatile reactive oxygen species (ROS) during the
aging process.

II. NAD+ Biosynthesis Pathways

Several NAD+ precursors have been identified in our nat-
ural diet. These include the amino acid tryptophan, and three
forms of vitamin B3—NA, NAM, and nicotinamide riboside
(NR) (Fig. 2). Tryptophan catabolism via the kynurenine
pathway can lead to de novo NAD+ synthesis (128). When
dietary tryptophan is limited, the efficiency of the conversion
of tryptophan to NAD+ declines below the well-established
conversion ratio of 60:1 (107, 164). NA and NR are precur-
sors found in the basic food chain. NA is produced by plants
and algae, while NR is present in milk (338). NAM is formed
as a by-product of enzymatic degradation of pyridine nu-
cleotides, and is the main form of vitamin B3 that can be
absorbed from animal-based food. The provision of these
vitamins to NAD+ is aided by several factors, including the
gut microbiome (212, 213). Biosynthetic genes are also
regulated by circadian rhythms (243). In addition, the ex-
pression levels of a number of enzymes involved in NAD+

anabolism decline with age (236).

A. Tryptophan catabolism via the kynurenine pathway

Tryptophan is the least abundant amino acid of animal and
plant proteins, making up only 1–1.5% of the protein amino
acid content (261). Tryptophan was first isolated in 1901 by
Sir Frederick Gowland Hopkins and his student S. W. Cole
(154), and by 1906 was reported as the first amino acid
necessary for growth (261). The kynurenine pathway was
first described as a principal route for tryptophan catabolism
in 1947 (122). Two major routes for tryptophan catabolism
have been identified in mammals that are actively indepen-
dent of protein anabolism. In the periphery, the kynurenine
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pathway accounts for up to 95% of tryptophan metabolism,
while only about 1% of tryptophan content is converted via
the indoleamine pathway to form the neuroactive metabo-
lites, serotonin and melatonin (261).

1. Indoleamine 2,3-dioxygenase-1/2 and tryptophan 2,3-
dioxygenase. The kynurenine pathway proceeds with the
oxidative cleavage of tryptophan by either indoleamine 2,3-
dioxygenase-1 (IDO-1; EC 1.13.11.52) and its isoform IDO2
or tryptophan 2,3-dioxygenase also called tryptophan pyr-
olase (TDO; EC 1.13.11.11) to produce formylkynurenine
(23, 103, 313) (Fig. 2, Step a). Both IDO and TDO are haem-
requiring enzymes. IDO is mainly found in extrahepatic tis-
sue, including the brain, placenta, spleen, lung, kidney,
alimentary tract, and epididymis. It does not contain acti-
vating site for tryptophan analogs and is primarily activated
by proinflammatory cytokines, such as interferon-gamma
(IFN-c) (109). Concomitant induction of IDO and free
radical production of IFN-c may at first increase NAD+

biosynthesis to contribute to the regeneration of intracel-
lular NAD+ levels in an environment of increased NAD+

turnover and demand. This suggests a protective role for
increased tryptophan catabolism in activated macrophages
(Fig. 3). However, TDO is predominantly located in the
mammalian liver and can be activated by numerous factors,
including fasting, glucocorticoids, hydrocortisone, NA,
and l-tryptophan (369).

The metabolic product of IDO-1/2 and TDO activity is
the unstable intermediate metabolite, N-formyl kynurenine
(N-f-YN) (140), which is rapidly hydrolyzed by kynurenine
formylase (EC 3.5.1.9) to form kynurenine (Fig. 2, Step b),
the first appreciably stable product of the kynurenine path-
way. Kynurenine can cross the blood/brain barrier (BBB) (240)
and represents a significant branch point from which three
products can be synthesized with the use of three different en-
zymes, kynureninase (EC 3.7.1.3), kynurenine aminotrans-
ferase (KAT; EC 2.6.1.7), and kynurenine 3-hydroxylase (EC
1.14.13.9) (22).

FIG. 1. Putative relationship
between changes in tryptophan
catabolism and de novo NAD1

synthesis in ADC neuropathology.
Immune-activated oxidative l-
tryptophan catabolism can contribute
positively to the maintenance of cell
viability through increased metabo-
lism of NAD+ in astrocytes and
mononuclear phagocytes. However,
chronic activation of this pathway
may also enhance neuronal excito-
toxicity through the production of
QUIN and possibly 3-HK. 3-HK, 3-
hydroxykynurenine; ADC, AIDS
dementia complex; IDO, indoleamine
2,3-dioxygenase; IFN-c, interferon-
gamma; NAD+, nicotinamide adenine
dinucleotide; PARP, poly(ADP-
ribose) polymerase; QUIN, qui-
nolinic acid. To see this illustration
in color, the reader is referred to
the web version of this article at
www.liebertpub.com/ars
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2. Kynureninase. Kynureninase is a cytosolic enzyme
that produces anthranilic acid (AA) by the cleavage of the
alanine side chain from kynurenine (Fig. 2, Step e). AA can
undergo hydroxylation to 5- or 3-hydroxyanthranilic acid
(5- or 3-HAA) via nonspecific microsomal hydroxylating
enzymes (184, 257, 262). AA can also cross the BBB via
passive diffusion. Kynureninase also plays a role in the
production of 3-HAA from 3-hydroxykynurenine (3-HK)
(Fig. 2, Step e).

The formation of NAD+ from tryptophan is inhibited by
inadequate levels of vitamin B6 as kynureninase is de-
pendent on pyridoxyl-5¢-phosphate (vitamin B6) as a co-

enzyme for the conversion of kynurenine to AA, or 3-HK
to 3-HAA (238). Low levels of vitamin B6 have been
shown to correlate with higher levels of psychological
distress (172, 306). The mechanism of B6 involvement in
depression is most likely due to the fact that B6 is a co-
factor for 5-hydroxytryptophan decarboxylase, the en-
zyme that catalyzes the last step in serotonin biosynthesis
(126, 233).

However, pyridoxine is also a cofactor for several reac-
tions in the brain neurotransmitter pathway, including glu-
tamate decarboxylase and gamma-aminobutyric acid
(GABA)-transaminase, the two enzymes required for the
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FIG. 2. The NAD1 metabolome. l-TRYP, NA, NAM, NMN, NR, and NAR can be used as precursors for NAD+ synthesis. (A)
l-TRYP is catabolized to N-formylkynurenine (N-f-KYN) by IDO or TDO. (B) N-f-KYN is catabolized by arylformidase to form
KYN. (C) KATs catabolize KYN to form KA. (D) Kynurenine 3-hydroxylase uses KYN as a substrate to form 3-HK. (E)
Kynureninase then forms 3-HAA, which is converted to 2-amino-3-carboxymuconate semialdehyde (not shown) by (F) 3-HAAO.
(G) This product is then converted to picolinic acid by picolinic acid carboxylase. (H) Alternatively, the semialdehyde undergoes
spontaneous condensation and rearrangement to form QUIN, which forms NAMN by (I) QPRT. (U) NAMN undergoes adeny-
lylation by NMNAT1-3 to form NAAD, which forms NAD+ by (M) glutamine-dependent NAD+ synthetases. NA is used by the
Preiss–Handler pathway. (L) NAMN is formed by NAPRT following addition of 5-phosphoribose group from PRPP to NA. (P)
NAMPT forms NMN by addition of phosphoribose moiety to NAM. (U) NMN is then converted to NAD+ via the catalytic activity
of NMNAT1-3. (N) NAM is also produced as a by-product of NAD-dependent enzymes, for example, PARPs, sirtuins, and CD38.
(O) NAM can also be converted to NA by bacterial nicotinamidases. (J) NR is phosphorylated to form NMN by NRK1/NRK2,
which is then subsequently converted to NAD+ by NMNAT1-3. (J) NAR can also be used to form NAMN by NRK1/NRK2 or
(K) NA by purine nucleoside phosphorylase. (Q) NAM is methylated NNMT to MeNAM and modulates the efficiency of NAD-
dependent biological processes. (T) NAD+ can be reduced to form NADH. (R) NAD+ can also undergo phosphorylation to NADP+

(S) and then further reduction to NADPH. 3-HAA, 3-hydroxyanthranilic acid; 3-HAAO, 3-hydroxyanthranilic acid oxygenase;
KA, kynurenic acid; KATs, kynurenine aminotransferases; KYN, kynurenine; l-TRYP, l-tryptophan; MeNAM, N-
methylnicotinamide; NA, nicotinic acid; NAAD, nicotinic acid adenine dinucleotide; NAM, nicotinamide; NAMN, nicotinic
acid mononucleotide; NAMPT, nicotinamide phosphoribosyltransferase; NAPRT, nicotinic acid phosphoribosyltransferase;
NAR, nicotinic acid riboside; NMN, nicotinamide mononucleotide; NMNAT, nicotinamide mononucleotide adenylyl-
transferase; NNMT, nicotinamide N-methyltransferase; NR, nicotinamide riboside; NRK, nicotinamide riboside kinase; PRPP,
5-phosphoribosyl-1-pyrophosphate; QPRT, quinolinic acid phosphoribosyltransferase; TDO, tryptophan 2,3-dioxygenase.
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synthesis for GABA from glutamate (124, 125, 368). In
pyridoxine-dependent epileptic children, inefficient B6 lev-
els resulted in markedly elevated levels of glutamate in the
brain (141). Moreover, a decrease in vitamin B6 levels has
been associated with a deficiency in both humoral and cell-
mediated immune responses, including lymphocyte differ-
entiation and maturation (134).

It has been noted that a decrease in kynureninase activity
will reduce further flux through the kynurenine pathway
thereby decreasing production of the N-methyl-d-aspartate
(NMDA) receptor agonist and excitotoxin, quinolinic acid
(QUIN) (111). However, QUIN levels are increased during
inflammation, suggesting that kynureninase activity may not
be significantly reduced. Vitamin B6 may therefore be used
preferentially by the cell for kynureninase activity (e.g.,
QUIN/NAD production) over GABA transaminase (EC
2.6.1.19; GABA production), 5-hydroxytryptophan dec-
arboxylase (EC 4.1.1.28; serotonin synthesis), and glutamate
decarboxylase activity (EC 4.1.1.15), indicating a cell pri-
ority for de novo NAD+ biosynthesis under these conditions.
The increase in QUIN secretion by activated mononuclear
phagocytes during neuroinflammation may indicate an in-
creased demand for NAD+ in these cells, the production of
which may be limited under certain conditions by a saturated
QUIN ribosylation system (252, 253).

3. Kynurenine aminotransferases. KATs produce ky-
nurenic acid by the transmission of kynurenine (Fig. 2, Step c).
Kynurenic acid is a stable compound with nonspecific an-
tagonist action in the brain at the glutamate subtype, NMDA

receptor. Both KATs and kynureninase are vitamin B6-
dependent enzymes (245).

4. Kynurenine 3-hydroxylase. Kynurenine 3-hydroxylase
is a mitochondrial enzyme that also converts kynurenine to 3-
HK by the hydroxylation of the aromatic ring (Fig. 2, Step d).
3-HK is an NADPH-dependent enzyme whose activity appears
to be reduced with estrogen and in conditions of hyperthy-
roidism (28). 3-HK can also cross the BBB, stimulate free
radical production, and mediate vasodilation (104).

5. 3-Hydroxyanthranilic acid oxygenase. The catabolism
of 3-HAA is mediated by 3-hydroxyanthranilic acid oxygenase
(3-HAAO; EC 1.13.11.6), an enzyme found in both cytosol and
synaptosomal fractions to produce the intermediate 2-amino-3-
carboxymuconic semialdehyde (307) (Fig. 2, Step f).

6. Picolinic acid carboxylase. The enzyme picolinic acid
carboxylase (PICAC; EC 4.1.1.45) preferentially converts
2-amino-3-carboxymuconic semialdehyde to 2-aminomuconic
semialdehyde with subsequent nonenzymatic conversion to
picolinic acid (PIC) (Fig. 2, Step g) (188, 230), a metal chelator
(106, 270) and NMDA-receptor antagonist or enzymatic re-
arrangement leading finally to acetyl CoA (30, 79, 230). The
nonenzymatic rearrangement of 2-amino-3-carboxymuconic
semialdehyde occurs when PICAC is saturated with substrate
to produce QUIN (Fig. 2, Step h). The activity of PICAC has
been shown to be inversely proportional to the amount of
NAD+ synthesized from tryptophan (305).

7. Quinolinic acid phosphoribosyltransferase. QUIN is
converted to NAMN by the enzyme quinolinic acid phos-
phoribosyltransferase (QPRT; EC 2.4.2.19) (Fig. 2, Step i).
QPRT catalyzes the reaction between 5-phosphoribosyl-1-
pyrophosphate (PRPP) and QUIN in the presence of Mg2+ to
produce NAMN. The maximal enzymatic rate for QPRT is
apparently the lowest of all kynurenine pathway enzymes,
and is 80 times lower than the preceding enzyme, 3-HAAO.
However, the Michaelis–Menton constant (Km) for both 3-
HAO and QPRT has been calculated to be the same, and this
is likely due to the fact that 3-HAA provides substrate for the
production of PIC as well as QUIN. The relative amount of
QUIN formed from 3-HAA will therefore by determined by
the rate of PICAC activity (168, 176). The behavior of PI-
CAC under inflammatory conditions in the human brain or
elsewhere does not appear to have been investigated. How-
ever, as IFN-c appears to only induce IDO, it may cautiously
be speculated that PICAC activity is not increased during an
inflammatory response. Thus, increased flux through the
kynurenine pathway will proportionately increase QUIN
production.

QPRT is widely distributed in several tissues, including the
liver and brain, and may play an important role in mediating
neuroprotection against QUIN-induced toxicity, associated
with neurodegenerative diseases, including epilepsy and
Huntington’s disease (58, 132, 175, 229, 235, 250, 333, 364).
The physiological levels of QUIN are thought to be in the low
nanomolar range, and QPRT activity increases with in-
creased levels of QUIN. However, at high levels of QUIN
(>500 nM), neuronal QPRT activity is saturated (267). This
leads to the production of QUIN at a greater rate than the

FIG. 3. Concomitant induction of IDO and free radi-
cal generation by IFN-c. Chronic immune activation of
macrophages and astrocytes will result in increased reactive
oxygen and nitrogen species and elevates glutamate levels (in
the absence of efficient uptake into astrocytes). A possible
relationship exists between IFN-c-stimulated free radical
production and IDO induction, leading to increased de novo
synthesis of NAD+. IFN-c, interferon-gamma. To see this il-
lustration in color, the reader is referred to the web version of
this article at www.liebertpub.com/ars
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production of NAD+, leading to the accumulation of QUIN-
and NMDA-mediated excitotoxicity (254).

PRPP is important in the regulation of QPRT activity
(Fig. 4) (33, 161, 162, 168). The rate at which PRPP is syn-
thesized and used determines its steady-state concentration
within the cell, which then determines the metabolic progress
of pathways competing for PRPP. PRPP is synthesized in the
cell in the reaction catalyzed by 5-phosphoribose pyropho-
sphokinase or PRPP synthetase (EC 2.7.6.1) utilizing a
ribose-5-phosphate and ATP. PRPP synthetase has an abso-
lute requirement for inorganic phosphate (Pi) and is elevated
in cells undergoing rapid cell division. The activity of PRPP
synthetase is competitively inhibited by increased levels of
ADP and ATP. The ribose 5-phosphate used in this reaction is
generated from glucose 6-phosphate metabolism via the
hexose monophosphate shunt or from ribose-1-phosphate
(generated by the phosphorolysis of nucleotides) via a
phosphoribomutase reaction (73).

Disorders in PRPP-synthetase activity and NAD+ metab-
olism have been implicated in the development of neuro-
logical disorders. PRPP concentrations have been positively
correlated with cytosolic NAD+ and ATP levels in whole
animals, and the availability of PRPP for NAD+ synthesis
may be reduced in the presence of high turnover and de novo
synthesis of purine and pyrimidine nucleotides (96). This
may occur in ADC and neurodegenerative diseases as a result
of free-radical-induced DNA damage and astrogliosis. The
increase of QUIN seen in some neuroinflammatory condi-
tions may therefore be a combination of increased flux
through the kynurenine pathway coupled with decreased
enzyme activity possibly due to the use of PRPP for purine
and pyrimidine synthesis in DNA-damaged or mitotic cells.

8. NAD pyrophosphorylase (NAM mononucleotide ade-
nylyltransferase). Further transformations leading to the
synthesis of the parent molecule of the pyridine nucleotides,
NAD occurs in the nucleus and possibly the mitochondria.
NAMN is catalyzed by NAD pyrophosphorylase or nicotin-
amide mononucleotide adenylyltransferase (NMNAT; EC
2.7.7.1) in the presence of ATP to produce desamido NAD
(193, 296) (Fig. 2, Step u). In the presence of glutamine,
desamido-NAD is amidated to the parent pyridine nucleotide,
NAD+ (Fig. 2, Step m), the final product of the kynurenine
pathway (367). Three isoforms have been identified in hu-
mans in several different organelles, namely NMNAT-1
(nucleus), NMNAT-2 (Golgi complex), and NMNAT-3
(mitochondria) (31). The differential localization of these
enzymes suggests an organelle-specific function for these
proteins, and independent nuclear, mitochondrial, and Golgi-
specific NAD+ biosynthetic pathways. Unlike NMNAT-1,
which is the preferred enzyme for NAD+ synthesis (157),
NMNAT-2 and -3 can also form NADH directly from re-
duced nicotinamide mononucleotide (NMN) (165). NMNAT
activity (and predominantly NMNAT-1) is high and nonrate
limiting in catabolic tissue, but not in blood (236).

Apart from NAD+ biosynthesis, some studies have demon-
strated that NMNAT isoforms can protect against axonal de-
generation both in vitro and in vivo (80, 183, 211). NMNAT has
been shown to serve as a stress response protein necessary for
thermotolerance and attenuation of oxidative stress-induced
shortened life span (11). The same study further showed that
NMNAT is transcriptionally regulated by the heat shock factor
(HSF) and hypoxia-inducible factor 1a (HIF1a) in vivo. During
conditions of heat shock, HSF can bind to the NMNAT pro-
moter, thus inducing NMNAT expression. However, under
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FIG. 4. Cofactors required for QPRT activity and NAD1 synthesis. PRPP is important for the regulation of QPRT
activity. PIC, picolinic acid. To see this illustration in color, the reader is referred to the web version of this article at www
.liebertpub.com/ars
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hypoxic conditions, HIF1a enhances NMNAT levels indirectly
via induction of HSF (11). In addition, NMNAT isoforms may
exhibit protein chaperone function, exerting neuroprotection in
several drosophila and mouse models of neurodegeneration
(54, 382). Overexpression of NMNAT-1 has also been shown
to partially maintain neuronal function and reduce the levels of
biochemical insoluble tau in a mouse model of chronic tauo-
pathy with no significant effect on tau phosphorylation, tau
aggregation, or tau-induced inflammation and hippocampal
atrophy (12). Furthermore, overexpression of NMNAT-3 me-
diated axonal protection against tumor necrosis factor-induced
and intraocular pressure elevation-induced optic nerve degen-
eration by reducing the expression of p62 and increasing au-
tophagic flux in a retinal ganglion cell line (182). Taken
together, these studies suggest the possibility for new mecha-
nisms of protection for NMNAT enzyme activity in addition to
its role as an enzyme for NAD+ biosynthesis.

B. NAD+ production from the vitamin niacin

In addition to its de novo synthesis from tryptophan, NAD+

can also be synthesized from the acid, amide, or riboside form
of the vitamin niacin (vitamin B3).

1. NA phosphoribosyltransferase. NA is converted to
NAMN by the enzyme nicotinic acid phosphoribosyl-
transferase (NAPRT) (Fig. 2, Step l) (EC 6.3.4.21) using
PRPP as a cosubstrate, in an ATP-dependent manner. As
QUIN is converted to NAMN by the enzyme QPRT, the
sequence of events leading to NAD+ production is identical
after NAMN formation from either substrate (112). NAPRT
appears to be expressed in several catabolic tissues, including
the colon, heart, kidney, and liver (95). The nondeamidated
route of NAD+ synthesis displayed higher relative propor-
tions in blood and small intestine, and higher absolute values
in the liver and small intestines compared with the amidated
(nicotinamide phosphoribosyltransferase [NAMPT]) route,
suggesting the significance of NA as a precursor for NAD+

synthesis in these tissues (236). This has been reaffirmed by
several feeding studies that have shown that NA is a more
favorable precursor for NAD+ synthesis than NAM in the
liver, intestine, and kidney (81). As well, NA has been shown
to increase intracellular NAD+ levels in a kidney cell line. In
addition, overexpression of NAPRT1 has been shown to
mediate protection against oxidative stress-mediated NAD+

depletion (142).
Although tryptophan can be converted to NAM, it cannot be

used to produce NA in vertebrate cells expressing the de novo
synthesis pathway and NAD+ consuming enzymes, such as
poly(ADP-ribose) polymerases (PARPs). NAM can be con-
verted to NA in the intestinal lumen by bacterial nicotinamidase
(EC 3.5.1.19) (Fig. 2, Step o). However, one study suggested
that sufficient levels of pyrophosphate and NAMN in cells can
induce NAPRT to yield NA, thus allowing for the production of
NA from tryptophan (212, 214). Further studies are required
(and are planned) to test this hypothesis. Bacterial and fungal
degradation of NAD+ and direct NA supplementation can also
increase NA levels in the alimentary canal for distribution to the
rest of the body via vascular blood flow (212).

2. NAM phosphoribosyltransferase. The enzyme
NAMPT (EC:2.4.2.12) using PRPP as a cosubstrate converts

NAM to NMN (Fig. 2, Step p), and then to NAD+ by the
action of NAD pyrophosphorylases in the presence of ATP
(Fig. 2, Step u) (351). This amidated route of NAD+ synthesis
predominantly displayed the highest rates in the liver and
kidney, and lowest in blood (161). The expression of
NAMPT is encoded by the pre-B cell colony enhancing factor
1 (PBEF1) gene. NAMPT also known as PBEF or visfatin has
been identified as a cytokine that promotes the maturation of
B cells when other cytokines, such as IL-7, and stem cell
factors are available. It also exhibits insulin mimetic effects
(260, 374). The intracellular domain has been shown to ac-
tivate lymphocytes and function as an NAD+ biosynthetic
enzyme (281). However, both the extracellular and intracel-
lular domains exhibit favorable phosphoribosyl activity.

In a cisplatin-induced acute kidney injury (AKI) model,
pharmacological manipulation of NAMPT expression via
AICAR significantly improved renal function and reduced
tubular injury. This effect has been associated with increased
messenger RNA (mRNA) expression of SIRT3—a mito-
chondrial sirtuin—and reduced protein hyperacetylation
(237). Inhibition of the NAMPT pathway can impair glucose
tolerance and insulin secretion in mice, an effect that can be
ameliorated by subsequent supplementation with NMN
(275). Despite these findings, inhibition of NAMPT, which
anabolizes the substrate for NMNAT in mammalian cells,
had no significant effect on NMNAT-1-mediated axonal
protection in another study (289).

3. NAM N-methyltransferase. The ability of a cell to
salvage NAM into the generation of NAD+ via NAMPT
versus methylation of NAM by the enzyme nicotinamide
N-methyltransferase (NNMT; EC:2.1.1.1) (Fig. 2, Step q) to
N-methylnicotinamide (MeNAM) modulates the efficiency
of biological processes dependent on NAD+ (6, 263). N-
methylation also regulates the biotransformation and detox-
ification of certain drugs and other xenobiotic compounds by
the liver. The enzymatic activity of NNMT uses S-adenosyl
methionine as the methyl donor to form pyridinium ions such
as S-adenosyl-l-homocysteine (287). This enzyme is pre-
dominantly expressed in the liver. A lower expression has
been reported in the kidney, lung, skeletal muscle, placenta,
heart, and adipose tissue, although it was not detected in the
brain or pancreas (287). Increased activity of NNMT has
been shown to facilitate the production of toxic N-
methylpyridinium compounds, which have demonstrated
neurotoxic properties, and which may be involved in the ni-
grostriatal degeneration (366).

4. NR kinases. NR or nicotinic acid riboside (NAR)
represents newly identified precursors that can be converted
to NAD+ via the NR kinase (NRK; EC 2.7.1.173) pathway
(Fig. 2, Step j), or by the action of nucleoside phosphorylase
and the NAM salvage pathway (38). NRKs are highly con-
served in eukaryotic cells, and are encoded by the Nmrk genes.
Two NRK enzymes have been identified, NRK1 and NRK2,
however, their exact physiological roles remain unclear. While
NRK1 is ubiquitously expressed in mammalian tissue, NRK2 is
not expressed in the kidney, liver, lung, pancreas, and placenta
(272). Using the Nmrk1-deficient mouse model (NRK1KO),
it has recently been shown that NRKs are rate limiting for
NR/NMN-mediated NAD+ synthesis (272).
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5. Purine nucleoside phosphorylase. The second NR
salvage pathway is NRK independent, through which NR is
broken into a ribosyl product and NAM (Fig. 2, Step k), the
latter of which yields NAD+ by NAM salvage. Purine nu-
cleoside phosphorylase (PNP; EC 2.4.2.1) has been shown to
convert NAR to NA (Fig. 2, Step k), which is then converted
to NAMN by the catalytic action of NAPRT (331). PNP de-
ficiency has been shown to increase the deoxyGTP levels. This
in turn inhibits ribonucleotide reductase, which is required for
the formation of deoxynucleotides (20, 285, 327). The enzyme
deficiency leads to the accumulation of metabolites that can
induce toxicity in lymphoid lineage cells (291).

6. Cytosolic 5¢-nucleotidases. A recent study showed
that NAR can be produced by human cells and forms a critical
role in intracellular NAD+ anabolism (190). The study showed
that cytosolic 5¢-nucleotidases (5¢-NTs) can dephosphorylate
NAMN and, to a lesser extent, NMN to form NAR. The
amount of NAR formed appears sufficient to promote NAD+

synthesis in neighboring cells that are missing the machinery
required to utilize non-riboside NAD+ precursors (190).

III. Biological Roles of NAD+

NAD+ is an essential pyridine nucleotide that plays major
roles in a number of critical biological processes, including
oxidative phosphorylation and ATP production, and synthe-
sis of cholesterol, fatty acids, and steroids (224). The primary
function of NAD+ was identified by Warburg and Christian in
1936 (357). NAD+ serves as a hydrogen acceptor allowing
the transfer of electrons for oxidation/reduction (i.e., redox)
reactions leading to ATP production in the mitochondria.

ATP represents the cellular ‘‘energy currency,’’ and a decline
in intracellular NAD+ levels leads to reduced levels of ATP,
culminating in cell death via energy restriction (373).

Apart from NAD+, its closely related phosphate NADP
(Fig. 2, Step r) serves as a cofactor in several anabolic pro-
cesses, such as fatty acid and cholesterol synthesis (315). The
reduced form of NAD+ and NADP are NADH (Fig. 2, Step t)
and NADPH (Fig. 2, Step s), respectively. These nucleotides
serve as hydride donors, in over 400 enzymatic reactions
throughout the body involving dehydrogenases, hydroxylases,
and reductases (219). These reduced and phosphorylated
forms can interconvert, but do not alter the levels of NAD+.

Importantly, NADPH is an essential coenzyme required for
the reduction of ROS (29). Thioredoxin (TXN) is an antioxi-
dant protein that is reduced by thioredoxin reductase in an
NADPH-dependent process (61). Glutathione disulfide (GSSG)
is also a substrate for glutathione reductase for reduction back to
glutathione (GSH) using NADPH. The generation of GSH and
TXN is pivotal for the elimination of ROS such as hydrogen
peroxide (H2O2) (123). Reduced NADPH production due to
decreased NAD+ anabolism (or increased catabolism) can lead
to impairments in the cell redox balance leading to perturbations
in mitochondrial function and genomic signaling and stability,
and subsequently leading to increased vulnerability to necrotic
and apoptotic pathways.

Apart from its roles in redox reactions, a large body of
evidence has shown that NAD+ is more than a regulator of
metabolism, but rather can also participate as the required
substrate for several important enzymatic reactions, includ-
ing DNA repair, epigenetically modulated gene expression,
maintenance of intracellular calcium homeostasis, and im-
munological roles (52, 118, 119) (Fig. 5).

FIG. 5. Cellular roles of NAD1. The mechanisms of degradation of NAD+, including CD38, PARPs, and sirtuins. NAD+ can
be phosphorylated to NADP+. There are also oxireduction reactions of NAD+ to NADH and NADP+ to NADH. CD38 is an NAD-
dependent enzyme that leads to the production of cADPR from NAD+ and NADP+, respectively. Cytosolic cADPR target to
ryanodine receptors on endoplasmic reticulum, and transient receptor potential mucolipin 1 on lysosomes, regulating intracellular
calcium signaling from the endoplasmic reticulum and lysosome-mediated intracellular calcium signaling. cADPR, cyclic-ADP-
ribose. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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A. Poly(ADP)-ribosylation and DNA repair

DNA strand breaks are known to occur in response to free
radicals, ultraviolet (UV) light, or alkylating chemicals, which
activate the enzyme PARP (Fig. 2, Step n) (320). Neuronal and
astroglial cells exposed to cytotoxic levels of glutamate and
QUIN show both an increase in intracellular oxidative stress
and PARP activity (46). PARP-1 (the dominant member of a
superfamily of 18 PARP proteins) efficiently detects the
presence of DNA breaks by its N-terminal zinc-finger domain
(312). The ADP-ribosylation of PARP triggers the recruitment
of key proteins that stimulate the repair of DNA damage in less
than 15 s (85). Importantly, in order for PARP to carry out its
ADP-ribosylating function, it uses the ADP ribose (ADPR)

moiety of NAD+ for its supply. Thus, PARP breaks down
NAD+ to NAM and an ADP-ribosyl product (Fig. 6A) (145).
Possibly as a consequence of DNA strand breaks, recent evi-
dence suggests that the poly(ADP)ribosylation of histones or
transcription factors may also be involved in nuclear receptor
signaling. Poly(ADP-ribose) metabolism is a dynamic process
in which degradation of ADP-ribose polymers occurs rela-
tively rapidly through the action of poly(ADP-ribose) glyco-
hydrolase (295) (Fig. 6A).

A significant decrease in intracellular NAD+ has been re-
ported in the brain and a variety of other cell types as a result
of DNA strand breaks and PARP activation following ex-
posure to H2O2, nitric oxide, HIV infection, or during in-
flammation (7, 326, 330). Increased PARP activity resulting

FIG. 6. Modulation of PARP activity. (A) PARP and PARG enzymatic activity. PARP breaks down NAD+ to NAM and
an ADP-ribosyl product degradation of ADP-ribose polymers occurs relatively rapidly through the action of PARG. (B)
Relationship between DNA damage, PARP activation, and NAD+ depletion. Under normal physiological conditions, PARP
activation leads to repair of damaged DNA. However, increased PARP activity resulting in decreased NAD+ has been
shown to decrease ATP as well as cause cell lysis and death (45, 203) (B). PARG, poly(ADP-ribose) glycohydrolase. To see
this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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in decreased NAD+ has been shown to decrease ATP and
neurotransmitter levels in the brain as well as cause cell lysis
and death (45, 203) (Fig. 6B). Inhibition of PARP activity,
following oxidant injury, has been shown to preserve NAD+

and ATP levels preventing cell lysis (14), although damage to
the DNA is probably not prevented. In a pancreatic islet cell
population lacking expression of PARP, NAD+ depletion
does not occur after oxidant injury despite DNA strand breaks
occurring to the same degree (68). This demonstrates that
activation of PARP is the major cause of NAD+ depletion in
these oxidant injury cells. Elevated levels of free radicals,
oxidants, and excitotoxins have been reported in inflamma-
tory mediated diseases of the brain, and in some cases, DNA
damage has been demonstrated (2, 220, 221, 341, 380). This
suggests that NAD+ depletion through PARP activation may
play a role in central nervous system (CNS) dysfunction and
pathology under these conditions (Fig. 6).

More recently, it has been suggested that PARP activation,
rather than NAD+ decline may be responsible for cell death
following exposure to genotoxic insult. For example, poly
(ADP)ribosylation has been shown to directly inhibit the
glycolytic enzyme hexokinase leading to a significant reduc-
tion in glycolysis before NAD+ depletion, mitochondrial
dysfunction, and neuronal cell death (17). Moreover, direct
poly(ADP)ribosylation of glyceraldehyde 3-phosphate dehy-
drogenase is the primary cause of cell death in kidney tubules
following ischemic injury (94). These studies suggest that the
beneficial effects of PARP inhibition may be due to altered
metabolic effects independent of maintenance of NAD+ levels
during pathological conditions.

PARP also appears to play a positive role in the upregu-
lation of the tumor suppressor protein, p53. For example,
PARP-deficient cell lines derived from Chinese hamster V79
cells failed to undergo poly(ADP)ribosylation and activate

p53 following treatment with etoposide (363). PARP can also
activate DNA-dependent protein kinases that regulate p53
activity through phosphorylation (318). Therefore, on the
contrary to reported benefits of PARP inhibitors, pharmaco-
logical inhibition of PARP activity may contribute to geno-
mic instability with resulting risk of cancer formation.

B. CD38/CD39/CD73/CD157 and secondary
messenger signaling

The immune-associated ectoenzymes CD38, CD39, CD73,
and CD157 represent another class of NAD+-consuming en-
zymes (155) (Fig. 2, Step n). These enzymes require NAD+ to
produce ADPR and hydrolyze the secondary messenger sig-
naling molecule, cyclic-ADP-ribose (cADPR), which helps
mediate intracellular calcium transients (Fig. 7). CD38 has also
demonstrated an immunomodulatory role (135). For instance,
the presence of CD38 on T lymphocytes influences the ability
of antigen-presenting cells to stimulate antigen-specific T cells
(256). Upregulation of CD38 expression also signals matura-
tion of dendritic cells during inflammatory cytokine activation
and acts as a modulating adhesion and signaling molecule
between dendritic cells and lymphocytes (105). In cardio-
myocytes, exogenous stimulants may stimulate an increase in
intracellular calcium, which leads to activation of CD38 (147).
CD38 expression has also been shown to increase with age
(65), and this is most likely attributed to an age-related increase
in circulating inflammatory cytokines, and reduced CD38
function has been associated with poor immune responses.

Given that 100 molecules of NAD+ must be hydrolyzed to
generate 1 molecular of cADPR, it is highly likely that CD38 is a
major regulator of intracellular NAD+ levels (76). Accordingly,
we found a fivefold increase in NAD+ levels in CD38 knockout
neuronal cells compared with controls (52). Therefore, CD38

FIG. 7. Stoichiometry of CD38-mediated Ca21 mobilizing and NADase activities. (A) CD38 requires NAD+ to
produce ADPR and hydrolyze the secondary messenger signaling molecule, cADPR, which helps mediate intracellular
calcium transients. ADPR, ADP ribose. (B) CD38 also converts NADP+ to NAADP+ via base exchange (NADase activity of
CD38). To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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may not only represent an inefficient secondary messenger en-
zyme but also as an NADase that primarily regulates intracel-
lular levels of NAD+ and its physiological processes (Fig. 8).

CD38 has also been shown to use b-NAD+ as a substrate,
but no a-NAD+ or NADH. CD38 can also catalyze a base
exchange between NADP and NA, leading to the formation
of nicotinic acid adenine dinucleotide phosphate (NAADP),
which is also used as a hydrolytic substrate (90). It can also
metabolize analogs of NAD+, including nicotinamide gua-
nine dinucleotide (NGD+) and nicotinamide hypoxanthine
dinucleotide (NHD+), yielding cyclic compounds (cGDPR
and cIDPR, respectively). These compounds exhibit fluo-
rescent properties, but not calcium releasing (383). They
represent useful biochemical agents for examining ADP-
ribosyl cyclase activity.

Prolonged activation of CD38 following cardiac stress has
been shown to induce a sustained Ca2+ release leading to
cardiac hypertrophy and arrhythmias (130). Supporting evi-
dence comes from male CD38 knockout mice, which re-
ported improved cardiac function, while treatment with
ADPR cyclase inhibitors led to antiarrhythmic effects in
multiple in vitro models and cardiac Ca2+ overload studies
(131). Similarly, inhibition of CD73 has been shown to me-
diate protection against renal stressors, and CD39 activity
mediated protection against renal ischemic injury (268).

CD38 can also regulate the activity of PARP and other
NAD+-dependent enzyme SIRT1 activities by potentially
reducing the accessibility of NAD+ to its preferred enzymatic
targets (348). NAM, which is generated by the catalytic ac-
tivity of CD38, also represents an endogenous metabolite of
SIRT1 enzyme. Therefore, it has been postulated that CD38
may in fact be an important regulator on intracellular NAD+

levels and SIRT1 activity, thus influencing SIRT1 functions,
including maintenance of cellular bioenergetics, obesity, and
senescence. Interestingly, one study reported no significant
effects on NAD+ levels in CD38 knockout mice compared
with wild-type animals (377). Therefore, the amount of
benefit due to CD38 inhibition or ablation warrants further
investigation.

Novel CD38 inhibitors may also be useful for treatment
degenerative disorders where optimal NAD+ and NADPH
anabolism remains crucial to attenuate oxidative stress insult,
the latter of which serves as the ultimate electron donor
supporting glutathione peroxidases, peroxiredoxins, and
glutaredoxins. However, inhibition of CD38 may also result
in a deleterious impact on immunological function. CD38/
cADPR also signals oxytocin release, which regulates many
social behaviors, and inhibiting this process may induce
several forms of mental impairment. Moreover, niacin defi-
ciency, observed in patients with pellagra, often progresses to

NAD+ cADPR

NADase
ADP-ribosyl 

cyclase

NADP+ NAADP+

Lysosome

Intracellular 
Ca2+ stores

Ca2+

Ca2+

Ca2+
Plasma 
membrane

NAD+

cADPR

FIG. 8. Schematic representation of CD38-mediated intracellular Ca21 secondary messenger signaling. CD38 is
also an NADase, which primarily regulates intracellular levels of NAD+ and its physiological processes. CD38 also
catalyzes a base exchange between NADP and NA, leading to the formation of NAADP, which is also used as a hydrolytic
substrate. NAADP, nicotinic acid adenine dinucleotide phosphate. To see this illustration in color, the reader is referred to
the web version of this article at www.liebertpub.com/ars
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dementia similar to schizophrenia (98, 264), and this could be
due to impaired cADPR formation.

C. Sirtuin activity

Another important NAD+-dependent function is the ac-
tivity of the silent information regulators of gene transcrip-
tion, or sirtuin family of enzymes (Fig. 2, Step n). Sirtuins are
a family of class III NAD+-dependent histone deacetylases
exhibiting protein lysine deacetylase, and partial ADP-ribose
transferase activities. In the reaction mediated by sirtuins, an
acetyl-modified lysine is bound to a target protein and NAD+

in specific pockets (346). Deacetylation occurs when the
modified lysine side chain is coupled to the cleavage of
the glycosidic bonds in NAD+, leading to the generation of
the deacetylated lysine, acetylated ADP-ribose, and NAM as
by-products (101) (Fig. 9).

At present, seven classes of sirtuins (SIRT1–7) have been
identified in mammalian cells, each of which are localized in
various cellular organelles, and mediate a diverse range of
important biological functions (53) (Fig. 10). SIRT1 and
SIRT6 are nuclear proteins associated with the maintenance
of chromatin structure, DNA repair, and gene expression. It
has been suggested that SIRT1 may play a pivotal role in
promoting cellular longevity and may hold the key to slowing
development of the aging phenotype (290). SIRT1 has been
shown to influence the acetylation status of several important
transcription factors, including the metabolic regulator, per-
oxisome proliferator-activated receptor-c (PPARc), tumor
suppressor protein (p53), and the cell growth-linked FOXO
forkhead family of transcription factors (192). However,

some evidence suggests that SIRT6 may also contribute to
an age-resistant phenotype (300). SIRT2 is predominantly a
cytoplasmic protein where it regulates gene expression by
deacetylating transcription factors that shuttle from the
cytoplasm to the nucleus (282). SIRT3, SIRT4, and SIRT5
are found in the mitochondrion where they respond to
changes in mitochondrial redox status by altering the en-
zymatic activity of specific downstream targets, including
manganese superoxide dismutase (MnSOD) (249). SIRT7
is localized in the nucleolus of mammalian cells and has
been associated with cellular growth and metabolism (347).
The biological relevance of sirtuins in redox processes is
discussed further in section IV. Importantly, the beneficial
effects of sirtuin activity are only achieved if NAD+ levels
are optimal.

D. Principal causes of NAD+ decline

Apart from deficiency within the NAD+ biosynthesis pro-
cess, there are principally two conditions under which NAD+

depletion may occur: (i) excessive DNA damage due to free
radical or UV attack, leading to hyperactivation of PARP.
This ultimately leads to a high turnover and subsequent de-
pletion of NAD+. The resulting energy crisis and reduced
ATP production can lead to cell death via either an apoptotic
or necrotic pathway (ii). A chronic increase in immune acti-
vation and inflammatory cytokine production can accelerate
CD38 activity and contribute to NAD+ decline. While several
clinical disorders and degenerative disorders can meet these
criteria, chronic accumulation of oxidative stress and in-
flammation during advanced age represents a major driver of
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FIG. 9. Sirtuin enzymatic activity. NAM is rendered as a by-product of sirtuin-mediated deactylation. Deacetylation
occurs when the modified lysine side chain is coupled to the cleavage of the glycosidic bonds in NAD+, leading to the
generation of the deacetylated lysine, acetylated ADP-ribose, and NAM as by-products. To see this illustration in color, the
reader is referred to the web version of this article at www.liebertpub.com/ars
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NAD+ decline (49). Promotion of NAD+ anabolism using
NAD+ precursors may represent a clinically relevant thera-
peutic strategy to ameliorate age-related decline in cellular
energy.

IV. Redox Roles of Sirtuins and Transcriptional
Regulation

Since the term of their discovery, sirtuins have been as-
sociated with life span extension. However, while the lon-
gevity enhancing capacity of sirtuins has been established in
several small model systems, the modes of action of sirtuins
underlying these beneficial effects remain unclear. Chronic
accumulation of damage over time represents the main phe-
notype associated with the aging process. In particular,
chronic oxidative stress can induce damage to diverse mac-
romolecules, and perturb mechanisms with which they are
repaired. Recent evidence suggests that the beneficial effects
of sirtuins may be mediated by their ability to regulate redox
processes. In this section, we investigate the association be-
tween sirtuins and their redox environment, and review how
sirtuin-mediated deacetylation affects target enzymes and
transcription factors.

A. SIRT1

As previously mentioned, tumor suppressor p53 represents
the first deacetylation substrate of SIRT1. The transcription
factor p53 has been shown to activate numerous pro- and
antioxidant genes, including sestrins, MnSOD, and glutathi-
one peroxidase 1 (284). The binding and deacetylation of p53
by SIRT1 at Lys382 mediate its transcriptional activity (208).
SIRT1 deacetylation of p53 has been shown to influence the

cellular localization of p53 in response to oxidative stress,
and may serve as a metabolic switch between antioxidant
protection and apoptotic cell death. For instance, in murine
embryonic stem cells, the absence of antioxidants in cell
culture media induced mitochondrial translocation of p53,
while in SIRT1 knockout cells, increased oxidative stress
induced nuclear translocation of p53 leading to an antioxi-
dant response (139). Similarly, upregulation of SIRT1in
mesangial cells attenuated the induction of p53-mediated
apoptotic pathway following exposure to pathological con-
centrations of H2O2. However, at lower concentrations of
H2O2, the SIRT1-p53 interaction led to an induction of an-
tioxidant processes (191).

While the adaptive role of SIRT1 against ROS stress has
been well established in vitro, studies using live animal have
been less convincing. This is due to the high levels of em-
bryonic lethality following the production of SIRT1-/- mice.
However, one study using heterozygous SIRT1 knockout mice
reported increased vulnerability to renal oxidative stress, and
combined SIRT1+/- p53+/- showed greater susceptibility to
tumor development compared with p53 haploinsuffici-
ency alone (146).

SIRT1 has also been shown to deacetylate and activate
FOXO3a following exposure to oxidative stress (57). FOXO3a
appears to be an important transcriptional activator of the
SOD2 gene, which encodes for the production of the en-
dogenous antioxidant protein MnSOD. The catalase enzyme,
which acts directly on free radicals, is predominantly local-
ized in peroxisomes and represents another target of FOXO3a
(185). As per the relationship between SIRT1 and p53, low
levels of H2O2 can mediate FOXO3a-mediated induction of
catalase, while cytotoxic levels of H2O2 can induce FOXO3a-

FIG. 10. Functions of NAD-dependent sirtuins and relevant transcription factors. Sirtuin-mediated deacetylation
affects numerous target enzymes and transcription factors relevant to aging and disease. Importantly, sirtuin activities
stimulate OXPHOS, while yet unknown acetylation mechanisms serve to inhibit anti-OXPHOS. OXPHOS, oxidative
phosphorylation. To see this illustration in color, the reader is referred to the web version of this article at www
.liebertpub.com/ars
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mediated apoptosis (144). In cardiovascular disease, increased
oxidative stress can upregulate SIRT1expression and stimula-
tion of catalase and MnSOD expression. However, higher levels
of SIRT1 can lead to cardiac hypertrophy and cell death via
apoptotic pathways (9). Taken together, these studies collec-
tively suggest that SIRT1 serves as an ROS sensor, capable of
inducing protection at low-level stress, while inducing apo-
ptosis at severe stress levels.

Recently, it has also been shown that mechanisms re-
sponsible for the regulation of the intracellular NAD+:NADH
ratio can also affect SIRT1 function via AMP-activated ki-
nase (AMPK), an essential regulator of cellular energy ho-
meostasis. Several studies have shown that reduced glucose
available in myoblasts induced activation of AMPK and
upregulation of NAMPT, leading to increased levels of in-
tracellular NAD+ and activated SIRT1, and culminating in
the activation of several transcriptional mediators, including
FOXO proteins and PGC-1a, thus enhancing catabolism and
mitochondrial biogenesis (110). Furthermore, activation of
AMPK stimulated transcriptional activity downstream of
SIRT1 in another study (66). SIRT1 can also activate AMPK
through positive feedback mechanism. For instance, liver
kinase B1 (LKB1), which phosphorylates and activates
AMPK under low nutrient levels, can be deacetylated by
stimulation or overexpression of SIRT1 (either directly or
indirectly). This promotes translocation of LKB1 from the
nucleus to the cytosol, which further phosphorylates AMPK
(192). As such, there seem to be multiple levels of metabolic
regulation occurring through the AMPK–SIRT1 axis, and
many of these steps require further elucidation.

Apart from the AMPK-SIRT1 axis, SIRT1 can also in-
teract and deacetylate PGC-1a. PGC-1a is an important
transcriptional coactivator that stimulates mitochondrial
biogenesis and indirectly also mitochondrial dynamics in a
tissue-dependent manner. For instance, increased hepatic
SIRT1 due to fasting can deacetylate PGC-1a leading to both
inhibition of glycolytic genes and increased expression of
genes associated with gluconeogenesis (276). Another study
showed that SIRT1 could directly interact with and deace-
tylate PGC-1a in adrenal PC12 cells leading to reduced
PGC-1a transcriptional activity and related mitochondrial
oxidative metabolism (246). However, in skeletal muscle,
increased SIRT1 activity and PGC-1a deacetylation led to an
increase in mitochondrial fatty-acid oxidation (116). Re-
duced PGC-1a activity associated with reduced expression of
the mitochondrial antioxidant protein, MnSOD, providing
additional support for the role of SIRT1 on control of redox
stressors (207).

Recent studies have shown that calorie restriction and the
phytochemical resveratrol, which are known another to ac-
tivate SIRT1, can enhance endothelial nitric oxide synthase
(eNOS) expression and promote mitochondrial biogenesis by
upregulating transcription factors such as PGC-1a (78). Si-
milarly, SIRT1 has been shown to deacetylate eNOS in vivo,
leading to increased eNOS activity and intracellular NO
production (225). Therefore, SIRT1 represents a key regu-
lator of vascular tone dependent on eNOS.

Moreover, it is well established that the transcriptional
response to hypoxia is regulated mainly by the HIF family of
proteins, of which HIF1a and HIF2a are well characterized
[reviewed in Majmundar et al. (216)]. It has been demon-
strated that both HIF1a and HIF2a can be deacetylated by

SIRT1 by two separate and distinct mechanisms. Under
normal physiological conditions, SIRT1 can bind to, and
deacetylate, HIF1a, preventing HIF1a from interacting with
the transcriptional coactivator p300, inhibiting its transcrip-
tional activity (200). However, under hypoxic conditions, the
decline in the NAD+:NADH ratio and available NAD+ for
optimal SIRT1 activity due to reduced oxygen levels allows
HIF1a to remain acetylated, thus preventing its hypoxic
transcriptional activity (200). On the contrary to its effect on
HIF1a, SIRT1 can also form a complex with SIRT1 under
hypoxic conditions and is deacetylated at three lysine resi-
dues (K385, K685, and K741) in the carboxy terminus,
leading to increased transcriptional activity of HIF2a and
related proteins, and erythropoietin in particular (92).

B. SIRT2

The expression of SIRT2 has also been shown to be up-
regulated at both the mRNA and protein levels in response to
cellular stressors such as oxidative stress. Numerous studies
have demonstrated that increased SIRT2 expression follow-
ing oxidative insult can lead to cellular apoptosis via induc-
tion of the proapoptotic protein Bim (350). Overexpression of
SIRT2 has also been shown to promote neurodegeneration,
although the exact mechanism remains unclear (322). In the
absence of the SIRT2 gene, upregulation of the cytosolic
chaperone 14-3-3f, sequesters the proapoptotic mitochon-
drial protein BAD in the cytosol and mediates protection
against anoxia–reoxygenation-induced cell death (210).
SIRT2 inhibitors have been shown to ameliorate a-synuclein-
mediated toxicity in a cellular model of Parkinson’s disease
(PD) (210). However, under low-stress conditions, SIRT2
upregulates mitochondrial MnSOD via FOXO3a deacetyla-
tion, leading to a reduction in the levels of ROS.

C. SIRT3

Isocitrate dehydrogenase 2 (IDH2) represents another
major target of SIRT3, a mitochondrial sirtuin. IDH2 uses
NADPH to generate reduced GSH to mediate an antioxidant
affect. Schlicker et al. showed SIRT3, but not SIRT5, could
deacetylate IDH2 at K211 and K212 residues to promote its
activity (294). It has been shown that the GSH:GSSG ratio
and the level of NADPH are increased in the liver, brain, and
the inner ear following CR in an SIRT3-dependent manner
(311). As well, SIRT3 directly deacetylates and inhibits the
activity of IDH2, and SIRT3 overexpression increased
NADPH levels and reduced oxidative stress-mediated cell
death (311). Taken together, these studies suggest that CR,
SIRT3, and IDH2 represent important targets for the man-
agement and treatment of age-related hearing loss, and that
maintenance of intracellular NAD+ levels modulates the
cellular response to degeneration.

Like IDH2, SIRT3 has been shown to mediate SOD2 ac-
tivity by regulating mitochondrial FOXO3a activity, al-
though the exact mechanism remains unclear. One study
using overexpression of SIRT3 in mouse embryonic fibro-
blasts shows that the levels of ROS were dramatically re-
duced in an SOD2-dependent manner (266). Similarly,
hyperacetylation of SOD2 in SIRT3-deficient mice led to
reduced SOD2 activity and upregulation of ROS production
(329). However, differences in the site-specific regulation of
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SOD2 by SIRT3 have been reported, and this is likely due to
differences in cell type, species, or stress conditions.

Additional mitochondrial targets of SIRT3 and SIRT5 have
also been recently identified, which can regulate oxidative
stress. SIRT3 has been shown to deacetylate complexes I, II, III,
and IV and glutamate dehydrogenase, regulating glutamate
oxidative stress yielding NADPH, deacetylated by SIRT3
(and antagonized by SIRT4-mediated ADP-ribosylation)
(205). SIRT5 can also deacetylate cytochrome c (294). As
well, SIRT3 and SIRT5 can both regulate mitochondrial-
localized reactions of the urea cycle. To be more specific,
SIRT3 can deacetylate ornithine transcarbamoylase, while
SIRT5 acts on carbamoyl-phosphate synthase 1 to enhance
urea cycle function and promote the clearance of oxidative
stress-promoting ammonium (137).

SIRT3 has been recently shown to be important for the
regulation of normal cardiac function and protection against
cardiac pathologies. Knockout of SIRT3 has been shown to
increase the hyperacetylation of mitochondrial protein,
leading to spontaneous cardiac hypertrophy with age and
>50% reduction in ATP levels (319). Reduced SIRT3 ex-
pression and hyperacetylation of cardiac mitochondrial en-
zymes have also been reported in mouse models for cardiac
disorders, and poor human hearts (156). As well, increased
activity of acyl-CoA dehydrogenase and other enzymes in-
volved in fatty acid oxidation (FAO) has also been reported in
SIRT3 knockout mice (13). However, another study reported
reduced rates of FAO in the hearts of fasted animals (151).
These differences may be attributed to variation in the type of
stressors that can influence the activity of protein acetylation.

Renal stress has been shown to reduce the expression of
SIRT3. For instance, SIRT3 mRNA expression was shown to
be decreased in a model of free fatty acid-associated tubu-
lointerstitial inflammation, and this occurred parallel to in-
creased levels of ROS and markers of inflammation compared
with age-matched control animals (187). Interestingly, ret-
roviral overexpression of SIRT3 attenuated these changes,
suggesting that optimal SIRT3 function is necessary for renal
function (370). Similarly, high-glucose levels were shown to
decrease the mRNA and protein expression of SIRT3, and
supplementation with NAD+ ameliorated high-glucose-
induced mesangial hypertrophy and SIRT3 expression at
both the genomic and protein levels (390). Taken together,
these findings suggest that SIRT3 can protect against renal
degeneration in diabetic nephropathy.

D. SIRT4

Like SIRT3, SIRT4 appears to be highly expressed in
catabolic tissue such as the brain, heart, liver, and kidney
(136). SIRT4 has been shown to protect against hypoxia-
induced apoptosis in cardiomyoblast cells (202). However,
knockout of SIRT4 protected against angiotensin-II induced
cardiac hypertrophy and fibrosis in mice, suggesting that
SIRT4 may be directly involved in the pathogenesis of car-
diovascular disease (209). While both studies suggest a dis-
crepancy for the exact role of SIRT4 in cardiac function, it
appears likely that these effects are due to the modulatory role
of SIRT4 on cellular oxidative stress levels.

There also exists a strong correlation between kidney
function, SIRT4 levels, and the NAD+ metabolome. For in-
stance, cotreatment with cisplatin and the phytochemical

curcumin restored NAD+ levels and attenuated the decline in
NAMPT, SIRT1, SIRT3, and SIRT4 expression due to
cisplatin-induced nephrotoxicity (342). However, it is un-
likely that these effects are directly in response to SIRT4, as
the levels of NAMPT, SIRT1, and SIRT3 were also affected.
Additional work is necessary to evaluate the role and modes
of action of SIRT4 in degenerative disorders of the brain,
heart, and kidney, and other age-related conditions associated
with NAD+ depletion.

E. SIRT5

The exact roles of SIRT5 in maintaining normal cellular
homeostasis is not well understood. One study found no
significant differences between the heart weight and rate, and
systolic blood pressure in SIRT5 knockout mice exposed to a
high-fat diet (379). However, another study showed that
protein succinylation is uniquely elevated in SIRT5 knockout
mice (248). These proteins include those involved in fatty
acid metabolism, amino acid catabolism, the TCA cycle,
oxidative phosphorylation, and ketone and pyruvate metab-
olism (41). In mice exposed to cardiac ischemia, a larger
infarct volume and elevated oxidative stress were reported in
SIRT5 knockout hearts compared with wild-type controls
(41). These changes were accompanied by increased fibrosis,
and reduced shortening fraction and ejection fraction com-
pared. Increased activity of succinate dehydrogenase (SDH)
was also reported in SIRT5 knockout mice, and SDH inhib-
itors reduced infarct size to ‘‘normal’’ levels (41). This sug-
gests that the protective effects of SIRT5 may be mediated by
desuccinylation of SDH.

Similarly, knockout of SIRT5 also resulted in hypersucci-
nylation of mitochondrial protein, and post-translational
modification of malonylation and glutarylation in the kidney
(198). In addition, SIRT5 has been shown to deacetylate
carbamoyl-phosphate synthetase 1 (CPS1), leading to in-
creased activity of CPS1 and reduced plasma urea levels (242).
Increased blood ammonia levels were reported in SIRT5
knockout mice compared with age-matched wild-type con-
trols. These findings provide a key role for the role of SIRT5 in
the regulation of ammonia.

F. SIRT6

While the effect of redox stressors on SIRT6 function re-
mains nascent in current literature, one study has shown that
knockdown of SIRT6 can induce accelerated senescence as
evidenced by the development of degenerative features,
shortened telomere length, and reduced life span (239). In-
terestingly, HIF1a has been shown to be upregulated in cells
lacking SIRT6, leading to an increased glucose uptake and
improved glycolysis (384). In normal mice embryonic fi-
broblast cells, SIRT6 serves as an H3K9 histone deacetylase,
inhibiting HIF1a-dependent transcription of multiple glyco-
lytic genes, thus acting as a corepressor of HIF1a.

G. SIRT7

Of the family of sirtuins, SIRT7 remains the least inves-
tigated. One study showed that knockdown of SIRT7 en-
hances acetylation of p53, leading to increased vulnerability
to genotoxic insult (241). SIRT7 has also been shown to
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inhibit cell proliferation following exposure to high oxidative
stress levels (344).

H. Activation by NAD+ precursors

A growing body of evidence suggests that upregulation of
NAD+ anabolism can influence processes regulated by sir-
tuins. These pathways may therefore be upregulated with
NAD+ or NAD+ precursors, or other means of manipulating
NAD+ biosynthesis pathways. It has been shown that the Km

for SIRT3 and SIRT5 is significantly lower than the levels of
mitochondrial NAD+, suggesting that the activity of these
sirtuins is rate limited by the availability of mitochondrial
NAD+ levels (150). Current evidence suggests the impor-
tance of SIRT1 and SIRT3 in regulating the beneficial effects
of NAD+, and the effects of NAD+ supplementation on other
sirtuins remain unclear. Examining whether the activity of
other sirtuins is affected by NAD+ therapy represents an
emerging area of research. It is likely that NAD+ supple-
mentation may activate multiple members of the sirtuin
family leading to diverse effects on multiple biological pro-
cesses, and thus improving brain, cardiac, and renal function
under different stressors.

V. Distribution of the NAD+ Metabolome

It is well established that NAD+ (in particular the NAD+/
NADH ratio) is a master regulator of cellular bioenergetics.
The total intracellular NAD+ content is estimated to be in the
range of 0.2–0.5 mM (388). This concentration is within the
estimated NAD+ Km value of PARPs (0.02–0.08 mM) (15)
and SIRT1 (0.56 mM) for NAD+ (278). This means that the
availability of the essential substrate NAD+ is rate limiting
for PARPs and SIRT1. For instance, low NAD+ levels due to
increased PARP activity lead to reduced SIRT1 activity,
whereas higher NAD+ levels enhance PARP and SIRT1 ac-
tivities. Research from our group has demonstrated that re-
duced levels of NAD+ due to chronic oxidative stress and
hyperactivation of PARPs are associated with significantly
reduced sirtuin activity (51, 223).

Metabolomic profiling of the NAD+ metabolome in pe-
ripheral blood mononuclear cells (PBMCs), plasma, and ur-
ine in an overnight fasting human subject has recently been
published (337). The study showed that the phosphorylated
NAD+ metabolites—NAMN, nicotinic acid adenine dinu-
cleotide (NAAD), NADP+, NMN, and ADPR—are found
exclusively in blood cells, but not in plasma or urine. The
levels of NA, NAM, and NR are considerably low in normal
fasting blood (337). Very few studies have examined the
levels of these NAD+ metabolites due to limitations in ac-
curately measuring them. Using gas chromatography–mass
spectrometry, one study reported that the concentration of
NAM in fasting blood was about 300 nM, and the level of NA
was 30 nM (72). This provides evidence for the physiological
importance of NAM as the preferred form of niacin to extra-
hepatic tissue. The blood levels of both NA and NAM can be
significantly increased following supplementation with vi-
tamin B3. These pharmacological doses range between 1 and
3 g of NA or NAM. In comparison, a niacin-rich meal con-
tains about 10 g of vitamin B3 composed of a mixture of NA
and NAM, the concentrations of which vary with their con-
tent in plant and animal foods (231, 232).

It has been previously shown that small amounts of NA can
be converted to NAD+ in the intestine and liver, and NA may
not be detected in systemic blood. Moreover, the catalytic
activity of NAD+ glycohydrolases or ADP-ribosylation in the
small intestine or liver can induce the release of NAM into the
blood stream (274). NAM from the diet may also be used to
form NAD+ in the small intestine and liver, and may also be
released into the blood stream. Expression of hepatic NNMT
leads to the formation of MeNAM from NAM, thus main-
taining SIRT1 activity in the liver (152).

It remains unclear whether NAM can accumulate in the
blood stream following an NAM-rich meal, or can be stored
in several tissues for generation of NAD+ as required and
later released into the blood stream to maintain threshold
levels in the blood stream. However, one study previously
showed that up to 60% of the total NAD+ levels are depleted
in red blood cells in a rat model of niacin deficiency. The
remaining 40% appeared resistant to depletion (274). On the
contrary, the levels of NAD+ in the liver were considerably
higher and depleted at a slower rate during deficiency (274).
Short- or long-term storage of NAD+ may take place in the
liver and red blood cells, where it regulates blood NAM
levels during periods of niacin deficiency, for example,
during fasting. Under normal physiological conditions, high-
affinity transporters are required to facilitate the transfer of
NA and NAM into extrahepatic tissues, which are present in
the blood stream at low- to mid-nanomolar concentrations.
Understanding the interactions between these precursors can
help us to elucidate appropriate pharmacological doses of NA
and NAM.

Recently, NR has been identified as an NAD+ precursor
vitamin that is uniquely and orally bioavailable in mice and
humans (337). Blood NAD+ levels have been shown to in-
crease by 2.7-fold following a single daily dose of NR
(1000 mg) for 7 days, with a concurrent increase in NAAD by
up to 45-fold in PBMCs. While it is unclear how an oral dose
of NR can raise NAAD levels, it has been suggested that NR
may be partially converted to NAM via the NAD+ salvage
pathway (337). Such conversion may stimulate bacterial
hydrolysis of NAM to NA, culminating in the production of
NAD+ using an NAAD intermediate. Another study showed
that NMN is metabolized extracellularly to yield NR, which
is then converted to NAD+ intracellularly (272). Therefore,
NR and NMN represent convergent supplementation strate-
gies to enhance NAD+ anabolism.

VI. Subcellular Compartmentalization of NAD+

Traditionally, it was thought that NAD+ was distributed in
the nucleus, as only one form of NMNAT was identified as
nuclear in origin (296). Nuclear NAD+ was therefore avail-
able to catalyze poly(ADP-ribose) formation but could also
equilibrate in the cytosol via nuclear pores (32). Until re-
cently, the significance of mitochondrial NAD+ was unclear,
and it was thought that NAD+ could be transported in its
intact form into the mitochondria (138). However, it is now
understood that there are three intracellular NAD+ compart-
ments—the nucleus, cytosol, and mitochondria (31). Sub-
cellular compartmentalization of NAD+ is thought to play a
critical role following niacin depletion. As total intracellular
NAD+ levels decline, distinct subcellular stores of NAD+

may influence the outcome of competition between
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biochemical processes dependent on NAD+ consumption,
leading to significant alterations in metabolic pathways that
are involved in tissue pathologies.

Recently, three distinct NMNAT enzymes have been dis-
covered, localized to the nucleus (NMNAT-1), mitochondria
(NMNAT-2), and the Golgi apparatus (NMNAT-3) (31).
While the levels of NMN required for the catalytic activity of
NMNAT-1 and NMNAT-2 are very close, a higher amount of
NMN is required for NMNAT-2 activity (121). The differ-
ential expression of NMNAT enzymes in different intracel-
lular compartments suggests multiple roles for promoting
optimal metabolic function in a variety of cells, or an addi-
tional mechanism for adaptive response to stress. For example,
one study showed that niacin deficiency with normoxia re-
duced lung NAD+ levels in Fisher-344 rats by 40% (273).
Interestingly, exposure to chronic hypoxic conditions induced
poly(ADP-ribose) formation in lung tissue, but did not reduce
lung NAD+ content, rather NAD+ levels remained at near-
control nontreated levels in niacin-deficient lung tissue.

NMNAT-1 plays an important role in mediating NAD+

synthesis to close proximity of the main enzyme responsible
for ADP-ribosylation, PARP-1, but also including PARP-2
and 3, tankrases, and sirtuins. While it is likely that nuclear
NAD+ may enter the cytosol via specific nuclear pores, there
are also additional benefits for the formation of NAD+ in the
nucleus. Overexpression of NMNAT-1 has been shown to
rescue neurons from axonal degeneration, known as Wal-
lerian degeneration (381). Similarly, inactive mutant forms
of NMNAT-1 also demonstrated beneficial effects against
neural loss, possibly due to a chaperone effect (54, 382).
NMNAT-1 can direct NAD+ synthesis toward the active site
of automodified PARP-1 via noncovalent interactions be-
tween NMNAT-1 and poly(ADP-ribose) (32).

Moreover, the mitochondrion represents the main site for
important redox reactions, including the TCA cycle and ox-
idative phosphorylation for ATP production. As well, it is also
home to mitochondrial poly(ADP-ribose) metabolism and
SIRT3–5 activities (247). These fundamental processes need
to be maintained if possible even in the presence of NAD+

decline due to increased cellular ADP-ribosylation and niacin
deficiency. NAD+ can be released from the mitochondria into
the cytosol and nucleus through specific permeability transi-
tion pores during conditions of apoptosis or necrosis (89,
149). Therefore, high starting mitochondrial levels of NAD+,
which are an order of a magnitude greater than cytosolic
levels, are necessary to maintain optimal redox function.

On the other hand, the Golgi apparatus is involved in
packaging and transfer of macronutrients to other organelles,
and for clearance from the cell. It is likely that the Golgi
apparatus may regulate NAD+ levels in other organelles, al-
though this remains uncertain. NAD+ may be excreted from
the Golgi apparatus and into the cytosol, or it may be released
in the extracellular space to act as a substrate for important
ecto-mono(ADP-ribosyl)transferases and/or ADP-ribosyl
cyclases, which do not normally have access to significant
amounts of NAD+ (31).

The effect of NAD+ precursors in the subcellular distri-
bution remains uncertain and several questions remain un-
answered. Will nuclear NAD+ be made more available
following treatment with high levels of vitamin B3, since it
has the greatest capacity to modulate poly(ADP)ribosylation
and repair of DNA damage, will there also be an increase in

cytosolic NAD+, given that brain cyclic ADP-ribose levels
can increase, and what are the effects of high levels of vita-
min B3 on the mitochondrial NAD+ pool? Interestingly,
NAPRT, the enzyme responsible for the conversion of NA to
NAD+ is found in the cytoplasm (142). Therefore, supple-
mentation with high levels of NA may alter the subcellular
contents of NAD+.

VII. Modulation of NAD+ Metabolism
by Caloric Restriction

It is well established that CR represents the most effica-
cious intervention to promote longevity in several short-lived
species, including mice and rats, and maintain a healthy and
average life span in primates. CR is defined as a 20% re-
duction in calorie intake compared to ad libitum feeding
without incurring malnutrition or reduction in important vi-
tamins and nutrients (222). Although the molecular basis of
CR remains unclear, it is thought that CR regulates fat and
carbohydrate metabolism, ameliorates oxidative stress and
inflammation, activates a stress-induced hormetic response
that downregulates insulin and insulin-like signaling (ILS),
amino signaling target of rapamycin (TOR)-S6 kinase path-
way, and the glucose signaling Ras-protein kinase A (PKA)
pathway (36). It is believed that regulation of macromolecule
consumption is a direct response to reduced diet, while
hormesis and downregulation of TOR and PKA are most
likely the molecular aspect of CR.

Several studies have examined the effect of CR in a variety
of model organisms. In yeast, exposure to sublethal stress
conditions increases expression of nicotinamidases, thus al-
tering NAD+ metabolism and enhancing the activity of Sir2,
an yeast homologue of mammalian SIRT2 (16). This is evi-
denced by repression of age-associated extrachromosomal
ribosomal DNA circles (309). Downregulation of TOR and
PKA also mediates the beneficial effects of CR on life span as
reported in cell survival studies (361). On the contrary, lon-
gevity in worms is mediated by inactivation of ILS or fork-
head FoxO transcription factor daf-16 (25). While additional
mechanisms may be attributed to CR in mammals, alterations
in the NAD+ metabolome and increased sirtuin activity may
play a prominent role in mediating health benefits reported in
the brain and liver following a CR diet.

In rodents, brain total NAD levels were reportedly in-
creased in CR-treated mice, while NAM levels decreased
concurrently (265). These observations occurred in parallel
to increased neuronal SIRT1 activity, which lowered Alz-
heimer’s associated-neuropathology. In another study, he-
patic total NAD levels increased in fasted mice, and these
changes were accompanied by increased SIRT1 activation,
PGC1a deacetylation, and increased mitochondrial biogen-
esis (276) (Fig. 11). Three mechanisms have been developed
to explain these changes in the NAD+ metabolome following
CR: (i) increased systemic mobilization of NAD+ precursors,
NAM and NR, since increased l-tryptophan and NA avail-
ability is dependent on dietary availability; (ii) reduced
NAD+ catabolism if major NAD-consuming enzymes such as
PARPs and CD38 are negatively modulated by CR; and (iii)
CR-mediated negative regulation of the NR and/or NAR
pathways may increase brain and hepatic NAD+ levels.

Information obtained from experimental small model or-
ganisms has provided insight into the molecular basis of CR
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and aging. However, there are still discrepancies in studies
using larger animals. CR has been investigated in rhesus
monkeys, which are the closest experimental model organism
to human in a controlled environment (226). One study
conducted by the National Institute of Aging (NIA) reported
no significant improvement in life span. However, a positive
trend to slow down the onset of age-related degenerative
diseases was observed (227). In contrast, another study by the
Wisconsin National Primate Research Center (WNPRC)
showed significant improvements in both life span and health
span (82, 83). These discrepancies have been attributed to
differences in dietary composition and heterogenic genetic
backgrounds of the subjects (Fig. 11).

Nevertheless, the beneficial effects of CR have been
documented in the Comprehensive Assessment of Long-term
Effects of Reducing Intake of Energy (CALERIE) study
conducted by the National Institute of Health (NIH). The

study showed that a 2-year 25% CR regimen provided sig-
nificant health benefits in nonobese humans, including re-
duced inflammatory markers and cardiometabolic risk factors
(280). However, given the results observed in rhesus mon-
keys, longer studies with a larger sample size need to be
conducted to validate the potential effects of CR on human
life span and normal physiological function.

VIII. Beneficial Effects of NAD+ Precursors

NAD+ anabolism in mammalian cells is known to occur
through two major pathways; the de novo and the salvage
pathways. To determine nutritional and therapeutic benefits
due to maintenance of NAD+ levels in tissues, organs, and
cells, supplementation with either NAD+ and its reduced
form NADH or its precursors represents a potential thera-
peutic strategy to slow down the aging process and/or im-
prove the management of age-related degenerative disease.
Oral supplementation with NAD+ and NADH has not shown
any significant elevation in plasma or tissue levels of NAD+,
potentially due to inefficient metabolism of NAD+ through
the gut, thus leading to poor bioavailability (177). In addition,
oral NADH may not be oxidized to NAD+ in the body, may
not be efficiently absorbed by the gastrointestinal system, or
may be converted to a product before absorption that cannot
yield NAM (34, 35). At present, intravenous infusion of
NAD+ is the only recognized effective means of clinically
increasing systemic NAD+ levels. However, it is anticipated
that some of the alternative NAD+ precursors, including NA,
NAM, NMN, NR, and NAR (Fig. 12), are likely to provide
some benefits.

A. Nicotinic acid

NA represents the acid form of niacin. It is commonly
prescribed clinically for the treatment of hyperlipidemia. It
has been reported that daily intake of 1–3 g reduces blood
triglyceride levels and low-density lipoproteins (LDLs),
while increasing the level of high-density lipoprotein (HDL),
thus favorably regulating the LDL:HDL ratio (133, 343). Our
research group was the first to show that exogenous NA ef-
ficiently increased intracellular NAD+ levels in brain cells
(127). However, NA therapy induces significant skin flushing
in a majority of individuals, thus limiting its clinical uses. A
mild skin flush has been reported in patients exposed to 50 mg
oral NA, and the upper tolerable limit for NA has been set to
35 mg per day for adults in the United States and Canada
(314). The lipid-lowering effects of NA are thought to be
mediated by binding of NA to the cell surface of a G-protein-
coupled receptor known as HM74A or GPR109A (314). This
association in adipocytes suppresses triglyceride lipolysis,
culminating in the reduction of circulating fatty acids, and
reduced liver very LDL formation and circulating LDL-
cholesterol (314) (Fig. 13).

The uncomfortable side effect occurs because of an NA-
mediated stimulation of HM74A in some skin immune cells,
which results in the conversion of the omega-6 metabolite
arachidonic acid into prostaglandin E2, stimulating vasodi-
lation of skin capillaries, causing skin flush (314) (Fig. 14).
RUP25, a receptor that differs from HM74A by only one
amino acid, has been identified. RUP25 has been shown to
exhibit greater affinity to NA than HM74A, and has been
associated with extreme skin flush reactions in some people

FIG. 11. Modulation of NAD1 and NAD-dependent
pathways by caloric restriction in mice and humans.
Caloric restriction has been shown to increase neuronal
SIRT1 activity in humans. In mice, hepatic total NAD+

levels increased in fasted mice, and these changes were
accompanied by increased SIRT1 activation, PGC1a dea-
cetylation, and increased mitochondrial biogenesis. SIRT,
sirtuin. To see this illustration in color, the reader is referred
to the web version of this article at www.liebertpub.com/ars
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(314). This often dramatic and unwelcome side effect has
therefore restricted NA applications to essentially a treatment-
resistant lipid-lowering therapy (170).

In addition, a ketone body, beta-hydroxybutyrate, is the
natural ligand for HM74A, which is produced during fasting
(314). While NA demonstrated a greater affinity to HM74A
(100 nM required for half-maximal) compared to beta-
hydroxybutyrate (700 nM required for half-maximal), en-
dogenous NA levels do not reach the concentrations required
to activate this receptor, while ketone bodies circulate at the
required levels (314). However, other mechanisms have been
prescribed to account for the effects of NA on dyslipidemia.
These include but are not limited to inhibition of liver dia-
cylglycerol acetyltransferase, inhibition of pathways associ-
ated with the clearance of HDL in the liver (74, 345), and

activation of PPAR-mediated cholesterol transport from ex-
trahepatic tissue (84, 169, 171). More recently, SIRT1 has
been shown to be a positive regulator of the liver X receptor
(LXR). SIRT1-mediated deacetylation of LXR at conserved
lysine residues can lead to activation of LXR, which regulates
cholesterol levels, HDL biogenesis, and lipid homeostasis
(199).

Likewise, elevated levels of NA have been shown to im-
prove genomic integrity by reducing micronucleus fre-
quency, and NA deficiency results in chromosomal
instability (178–181). Treatment with NA has been reported
to delay carcinogenesis, enhance repair efficiency following
c- and X-irradiation in mouse melanoma cells and human
PBMCs, and improved neuronal function following hypoxic
insult (244, 362). NA has also been shown to enhance

FIG. 13. Mechanisms of action of NA in dyslipidemia. The lipid-lowering effects of NA are thought to be mediated by
binding of NA to the cell surface of a G-protein-coupled receptor known as HM74A or GPR109A. This association in
adipocytes suppresses triglyceride lipolysis, culminating in the reduction of circulating fatty acids, and reduced liver very
LDL formation and circulating LDL-cholesterol. LDL, low-density lipoprotein. To see this illustration in color, the reader is
referred to the web version of this article at www.liebertpub.com/ars

FIG. 12. Chemical structure of NAD1 precursors.
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endothelial protection by increasing endothelial levels of
NADP+ and GSH (114). However, these studies were per-
formed using concentrations ranging between 250 and
1000 lM in the culture medium, which is beyond the physi-
ological concentrations in humans.

B. Nicotinamide

NAM, the amide form of vitamin B3, is also generated as a
by-product of SIRT-mediated deacetylation, PARP-mediated
ADP-ribosylation, and CD38 NADase and ADP-ribosylation
activities, which can be converted back to NAD+ via the

salvage pathway. High levels of NAM have been used to
enhance radiotherapy or chemosensitize solid tumors by
promoting microvascular flow inside the tumor (3, 4). The
clinical regimen describes oral doses (3–6 g) aimed at in-
creasing systemic blood levels to 700 lM or higher, com-
bined with inhalation of 95% oxygen/5% carbon dioxide
(358, 359). This leads to improved tumor blood flow and
oxygen generation, thus enhancing the effect of radiation by
inhibiting myosin light chain kinase (MLCK). Decreased
phosphorylation of MLCK disrupts vascular smooth muscle
contraction, promoting vasodilation (283). However, the
concentrations used in vitro are an order of magnitude higher
than clinical systemic levels, and the macrovascular effects
appear to be independent of effects on NAD+ production.

NAM has also been shown to prevent or slow down the
progression of several types of diabetes in animal models,
although this effect was not reproducible using gram amounts
of NAM in a randomized control trial (10, 113, 215, 323, 371,
386, 387). NAM has also been used as a potential therapeutic
strategy to limit vascular injury and ischemia to the brain and
other tissue in response hypoxic and/or chemotoxic insult in
several animal models with some success (91, 301, 302, 334,
352).

Topical NAM formulations have also been successfully
used for the treatment of inflammatory skin conditions, in-
cluding rosacea, autoimmune bullous dermatoses, and acne
(251). NAM has also been previously used for the mainte-
nance of skin integrity, lowering sebum levels, and reducing
hyperpigmentation spots and redness (328). NAM has also
been shown to reduce acute and chronic effects of UV-
induced skin damage by preventing the expression of in-
flammatory mediators IL-6 and TNFa, and the DNA damage
markers cyclobutane pyrimidine dimers and 8-oxo-7,8-
dihydro-2-deoxyguanosine (234). As well, NAM has been
shown to improve UV-induced immunosuppression and
photocarcinogenesis in rodent models and human studies
(115). Similarly, human clinical studies have shown that oral
NAM can significantly reduce actinic keratosis compared to a
placebo, and may likely to also be useful for the prevention of
nonmelanoma skin cancer (321).

However, it is well established that as a by-product of
NAD+ catabolism, NAM also serves as a natural feedback
inhibitor for NAD-dependent enzymes (Fig. 15). For exam-
ple, PARP, sirtuin, and CD38 activities are proportionately
inhibited as NAM concentrations increase, and this has been
postulated as the mechanism for the antidiabetic effects of
NAM in humans. While NAD+ levels are still elevated, the
important NAD-dependent functions (e.g., SIRT1 activity)
are inhibited. Moreover, NAM supplementation worsened
liver fat accumulation in a choline-deficient rat model, and
this effect was attributed to the accumulation of poly(ADP-
ribose), and a reduction in epigenetic methylation due to the
use of methyl groups in NAM excretion (19, 173). Therefore,
although exogenous NAM can be converted to NAD+ it is
again not considered an ideal supplement, particularly in the
medium to longer term due to its enzyme inhibiting and
methyl depleting potential.

C. Nicotinamide mononucleotide

NMN is an important precursor for NAD+ synthesis from
NAM. Supplementation with NMN has been shown to have a

FIG. 14. Schematic representation of the molecular
mechanism of skin flushing following treatment with NA.
NA-mediated stimulation of HM74A in some skin immune
cells results in the conversion of the omega-6 metabolite AA
into prostaglandin E2, stimulating vasodilation of skin capil-
laries, causing skin flush. To see this illustration in color, the
reader is referred to the web version of this article at www
.liebertpub.com/ars
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positive effect on insulin levels most likely through action on
pancreatic b cells (316). NMN supplementation has also been
shown to reduce obesity and vascular damage in several
in vitro and in vivo models (87, 355). NMN has also been
reported to improve CNS function by increasing brain mito-
chondrial respiratory deficits, protecting against amyloid-beta
(Ab) oligomer-induced toxicity and cognitive impairment, and
to ameliorate reactive glial-induced motor neuron loss, and
maintenance of neural stem and progenitor cells (356). It
has also been shown that NMN can protect against cerebral
ischemia-induced apoptosis and enhances neurogenesis fol-
lowing cerebral injury (360). NMN treatment also upregulated
Nrf2 and HP-1 protein expression and promoted Nrf2 nuclear
translocation for its transactivation following postischemic
neuroinflammation, to attenuate secondary neurological injury
(360). Similarly, overexpression of NAMPT, the enzyme re-
quired for NMN anabolism, appears neuroprotective in stroke
(353, 354).

A recent study showed that NMN treatment significantly
improved major pathological hallmarks of Alzheimer’s dis-
ease (AD) in APPswe/PS1dE9 AD transgenic (tg) mice,
including cognitive impairment, neuroinflammation, Ab de-
position, and synaptic loss (372). Another study also found that
NMN treatment inhibited JNK activation and APP-mediated
amyloidogenic processing by APP-cleavage secretase in AD-
tg mice (349, 356). Accordingly, it is likely that NMN may
represent a new therapeutic target for the treatment and man-
agement of AD and other age-related degenerative diseases.

In NDUSF4KO mice—a mouse model for cardiac-specific
complex I deficiency—mice exhibited a reduced NAD+/NADH
ratio, hyperacetylation of mitochondrial protein, including the
mitochondrial permeability transition pore (mPTP), impaired
oxidative phosphorylation, and increased vulnerability to car-
diac stress (174). Treatment with NMN was able to partially

restore the intracellular levels of NAD+ and attenuated the hy-
perphosphorylation of mPTP and improved heart failure fol-
lowing exposure to chronic stress. Moreover, these mice also
exhibited increased activation of SIRT3, and its deacetylation of
key protein, including mPTP due to enhanced activity following
increased NAD+ levels after NMN treatment, may also explain
the beneficial effects of NAD+ in NDUFS4KO (174).

Despite these reported benefits of NMN treatment, evi-
dence also suggests that NMN is effectively contained within
the cell membranes and is not subject to high diffusion gra-
dients. This has raised the question of whether NMN is able to
effectively traffic across most cells. Interestingly, extracel-
lular NMN may be actively produced from direct metabolism
of exogenous NAD+ (388). However, further work is required
to establish the range of conditions for which NMN may
prove beneficial in humans.

D. Nicotinamide riboside

NR is a naturally occurring precursor of NAD+ originally
isolated from fresh milk (338). Exogenous treatment with NR
has been shown to increase intracellular NAD+ levels in a
variety of cell lines. Supplementation with NR protected
murine dorsal root ganglion neurons from axonopathy via a
mechanism involving the transcriptional induction of NRK2
gene (288). As this effect is not reproducible by NA or NAM,
NR represents a major precursor in the CNS when the de novo
synthesis of NAD+ by the kynurenine pathway is impaired.
NR has been shown to efficiently increase NAD+ levels
without causing any adverse skin flushing in contrast to NA,
or liver damage in contrast to NAM (337). NR has also been
shown to serve as a cholesterol-lowering agent in obese mice
(67). Recent studies have shown that NR is the mitochond-
rially favored NAD+ precursor, and the beneficial in vivo
effects of NR have been attributed to modulation of mito-
chondrial sirtuin activities, as well as nucleocytosolic targets,
including PARPs, sirtuins, CD38, NAD-dependent oxido-
reductases, and NADPH-dependent ROS detoxification en-
zymes. Supplementation with NR has also been shown to
reduce the acetylation state of several protein targets of
SIRT3, including SOD2 and NADH ubiquinone oxido-
reductase subunit A9, suggesting that NR may be used to
pharmacologically activate SIRT3 (67). Moreover, admin-
istration of NR slowed down neurite degeneration after noise
exposure by the NAD+-SIRT3 pathway (56).

As yet, the effect on metabolic health of NR as an exclu-
sive source of niacin remains unclear. Supplementation of
dietary NR in mice overexpressing the putative human on-
cogene, unconventional prefoldin RPB5 interactor (URI),
reduced dysplastic lesions and prevented tumor develop-
ment, thus providing evidence for NAD+ supplementation as
a novel approach for the treatment and management of he-
patocellular carcinoma (340). Overexpression of human URI
drives the development of dysplasia in hepatocytes via
mechanisms involving the aryl hydrocarbon receptor and
estrogen receptor (OR), and impaired kynurenine pathway
metabolism (340). End-stage tumors in hURI-overexpressing
mice regressed with increased apoptosis in mice supple-
mented with NR (320, 340).

Despite the beneficial effects of NR supplementation, the
doses often used to produce beneficial effects are remark-
ably high (400 mg NR/kg body weight/day) compared with

FIG. 15. Mechanisms of action of NAM and its effect on
the NAD1 metabolome. NAM also serves as a natural feed-
back inhibitor for NAD-dependent enzymes. For example,
PARP, sirtuin, and CD38 activities are proportionately in-
hibited as NAM concentrations increase, and this has been
postulated as the mechanism for the antidiabetic effects of
NAM in humans. While NAD+ levels are still elevated, the
important NAD-dependent functions (e.g., SIRT1 activity) are
inhibited. To see this illustration in color, the reader is referred
to the web version of this article at www.liebertpub.com/ars
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current commercially available supplements (6–500 mg/kg
body weight/day). One study showed that NR (300 mg/kg
body weight/day) reduced exercise performance in rats, and
previously reported ergogenic effects of NR could not be
confirmed (186). Two hypotheses have been postulated to
explain this observation: (i) based on similar effects of NA
and NAM, it is likely that NR may also reduce FAO during
exercise, leading to earlier fatigue; and/or (ii) NR may also
alter the redox properties of NAD+ and NADP+, leading to a
nonoptimal reductive state (186). Additional studies are
warranted to examine the effects of NR on exercise per-
formance.

Recently, the effect of a wide range of dietary NR con-
centrations on metabolic flexibility and gene expression in
epididymal white adipose tissue was examined in mice ex-
posed to a mildly obesogenic (40% fat) diet (303). The study
showed that 30 mg NR/kg diet was most beneficial for im-
proving metabolic health, with regard to metabolic flexi-
bility and increased expression of PPARc, a master regulator
of adipogenesis, and SOD2 and PRDX3, two antioxidant
genes (303). The study concluded that 30 mg NR/kg diet
represented the optimal concentration to potentiate meta-
bolic health.

E. Nicotinic acid riboside

The least examined of the NAD+ precursors, NAR has
been shown to be produced in human cells through NMN
and NAMN dephosphorylation by cytosolic 5¢-NTs (38,
190). It is anticipated that this metabolite will represent an
important precursor for NAD+ generation. Low micromolar
concentrations of NAR have already been demonstrated to
produce sufficient amounts of NAD+ to maintain cell via-
bility. One study showed that NAR can be produced and
delivered by cells at physiologically sufficient levels (190).
It is likely that other cell types may use NAR and transport it
between each other.

IX. Pharmacokinetics of NAD+ Precursors

Boosting the NAD+ pool by utilizing precursor molecules
may have multiple health benefits and a diverse range of
therapeutic implications. NA, NAM, NMN, and NR have
been publicized as potent NAD+ boosters. NMN and NR may
also be used as a general supplement in patients who have
adverse responses to NA and NAM. The pharmacokinetics of
NA and NAM has been extensively investigated, while the
pharmacokinetic properties of NR have only recently been
determined in mice and a middle-aged human subject (337).
However, pharmacokinetic effects of NMN and, more so,
NAR have not yet been fully investigated in either the human
or murine model.

A. Nicotinic acid

The pharmacokinetics of NA has been previously ex-
amined using pharmacological doses of NA and several
extended release formulations. An open-label, dose-rate
escalation, crossover study administered 12 human subjects
with 2000 mg NA in solution form at slow (25 mg niacin
aqueous solution administered every 10 min for 80 doses),
intermediate (50 mg niacin aqueous solution administered
every 10 min for 40 doses), or fast (100 mg niacin aqueous

solution administered every 10 min for 20 doses) (232).
Peak NA levels varied between 10 lM (slow release) and
240 lM (fast release). Interestingly, the area under the curve
(AUC) for the slow release formulation was 25-fold lower
than the fast release counterpart. NA in the slow release
preparation is taken up by the intestine and liver, forming
NAD+, and released into the circulation as NAM (232).
Importantly, a concentration of 10 lM is estimated to be
about 30-fold higher than physiological levels of NAM in
the blood. Fast release formulation of NA not only yields
higher peak levels and AUC, it also elevates peak NAM
levels to 16 lM. NA is preferentially removed from circu-
lation at high levels with a half-life of 1 h, compared with a
half-life of 4 h for NAM (231, 232). Therefore, high doses of
NA also elevated the levels of NAM to supraphysiological
levels. Therefore, the effects of NA on lipids may also be
due to the protective effects of NAM and increased NAD+

anabolism.
In a recent study comparing the efficiency of NAD+ pre-

cursors to generate NAD+ in mice following oral gavage, NA
produced the lowest levels of NAD+ (337). However, the
kinetics of hepatic NAD+ accumulation was 4–6 h faster than
either NAM or NR. Oral administration of NA doubled he-
patic NAD+ (from 1 to 2 mM) by increasing the level of
NAAD (an intermediate), and enhanced NAD+ catabolism as
reported by increased levels of MeNAM (337). The liver
promoted NAD+ anabolism as long as enough NA is avail-
able, while increasing the activity of NAD-dependent pro-
cesses, some of which generate NAM as a by-product (337).
Increased NNMT expression due to increased levels of Me-
NAM stabilizes hepatic SIRT1 protein and regulates lipid
levels in mice and humans (152, 194, 336).

Another study reported significant changes in the levels
of NAD+ following oral supplementation over a 2–3-week
feeding interval (26). It was previously thought that NAD+

levels will continue to increase in response to time before
reaching a plateau. In rats supplemented with NA (30 and
4000 mg/kg), bone marrow NAD+ significantly increased in
animal fed with 4000 mg/kg (26). However, NAD+ levels
were downregulated as consumption became chronic, and it
was unclear whether this effect was due to either NA uptake
alone, associated with the conversion of NA to NAM, or
altered NAD+ catabolism in bone marrow. Therefore, it has
been postulated that pharmacological responses to long-
term supplementation with NAD+ precursors may change
over time (26). This also raises the important question of
whether higher NAD+ levels have the potential to induce a
deleterious impact on cellular function, thus stimulating an
adaptive response.

B. Nicotinamide

The pharmacokinetics of 3–6 g of oral NAM in humans
has been previously investigated (93). Higher doses are
prone to produce adverse reactions, including nausea and
vomiting. The peak blood levels of NAM were between 1
and 2 mM. This is estimated to be more than 3000-fold
higher than circulating levels (93). This figure is also well
above the minimum concentration associated with radia-
tion sensitivity. The half-life of NAM is 4–5 h, which pro-
vides sufficient time to facilitate carbogen breathing and
radiation therapy. It has been suggested that if MLCK
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represents the likely target of NAM, then it is required to
accumulate inhibitory concentrations inside a cell. While
intracellular transporters for NAM have been previously
identified, mechanisms for cellular responses to high con-
centrations of NAM remain unclear. One study showed that
radiation sensitivity remained after a decline in circulat-
ing levels of NAM, suggesting that the beneficial effects
of NAM may be related to additional downstream ef-
fects, including increased NAD+ generation (279), and/or
inhibition of poly(ADP-ribose) and DNA damage-induced
apoptosis (153).

While high doses of NA have been shown to increase
NAM levels, the effect of increased NAM on NA levels re-
mains unclear. At present, enzymatic conversion of NAM to
NA has not been identified. However, the deamidation of
NAM via oral and intestinal microflora is possible (212). One
study showed that significant amounts of salivary NAM were
converted to NA, although circulating levels of NA following
large oral dosing of NAM remained undetected (317). It is
likely that the quantification methods used in this study were
not sensitive enough to clearly delineate changes in the
NAD+ metabolome. Skin flushing, a common adverse effect
following NA treatment, has also been reported with NAM,
suggesting that NA may be increased following administra-
tion of high doses of NAM (167).

A recent study comparing three NAD+ precursor vitamins
provided in bolus at equivalent oral doses also demonstrated
increased hepatic NMN, NAAD, NAD+, and NADP+ levels,
and NAD+ catabolic activity as evidenced by elevations
in MeNAM and ADP-ribose (337). However, while the AUC
of increased NAD+ due to NAM showed a 50% benefit
compared with NA, the study demonstrated a 50% deficit
in NAM-mediated accumulation of ADP-ribose compared
with NA (337). These studies also suggest that NAAD may
represent a biomarker for increased NAD+ synthesis, and
is independent of traditional NAAD precursors such as
l-tryptophan and NA (337). Unlike NA, NAM is not a potent
cholesterol-lowering agent, and high levels of NAM may
inhibit PARP and sirtuin activities.

Evidence for potential adaptive responses following high
doses of NAM has been previously reported. Rats supple-
mented with high doses of NAM (4 g/kg) exhibited elevated
levels of NAD+ and ADP-ribose in the brain. Interestingly,
these changes were accompanied by impaired cognition
as reported by impaired performance in a hippocampal-
dependent spatial learning test (197). Increased NAD+ can
ultimately lead to increased activity of a diverse range of
enzymes, including PARPs, sirtuins, and CD38/CD157. This
in turn may have dynamic effects in cellular function.

C. Nicotinamide mononucleotide

The detection of NMN in blood remains challenging. While
the concentration of NMN has been reported to be around
50lM in plasma (275), NMN levels were undetectable in
another study (272). These differences can be attributed to
different detection techniques for NMN. For instance, using
an high-performance liquid chromatography (HPLC)-based
method, intracellular concentrations of NMN and NAD+ were
reported to increase up to 500 pmol/mg and 50 pmol/mg of
white adipose and pancreatic tissue 15 min after intraperitoneal
injection of 500 mg/kg of NMN (376). However, hepatic NMN

and NAD+ levels were reported to reach 10 and 4000 pmol/mg,
respectively, 6 h after oral gavage of 185 mg/kg (337). Simi-
larly, the level of NMN has been reported to be around
1.5 pmol/mg tissue in tumors, and 80 nM in ascite fluid (310).

NMN appears to be stable in plasma and cell media sup-
plemented with 10% fetal bovine serum (FBS), and no in-
creases in NAM levels were reported after a 1-h incubation
(272). However, NMN injections led to significant increases
in NAM levels in plasma, which suggests that NMN may be
partially converted to NAM following intraperitoneal injec-
tion. The presence of NAM in mice plasma following NMN
injection suggests that NMN may be initially converted to
NR (272).

A recent study demonstrated that dephosphorylation of
NMN into NR, which is required to produce NAD+ in yeast,
represents a major step as an exogenous NAD+ precursor in
mammalian cells (272). It is thought that the extracellular
receptor CD73 may act as an NR-releasing enzyme. CD73
has both pyrophosphatase and 5¢NT activity, facilitating the
conversion of extracellular NAD+ and NMN to NR, which in
turn can be used to stimulate further NAD+ synthesis. This is
supported by another study which showed that gene silencing
of CD73 inhibits the use of NMN as a potential NAD+ pre-
cursor (310). In addition, NRK1 has recently been identified
as an important rate-limiting enzyme for the conversion of
NMN to NR for NAD+ synthesis (272), and provides a reli-
able explanation to account for overlapping effects reported
for NMN and NR.

D. Nicotinamide riboside

Evaluating the pharmacokinetics of NR in mammalian
tissue has been limited by poor sensitivity and detection of
NR in biological samples. As well, results of a clinical trial
aimed at investigating the pharmacokinetics of NR in healthy
human subjects are not yet available. However, NR was de-
graded rapidly after incubation in murine plasma (*10% NR
was degraded after 10 min, and 66% was degraded after 1 h),
leading to comparable increases in NAM. These results hint
at the presence of plasma factors that can degrade NR to
NAM (272). NR degradation followed by detection of NAM
has also been observed in cell media containing 10% FBS
(272). Importantly, NR is stable in protein factions in milk
with a potential lifetime of 1 week (338). NR may also be
circulated in a cell-bound form for several hours.

One study showed that NR is safe and orally bioavailable
in mice and humans with no adverse effects reported (337).
However, a future study will need to incorporate a validated
flushing symptom questionnaire to assess whether NR may
be associated with any flushing episodes. Higher levels of
NMN, NAMN, NAM, NAAD, NAD+, and NADP+ were
produced following oral gavage of NR compared with oral
NAM (337). In addition, ADP-ribose levels were more sig-
nificantly elevated compared with NA and NAM, suggesting
that NR can enhance the activity of NAD+-consuming enzymes
more than mole-equivalent doses of NAM and NA (337). More
recently, a randomized, double-blinded, placebo-controlled
study showed that NR in combination with pterostilbene, a
naturally occurring phytochemical found in blueberries, can
increase NAD+ in a dose-dependent manner in whole blood
lysates throughout the entire 8-week trial (88). Taken together,
this suggests that NR is a more potent precursor of NAD+
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synthesis and NAD-dependent activities than amidated and
acidic forms of niacin.

E. Nicotinic acid riboside

To our knowledge, the pharmacokinetic properties of NAR
have not been reported in the literature. Understanding the
pharmacology of NAR has remained difficult due to its low
physiological submicromolar concentration. The 1H-nuclear
magnetic resonance (NMR) method has shown some success
in detecting NAR in cell culture medium because of the ob-
served chemical shifts (190). Also, low sensitivity of detec-
tion methodologies requires acquisition of spectra over
extensive periods of time. Overexpression of NAPRT in
HEK293 cells led to the detection of NAR in the cell culture
medium, and this effect is due to increased NA catabolism
(190). In HeLa cells, NAR, but not NR, is released in amounts
that are sufficient to maintain NAD+ biosynthesis and cell
survival (190).

F. Nicotinic acid adenine dinucleotide—a biomarker
of elevated NAD+ metabolism

As mentioned above, NA, NAM, and NR have been shown
to increase the levels of the intermediate, NAAD. However,
the increase in the levels of NAAD was lowest following
ingestion of NA (337). This finding suggests that increased
NAD+ anabolism by supplementation with NAD+ precursors
not only increases the accumulation of by-products of NAD+

catabolism (such as ADP-ribose and MeNAM) but also
stimulates retrograde synthesis of NAAD and NAMN. As the
rate of NAD+ anabolism increases, NAD+ is deamidated to
form NAAD by a yet unknown mechanism. Similarly, it is
also possible that deamidation of NMN can lead to increased
levels of NAMN and NAAD. While the deamidation reaction
is yet to be verified, it is possible that NAAD may also be
formed from NAADP, although the mechanism responsible
for this elusive biochemical reaction is yet to be identified.

X. Effects of NAD+ Precursors on NAD-Dependent
Processes

Apart from the beneficial effects of NAD+ precursors on
normal cellular function, including NAD+ and NADP-
dependent reactions and ADP-ribosylation, these substrates
for NAD+ anabolism share a common effect of increasing
intracellular NAD+ levels in multiple cellular compartments.
It has been considered that normal metabolic processes may
be fulfilled following recommended daily intake of vitamin
B3, and that higher doses may induce alternate mechanisms.
However, it is now clear that physiological roles of NAD+

precursors may be different than the doses present naturally
in the diet.

A. NAM and PARPs

Whether NAM can inhibit PARP-1 activity remains con-
troversial. The Ki value for NAM-mediated inhibition of
PARP-1 ranges between 30 and 200 lM in a cell-free system.
The Ki value in cultured cells was threefold greater than in a
cell-free system (271). This suggests that the uptake and/or
conversion of NAM to NAD+ may be limited in cell cultures.
In mammals, oral NAM is metabolized by the small intestine
and liver before it enters the blood stream. NAM is taken up

by extrahepatic tissue in small amounts where it is immedi-
ately converted to NAD+. Moreover, blood volumes are
significantly lower than tissue volumes. Therefore, it is less
likely that tissue NAM levels will reach the concentrations
needed to inhibit PARP-1 activity.

On the contrary, the conversion of NAM to NAD+ due to
increased substrate has been shown to promote poly(ADP-
ribose) levels. For instance, supplementation with NAM (1 g/kg)
increased hepatic NAD+ levels by 50%, while basal
poly(ADP-ribose) levels increased by twofold (163). This
suggests that NAM was more effective at enhancing substrate
pools than mediating PARP-1 inhibition. However, poly(ADP-
ribose) content was the same when the same animals were
exposed to a hepatocarcinogen to enhance PARP-1 activity.
NA also promoted higher levels of poly(ADP-ribose) for-
mation (163). Taken together, it is likely that basal PARP-1
activity may be regulated differently than DNA damage-
induced PARP-1 activity, and NAM may be more effective at
inhibiting the latter form of PARP-1 activity.

In another study, increased PARP-1 activity was reported in
extrahepatic tissue in response to oral dosing of NAM (4 g/kg).
In that study, bone marrow NAD+ levels increased by 2.5-fold,
basal poly(ADP-ribose) levels increased by fivefold, while
DNA damage-induced poly(ADP-ribose) increased by twofold
(42, 43). Similarly, studies in radiation sensitization models
showed that radiation sensitivity due to NAM was due to
mechanism(s) independent of inhibition of PARP activity and
DNA repair processes (279).

B. NAM and sirtuins

Mammalian sirtuins have developed low NAD+ binding
affinities, which ensured that their deacetylase activities can
be efficiently regulated by minor changes in the intracellular
concentrations of NAD+, thus serving as potent NAD+ sen-
sors. Reduced intracellular levels of NAD+ during aging can
downregulate sirtuin activity and SIRT1-mediated deacety-
lation of p53 (51). On the contrary, increased intracellular
NAD+ levels, either due to CR or NAD+ supplementation,
can upregulate sirtuin activity. While resveratrol, a plant-
derived stilbene putatively allosterically activates SIRT1
only, NAD+ supplementation can activate almost all seven
forms of mammalian sirtuins. For example, regulation of
SIRT3 by intracellular NAD+ levels has been demonstrated
to be the major determinant of cellular resilience against
apoptosis (143).

If the increase in NAM in biological systems is capable of
inhibiting PARP-1 activity, then it may also inhibit other
NAD+-dependent processes such as sirtuins. High levels of
NAM may inhibit NAM cleavage reactions or mediate
competitive inhibition at NAD+-binding sites leading to al-
tered function or sirtuin enzymes, to ultimately enhance the
levels of NAD+. Physiological levels of NAM are within the
same range as the IC50 of several sirtuins (159), therefore
suggesting that sirtuins may act as NAM sensors as well as
NAD+ sensors.

NAM has been shown to bind to a specific conserved re-
gion in the catalytic site of sirtuins, inducing a reverse base-
exchange reaction with an intermediate, rather than deace-
tylation, thus inhibiting sirtuin deacetylase activity (129).
The base-exchange equilibrium constant has been estimated
to be about 20 for SIRT1 (37). This means that the maximum
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possible activation of SIRT1 by full inhibition of the base
exchange reaction at any NAM concentration is greater than
Sir2 in yeast. Recently, isonicotinamide (isoNAM), a syn-
thetic analog of NAM, has been shown to compete with NAM
for binding at the catalytic site (228). However, unlike NAM,
isoNAM does not substantially react with the intermediate,
leading to increased Sir2 activity.

NAM represents a physiological inhibitor of sirtuins. The
IC50 values for inhibition of bacterial Sir2, yeast Sir2, mouse
Sir2, SIRT1, SIRT2, SIRT3, and SIRT5 were measured to be
26, 120, 160, 50, 100, 36.7 lM, and 1.6 mM, respectively
(129). The concentration of NAM in yeast nuclei has been
estimated to be 10–150 lM, which suggests that NAM is a
regulator of Sir2 activity in vivo (292). Yeast and bacterial
sirtuins have lower Kms and Kds for NAD+, compared with
mammalian sirtuins, and therefore may be less sensitive to
changes in intracellular NAD+ concentrations than their
mammalian counterpart (68). Therefore, increased NAD+

levels are more likely to result in activation of mammalian
sirtuins. In mammalian cells, low levels of NAM have been
reported in several rat tissues (142). This is likely due to rapid
catabolism of NAM for the production of NAD+ and related
pyridine nucleotides. However, high concentrations of NAM
(up to 300 lM) have been reported in the brain of Tg2576
mice (265), providing additional evidence for NAM as a
regulator of sirtuin activity in mammalian tissue. Moreover,
the ratio of NAD+ to NAM in subcellular subcompartments
can decline with age, therefore lowering sirtuin activities
(223). This effect may be due to increased utilization of
NAD+ by PARPs and reduced NAD+ anabolism from NAM
by NAMPT-mediated salvage pathway (160).

Depending on their physiological roles, several other
mechanisms have been attributed to account for the regula-
tion of sirtuins by NAM. For instance, NAM can only par-
tially inhibit Sir2AF2 (SIRT2 homologue from Archaeon
Archaeglobus fulgidus), whereas it is a full inhibitor of
SIRT1 (129). As well, NAM is a competitive inhibitor of
SIRT3, in contrast to noncompetitive inhibition reported for
other sirtuins (129). Mammalian SIRT3 is a mitochondrial
sirtuin that has demonstrated tumor suppressive effects and
regulates glycolytic metabolism (18). Inhibition of SIRT3 by
NAM may increase glycolytic metabolism and inhibit aero-
bic glycolysis and thus reducing cancer cell biomass and
improving chronic tissue damage.

Apart from base exchange, which is known to increase the
rate of forward reaction for sirtuin activity, direct competition
has been postulated as another mechanism to explain the
greater degree of competition between NAM and NAD+ in
the inhibition kinetics of SIRT3 compared with that of SIRT1
(129). This involves NAD+ binding to the catalytic site in the
presence of NAM (129). Elucidating the mechanisms of ac-
tion of NAM against SIRT3 and other sirtuins can help to
develop more efficient inhibitors and activators of sirtuins
that can be translated to the clinic.

C. CD38-mediated processes

It has been proposed by our group and others that CD38
can regulate SIRT1 activity by modulating the availability of
the essential substrate NAD+, and NAM to the SIRT1 enzyme
(52). This can have a profound effect on modulating obesity,
metabolic disorders, cellular energy homeostasis and cellular

senescence, and aging. By promoting intracellular NAD+

anabolism while reducing NAM levels, inhibition of CD38
can increase SIRT1 activity.

Several CD38 inhibitors have been identified. These in-
clude NAM and NA, NAD+ analogs such as arabiono-NAD,
and reducing agents including dithiothreitol (76). CD38, due
to its effect on calcium generation, also serves as an impor-
tant mediator of smooth muscle contraction, cell death and
apoptosis, neural and hormonal signaling, and egg fertiliza-
tion (76). Therefore, CD38 inhibition may be useful under
pathological conditions where calcium homeostasis is im-
paired, including hypertension, cardiac ischemia, asthma,
and dysfunctional labor.

However, CD38 is also involved in the release of hor-
mones such as oxytocin and Adrenocorticotropic hormone,
which regulate maternal and social behavior (166). Inhibition
of CD38 in these conditions may have significant negative
effects on psychological function. In addition, CD38 plays an
important role in the immune system, and knockout of CD38
has been shown to increase susceptibility to bacterial infec-
tion (201). Therefore, the effect of NAD+ precursors and
changes to the NAD+ metabolome may have previously un-
known effects of CD38 activity and NAD-dependent pro-
cesses, and may serve as important therapeutic strategies for
the treatment of metabolic and inflammatory conditions if
appropriate dosage regimens are devised and adapted to meet
individual patient requirements.

D. Redox reactions

In eukaryotic cells, the generation of ATP is achieved
predominantly by mitochondrial oxidative phosphorylation.
In this process, free energy released following the breakdown
of carbon substrates is captured by exchanges between
electron donors and electron acceptors via the electron
transport chain (ETC) leading to ATP production (308).
NAD+ serves as an electron acceptor, and its reduction leads
to the generation of NADH, which can be subsequently ox-
idized by complex I of the ETC to produce NAD+. The
NAD+/NADH ratio serves as an important indicator of sev-
eral oxidoreductase enzymes. Elevated levels of NADH can
inhibit NAD-dependent processes. A metabolic imbalance in
oxidative phosphorylation has been associated with several
cardiac, neurological, and renal pathologies (206). Altera-
tions to the ETC can lead to a significant decline in ATP
production, increased intracellular Ca2+ influx and free rad-
ical production, and lowered NAD+/NADH ratio. A switch
between oxidative to anaerobic metabolism in response to
several cardiac stressors has been shown to reduce oxidative
damage and maintain ATP levels. However, this compensa-
tory mechanism impairs oxidative phosphorylation while
limiting the mitochondrial NAD+ pool (97).

Similarly, the NAD+/NADH ratio appears to play a cru-
cial role in the heart and kidney and supplementation with
NAD+ precursors has been shown to protect against im-
pairments in oxidative phosphorylation due to cardiac
stressors and AKI-induced renal damage (150). In PGC1a-
deficient mice, treatment with NAM increased FAO, ATP
generation, and the NAD+/NADH ratio to protect against
AKI toxicity (339). Therefore, under degenerative condi-
tions associated with impaired oxidative phosphorylation,
or other abnormality leading to a decline in NAD+,
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upregulation of NAD+ anabolism through NAD+ precursors
may improve redox function.

Human in vivo studies regarding the effect of NAD+/
NADH ratio remain nascent. However, using two-photon
microscopy for the quantification of NADH and NADPH in
epidermal skin layers, one study reported a significant in-
crease in NADH fluorescence following arterial occlusion,
suggesting that there is a reduction in oxidative phos-
phorylation due to a decline in the need for electron do-
nation for the oxidation of NADH to NAD+ (24). Similarly,
reduced NADPH fluorescence emission has been reported
in the facial skin of older aged females compared with
younger subjects (286). Taken together, these studies pro-
vide supportive evidence for the role of NAD+ in regulating
cellular bioenergetics.

Impaired poly(ADP)ribosylation has been associated with
increased sensitivity to DNA damage underlying skin lesions
reported in the human disease of niacin deficiency better
known as pellagra (274). In addition, impairment in the for-
mation of cyclic ADP-ribose, which regulates intracellular
calcium levels, may contribute to neuronal loss observed in
pellagrous dementia (378). However, redox reactions corre-
sponding to the ratio of NAD+/NADH are less prone to be
affected by altered NAD+ levels as ADP-ribosylation reac-
tions. NAD+/NADP+ serve as soluble cofactors in a multitude
of oxidation/reduction reactions. The catalytic enzymes uti-
lize riboflavin-based nucleotides as a source of prosthetic
groups. Others contain iron to facilitate electron transfer.
Unlike poly- and mono(ADP-ribosyl)ation reactions, iron
and riboflavin deficiencies are not known to induce sun
sensitivity of the skin, and dementia, which are two main
characteristics of pellagra.

One study investigated the effect of NADH, the reduced
form of NAD+, on proliferation, cytokine release, and cell
redox status of lymphocytes collected from healthy aged
subjects (40). Cells exposed to NADH (500 lM/L) showed
increased levels of GSH, and catalase activities, while mal-
ondialdehyde and carbonyl proteins are markedly decreased
(40), suggesting a decline in oxidative stress. Recently, it has
been shown that treatment with 1 mM NADH increased the
expression of nuclear Nrf2, catalase activity, and total GSH
by increasing SIRT2 function (69).

As well, the effect of niacin deficiency on endogenous
antioxidant defence mechanisms, NADPH:NADP+, and
GSH:GSSG redox couples remains unclear. Two studies
showed that niacin deficiency increased markers of oxidative
stress, but did not induce either NADPH or GSH decline
(27, 325). This suggests that niacin deficiency impaired
poly(ADP-ribose) accumulation but did not stimulate further
tissue damage, while maintaining GSH defences. Several
mechanisms have been postulated to account for the main-
tenance of redox reactions during periods of niacin defi-
ciency. These include variations in substrate affinity for
NAD+, subcellular localization of enzymes and cofactors,
and direct modulation of enzyme activity/expression levels.

XI. Do NAD+ and Related Precursors Display Hormesis?

There is a growing body of evidence which suggests that
NAD+ decline is a major contributor to the aging process and
may be involved in the pathogenesis of several age-related
degenerative diseases affecting the heart, brain, liver, kidney,

and skin. These results collectively highlight the potential for
NAD+ supplementation, whether using NAD+ alone or NAD+

precursors to protect against aging and associated patholo-
gies. While such prospects are of major clinical significance,
the role of NAD+ and its modulation in human aging remains
only partially understood. In particular, little is understood
regarding the impact of having ‘‘very high’’ NAD+ levels.
We suggest that modulation of NAD+ levels may induce a
hormetic dose/response that may confound numerous clinical
outcomes.

The term hormesis was first incorporated into the bio-
medical context by Southam and Ehrlich (314a) in 1943 to
account for the effects of red cedar tree extracts on wood-
rotting fungi (62). The study showed that various species of
fungi exhibited low-dose stimulation and a high-dose in-
hibitory effect on cellular metabolism. By the 21st century,
hormesis is now used to define the biphasic dose/response
that occurs following exposure to a chemical or physical
agent, or as an overcompensatory response to cytotoxic
insult (63). Resveratrol, an activator of sirtuins, has re-
cently been shown to induce a hormetic dose/response in a
variety of biological models, including breast, prostate,
colon, lung, uterine, and leukemia tumor cell lines (64). In
these studies, lower concentrations of resveratrol enhanced
tumor cell proliferation. However, at higher concentra-
tions, resveratrol induced an inhibitory effect. For instance,
resveratrol increased the activity of the vitamin D receptor
and promoted proliferation of T47D breast cancer cells up
to 4 lM, above which led to reduced proliferation of the
tumor cell line (64).

Other studies have shown that resveratrol can protect
cultured hippocampal neurons against oxidative stress at
concentrations between 5 and 25 lM (108). Resveratrol
could also ameliorate inflammation and oxidative stress in
cultured tumor cells by inhibition of COX-2 (391). However,
when these cells are under conditions of reduced oxygen and
glucose availability, resveratrol can induce apoptotic cell
death (64).

In light of these findings, it is likely that upregulation of
NAD+ anabolism may also conform to a hormesis biphasic
dose/response. For example, where neuronal cells are ex-
posed to cellular stress, as may occur due to ischemic insult,
or cytotoxins such as glutamate, and Ab aggregates, in-
creasing NAD+ levels may provide both beneficial and
deleterious effects that may be dependent on the dosage and
duration of administration relative to the cytotoxic stimu-
lant. For instance, in vitro incubation of naive T cells with
NAD+ induced apoptosis, while activated T cells incubated
with NAD+ showed no signs of apoptosis (204). It was
suggested that ecto-NAD, as substrate of ADP ribosylation,
acts on naive, but not on activated T cells (297). This in-
dicates that many effects of NAD+ are dependent on envi-
ronmental factors that would seem to produce a favorable
response.

Competition between NAD+-consuming enzymes also
displays hormesis. For example, as previously mentioned,
PARP1 activity increases with age due to accumulation of
oxidative DNA damage, and in response to high energy in-
take. Since the Km for NAD+, PARP1, and SIRT1 is rela-
tively similar, the decline in NAD+ levels following PARP1
activation can also induce a decline in SIRT1 activity.
Therefore, while low levels of PARP1 activity can repair
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DNA damage following exposure to mild oxidative stress
levels, increased PARP1 activity can lead to cell death via
reduced SIRT1 activity and energy restriction, therefore ex-
acerbating disease progression (269). Therefore, rigorous
double-blind and placebo-controlled clinical trials are needed
to assess the nature of the dose/response effect of NAD+ in
humans. Further work will be required to gain further un-
derstanding of the role of NAD+ anabolism against aging and
age-related diseases.

XII. Limitation of Using In Vitro and In Vivo Studies

Despite the importance of NAD+ metabolism to human
health and diseases, determining the levels of NAD+ re-
mains a challenge. As well, while there is clinical signifi-
cance for supplementation with NAD+ precursor in the
clinic, evidence showing increased NAD+ levels on such
supplementation is limited. While cell culture and animal
models are commonly used in research studies, they are not
a true representation of human physiology. Moreover, bio-
chemical assays or analytical methods that are currently
used to analyze tissue samples or cell homogenates are
vulnerable to changes in pH, temperature, light, and che-
mical agent or buffer solution. Therefore, more accurate and
reliable quantification and extrapolation to in vivo condi-
tions are warranted.

A. Cell culture systems

Accumulating evidence suggests the involvement of ox-
idative stress, inflammation, and increased l-tryptophan
catabolism in several degenerative disorders. This has
paved the way for investigation of basic mechanisms of
free-radical damage and modulation of the NAD+ metabo-
lome as a therapeutic strategy to protect against it. For ex-
ample, primary murine and human brain cell cultures, and
immortalized cell lines, remain highly useful as models for
examining the effect of oxidative damage and adaptive
cellular responses. The most common approach to modeling
CNS oxidative stress and altered kynurenine pathway me-
tabolism is through exposure of primary glial and neuronal
cells to deleterious conditions, and addition of exogenous
pro-oxidants and neuroprotective agents (44, 46, 48, 50, 71,
195, 333). Cell culture models have also been used to ex-
amine the effects of niacin deficiency, and inhibition of
NAD-dependent processes (such as PARP, sirtuin, and
CD38 inhibition) on cellular function in several in vitro
disease models (46, 47, 52, 119, 267). However, most cell
culture components, which are fundamental to these studies,
are aimed at maximizing cell growth and survival in culture
and do not fully recapitulate natural in vivo biological
processes. There is also strong evidence that the beneficial
effects of NAD+ precursors in culture systems may be in-
curred via nonphysiological mechanisms.

Vitamin B3 is present in cell culture in both its amide and
acidic form. However, NAM is present at highest concen-
trations, and this reflects the significance of NAM as the main
form of niacin in the blood stream. Commonly used cell
culture media (e.g., MEM, Williams, RPMI, BME, L-15, and
Dulbecco’s) contain between 1 and 4 mg/L of NAM, al-
though more specialized media (MCDB 131 and BGjB) may
contain between 6 and 20 mg/L. The equivalent molar con-
centration for 4 mg/L is *33 lM. This amount is about 300-

fold greater than the average levels of NAM in plasma. It is
likely that these concentrations may have a profound effect
on intracellular NAD+ storage, cyclic-ADP- and mono-
ribosylation, and inhibitor studies. Other cell culture media
contain equal contents of NAM and NA at concentrations of
up to 4 lM. Similarly, the concentration is well above the
physiological concentration of NA in systemic circulation.
Moreover, these levels are significantly greater than the
amount required to activate HM74A receptors if these are
expressed in cells in culture.

B. In vivo models

The human life span is much longer than smaller mam-
malian species, making it difficult to fully characterize the
influence of NAD+ metabolism during normal human aging.
Therefore, traditional in vivo studies have been performed
using animals with phenotypically accelerated aging or pro-
longed longevity, transgenic, mutant, and knockout models
that focus on a single gene’s role, to generate reproducible
results. Due to their short life span, inbred laboratory rodents,
particularly rats and mice (e.g., senescence-accelerated
mice), are used as models to investigate the effects of in-
trinsic and extrinsic factors on life span (324). However, this
is quite limited since these inbred models do not provide
significant genetic diversity to be compared to humans and
correlate poorly with human conditions. To date, more than
150 clinical trial candidates to attenuate inflammation in
critically ill patients have failed due to over-reliance on in-
adequate animal models.

We have addressed the conceptual translation of bio-
chemical data collected from aging female Wistar rats to
further enlighten our understanding of the role of NAD+

metabolism and other molecular changes occurring as part of
‘‘normal’’ human aging (51–53). Our physiologically aged
Wistar rats were an outbred model, which displays significant
genetic diversity within a small number of individuals. This
diversity-outcrossed rat model is more representative of a
natural population and is therefore a powerful tool in iden-
tifying the genetic basis for assessing the efficacy of these
pharmacological strategies, and to identify adverse effects in
first-line therapeutic tests, which are otherwise nascent in
previously inbred animals. Additional effects of aging pre-
viously demonstrated in this animal model include a marked
decrease in the astrocyte/neuronal ratio; altered pericyte/en-
dothelial relationship affecting ‘‘vessel stability’’; marked
inflammatory cascade, CNS neovascularization and break-
down of the blood/retinal barrier, and a decline in defence-
related Fos expression (158, 218).

C. Methods of detection

NAD+ and its related metabolites have been previously
measured using a variety of methods. For instance, enzy-
matic and colorimetric assays, which provide indirect
measurements, have inherent difficulties that can affect re-
liability and are susceptible to significant variation in me-
tabolite levels due to minor differences in temperature and
pH, and cannot detect low picomolar levels. Moreover,
reverse-phase HPLC, which relies on mobile phases con-
taining buffer salts and ion pairing agents, has been used to
increase sensitivity, but is still limited to low micromolar
detection levels (70).
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In contrast, liquid chromatography/tandem mass spec-
trometry allows more robust quantification of trace levels of
NAD+ metabolites in different biological samples with high
specificity and sensitivity. It represents the gold standard in
NAD+ metabolomics. However, unlike NMR, complex
sampling processes are required (335). The diversity of
NAD+ metabolites (i.e., free bases, mono and dinucleotides)
makes their simultaneous differential analysis a major chal-
lenge (335). We recently developed an improved method to
quantify the NAD+ metabolome and adenosine phosphates
across biological samples, including the brain and repro-
ductive cells. Its principal features are enhanced resolution
and simultaneous quantification of 17 analytes on an amino-
phase column, avoiding the need for 2 separate gradients (i.e.,
alkaline and acidic chromatographic gradients) (60).

Development of nondestructive detection and quantifica-
tion of the NAD+ metabolome is desirable to elucidate in-
tracellular NAD+ levels and redox state in the intact human
and animal body. Recently, a novel magnetic resonance im-
aging (MRI) has been developed to determine the endoge-
nous 31P MR signals of the NAD+ molecules in live animal
brains (389). This technique can resolve the MRI signal of
NADH from that of NAD+ by utilizing specific spectroscopic
characteristics at a given magnetic field strength. This ap-
proach requires ultrahigh fields of 9.4 and 16.4 T. This
noninvasive technique has been further used to measure in-
tracellular NAD+ and NADH contents and NAD+/NADH
redox state in healthy human brains using a 7-T human MR
scanner (389). We were the first to show that intracellular
NAD+ levels, the essential substrate for sirtuin activity, de-
cline with age in humans and physiologically aged rats (51,
52, 223). MRI was used to reaffirm these age-dependent in-
creases of intracellular NADH and age-dependent reductions
in NAD+, total NAD contents, and NAD+/NADH redox po-
tential of the healthy human brains.

It is anticipated that improvement in methods to quantify
the NAD+ metabolome will be developed to help standardize
NAD+ research across different laboratories, and to over-
come challenges associated with translation of preclinical
studies toward clinical practice.

XIII. Prospects of Using NAD+ Precursors in the Clinic

Pellagra, a syndrome caused by a diet deficient in either
NA or l-tryptophan, can lead to psychotic symptoms lead-
ing to presenile dementia likely due to upregulation of
IDO, which can deplete neurons of the essential amino acid,
l-tryptophan, causing neurodegeneration. Administration
of the NAD+ precursors, NA or NAM, previously improved
the neurological state of dementia patients in the 1930s.
Pharmacological doses of either NA or NAM have also
provided dramatic therapeutic benefits for other diseases,
including lipid dyshomeostasis, rheumatoid arthritis, type I
diabetes, colitis, multiple sclerosis (MS), and schizophrenia
in both animal models and in the clinical setting. Among
these precursors, NA appears to specifically activate the G-
protein-coupled receptor, GPR109, leading to the release of
prostaglandins, PGE2 and PGD2 (314). These prostaglandins
exert potent anti-inflammatory effects through endogenous
signaling mechanisms. While NAM can prevent MS in animal
models, it is also an inhibitor of sirtuins, and may therefore

prove detrimental on long-term cell survival and longevity
(258, 259).

There is growing evidence suggesting that NAD+ ad-
ministration may also reduce cellular injury in multiple
oxidative stress-induced degenerative diseases. NAD+

treatment has been shown to reduce PARP1-induced as-
trocyte death (7). PARP1 has been implicated in the path-
ogenesis of several diseases, including diabetes, AD, and
PD (196, 221). Since supplementation with NAD+ can
protect against PARP1-mediated cell death, NAD+ ad-
ministration may improve cell viability in these diseases by
at least partially ameliorating PARP1 toxicity. In vitro
studies have shown that NAD+ remains protective even
when administered at 3–4 h following PARP1 activation,
suggesting that NAD+ administration has a long window
period for reducing cellular injury (8). In addition, NAD+

may also improve cell viability by enhancing sirtuin ac-
tivities and/or improving energy metabolism.

While the potential involvement of NAD+ metabolic
pathways in energy metabolism and mitochondrial function
has been known for quite some time, suggestions of the in-
volvement of NAD+ in DNA repair and longevity have grown
at a rapid rate in the last decade. Characterization of the
NAD+ synthetic pathways has not only made these ad-
vancements possible but also contributed extensively to the
understanding of the diverse roles of pyridine nucleotides in
cellular biology. Despite this, information regarding the
fundamental roles of NAD+ in neurodegeneration and aging
remains limited. Further investigations are necessary in this
increasingly relevant field.

While the current review herein focused on PARP1 in
cellular degeneration, the role of other PARPs such as tan-
kyrases in cellular function remains largely unknown. Since
NAD-dependent tankyrases are primary mediators of telo-
merase activity, it is highly likely that NAD+ may also affect
the aging process through regulation of tankyrase activity
(385). It would therefore be intriguing to study the effects of
NAD+ precursors on tankyrases and telomerases on certain
biological functions, including neurogenesis, which might be
relevant in the aging brain.

In addition, NAD+ regulates diverse pathways that may
control life span. The importance of NAD+ is further un-
derscored by recent work providing genetic evidence for the
existence of several pathways necessary for NAD+ synthesis.
For example, the newly identified NAD+ precursor, NR, has
been shown to contribute to NAD+ synthesis by at least two
unique pathways in the yeast Saccharomyces cerevisiae, and
can upregulate intracellular NAD+ levels in mice and humans
(338). Both pathways require the NAM ring for entry into the
previously established pathways for NAD+ synthesis. Future
studies are required to address the importance of NR in hu-
man health and disease, and whether it can be effectively
used to replenish lowered NAD+ levels in age-related dis-
eases, such as AD. Given the adverse effects associated with
high-dose use of NA and NAM, NR may represent an alter-
native precursor to enhance NAD+ levels.

As well, changes in the NADH level, NAD+ redox po-
tential, and NAD+ levels are likely to be present in other
pathological conditions and may be associated with disease
progression. In particular, increased oxidative stress and
immune activation in AD, PD, ADC, and amyotrophic lateral
sclerosis (ALS) may influence the available concentration of
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these molecules. Future investigation into the metabolism
and biological function of NAD+ in these and other degen-
erative diseases may expose fundamental properties that may
involve the use of NAD+ precursors as adjunct therapy for
treatment in these diseases, and perhaps may help in slowing
down the age-related disease process.

Resveratrol is a polyphenol with major health benefits that
is thought to operate through direct activation of the ‘‘anti-
aging’’ enzyme SIRT1. However, recent reports have chal-
lenged this ‘‘direct activation’’ hypothesis, suggesting that
the mechanism by which resveratrol increases SIRT1 func-
tion is still unknown (39, 86). Previous work from our group
has shown for the first time that resveratrol induces a dose-
dependent increase in NMNAT-1 activity. As SIRT1 requires
NAD+ as a substrate to perform its gene silencing function,
higher NAD+ levels will enhance SIRT1 activity. This find-
ing suggests that resveratrol may promote SIRT1 function by
enhancing NAD+ synthesis in whole cell systems without
requiring direct activation. Our observation that resveratrol
increases NAD+ levels in primary human brain cells by acting
on NMNAT, together with the neuroprotective effects of
green tea polyphenols against QUIN-mediated excitotoxicity
(47), supports the view that polyphenols have considerable
therapeutic potential, particularly for the treatment of neu-
rodegenerative diseases. As NMNAT can accelerate NAD+

synthesis from all six substrates, QUIN, NR, NMN, NA,
NAR, and NAM, NMNAT activation by resveratrol may
represent an ideal natural therapeutic to replenish NAD+

levels. Maintenance of higher cellular NAD+ will enhance
SIRT1 activity and other NAD+-dependent pathways, im-
pacting positively on cell viability and longevity.

Finally, increased NAMPT has been reported in a mice
model of collagen-induced arthritis both in the serum and in
the arthritic paw (59). NAMPT inhibition reduced arthritic
severity comparable to etanercept, significantly lowered the
levels of cytokine release in affected joints, and reduced in-
tracellular NAD+ concentrations in inflammatory cells (59).
Therefore, NAMPT may play an important role during in-
flammatory diseases associated with cytokine secretion from
leukocytes. Therefore, increasing NAD+ levels may be del-
eterious in inflammatory conditions and may exacerbate the
disease due to increased NAMPT activity and NAD+ use in
immune cells. This represents an additional potential nega-
tive to ‘‘one-size-fits-all’’ use of NAD+.

While most of the evidence reviewed in this article
strongly supports the current enthusiasm to investigate and
develop strategies for increasing NAD+ levels in conditions
where NAD+ turnover is high and/or concentrations are re-
duced, the use of NAD+ enhancing therapeutics in circum-
stances where cellular NAD+ levels are already adequate may
be unwise. Given the complexity of the biochemical systems
affected by NAD+ and its associated metabolites a simplistic,
one-size-fits-all approach to NAD+ therapeutics will likely
limit the true potential of NAD+ treatment and may in fact
cause harm under some circumstances. As well, while several
NAD+ precursors have been recently identified and examined
in several models, a side-by-side comparison of these pre-
cursors is nascent in current literature. It is anticipated that
these precursors may exhibit important differences in their
effect in various pathological disorders (375).

To circumvent this, in addition to the many studies fo-
cused on identifying efficient ways of increasing NAD+,

additional effort must be applied to the development of cost-
effective methods of measuring and correlating NAD+

levels in both tissue and extracellular fluids to cellular and
organ health in an effort to establish a clear understanding of
what a ‘‘healthy’’ NAD+ level actually is. Armed with this
knowledge the clinician may confidently apply NAD+

therapy after an appropriate assessment of NAD+ levels to
determine whether the treatment is likely to be effective in
each client’s case.

XIV. Concluding Remarks

NAD+ research has generated multiple discoveries in the
last two decades. Identification of the important role of NAD+

as a cofactor in cellular respiration and energy production
was followed by discoveries of numerous NAD+ biosynthesis
pathways. In recent years, NAD+ has been shown to play a
unique role in DNA repair and epigenetic control through
protein deacetylation. Elucidation of the pivotal roles played
by NAD+ in linking the key biochemical and cellular pro-
cesses of oxidative stress and immune activation, energy
metabolism, epigenetic control, and cell viability in degen-
erative disorders and aging will likely prove seminal to the
advancement of effective therapeutics in degenerative dis-
eases. NAD+ remains the central molecule in the metabolism
and functions of NAD+, NADH, NADP+, and NADPH. Of
these four molecules, only NAD+ can be synthesized de novo
via the kynurenine pathway, while the generation of NADH,
NADP+, and NADPH requires NAD+ as the original pre-
cursor. Maintenance of intracellular NAD+ levels is pivotal
for the regulation of DNA repair, stress resistance, and cell
death, suggesting that NAD+ synthesis through the kynur-
enine pathway and/or salvage pathway is an attractive target
for therapeutic intervention in age-associated degenerative
disorders. Agents such as NR, and to a lesser degree, NA and
NAM, have been shown to protect severed axons from de-
generation in animal models for Wallerian degeneration, and
extend life span in small organisms. However, further studies
are necessary to clarify the conditions under which specific
NAD+ precursors should be used to efficiently promote in-
tracellular NAD+ anabolism. This involves evaluating the
pharmacokinetics, safety, and efficacy in healthy and disease
models to develop targeted therapies that ameliorate degen-
erative processes and help maintain and improve health span
and longevity.

While it will almost certainly be proved true that NAD+

therapy alone is not the mythical ‘‘elixir of life,’’ its foun-
dational role in cellular energetics, nuclear signaling, and
viability suggests it just may be a key ingredient.
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Abbreviations Used

3-HAA¼ 3-hydroxyanthranilic acid
3-HAAO¼ 3-hydroxyanthranilic acid oxygenase

3-HK¼ 3-hydroxykynurenine
5¢-NTs¼ 5¢-nucleotidases

AA¼ anthranilic acid
Ab¼ amyloid-beta
AD¼Alzheimer’s disease

ADC¼AIDS dementia complex
ADPR¼ADP ribose

AKI¼ acute kidney injury
AMPK¼AMP-activated kinase

AUC¼ area under the curve
BBB¼ blood/brain barrier

cADPR¼ cyclic-ADP-ribose
CNS¼ central nervous system

CPS1¼ carbamoyl-phosphate synthetase 1
CR¼ caloric restriction

eNOS¼ endothelial nitric oxide synthase
ETC¼ electron transport chain
FAO¼ fatty acid oxidation
FBS¼ fetal bovine serum

GABA¼ gamma-aminobutyric acid
GSH¼ glutathione

GSSG¼ glutathione disulfide
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Abbreviations Used (Cont)

H2O2¼ hydrogen peroxide
HDL¼ high-density lipoprotein

HIF1a¼ hypoxia-inducible factor 1a
HPLC¼ high-performance liquid chromatography

HSF¼ heat shock factor
IDH2¼ isocitrate dehydrogenase 2

IDO¼ indoleamine 2,3-dioxygenase
IFN-c¼ interferon-gamma

ILS¼ insulin-like signaling
isoNAM¼ isonicotinamide

KAT¼ kynurenine aminotransferase
LDL¼ low-density lipoprotein

LKB1¼ liver kinase B1
LXR¼ liver X receptor

MeNAM¼N-methylnicotinamide
MLCK¼myosin light chain kinase

MnSOD¼manganese superoxide dismutase
mPTP¼mitochondrial permeability transition pore

MRI¼magnetic resonance imaging
mRNA¼messenger RNA

MS¼multiple sclerosis
NA¼ nicotinic acid

NAAD¼ nicotinic acid adenine dinucleotide
NAADP¼ nicotinic acid adenine dinucleotide phosphate

NAD+¼ nicotinamide adenine dinucleotide
NAM¼ nicotinamide

NAMN¼ nicotinic acid mononucleotide
NAMPT¼ nicotinamide phosphoribosyltransferase
NAPRT¼ nicotinic acid phosphoribosyltransferase

NAR¼ nicotinic acid riboside
NMDA¼N-methyl-d-aspartate

NMN¼ nicotinamide mononucleotide
NMNAT¼ nicotinamide mononucleotide

adenylyltransferase
NMNAT-1¼ isoform of NMNAT localized to the nucleus
NMNAT-2¼Golgi complex isoform of NMNAT
NMNAT-3¼ isoform of NMNAT localized

to the mitochondria
NMR¼ nuclear magnetic resonance

NNMT¼ nicotinamide N-methyltransferase
NR¼ nicotinamide riboside

NRK¼ nicotinamide riboside kinase
PARP¼ poly(ADP-ribose) polymerase
PBEF¼ pre-B cell colony enhancing factor

PBMC¼ peripheral blood mononuclear cell
PD¼ Parkinson’s disease

PIC¼ picolinic acid
PICAC¼ picolinic acid carboxylase

PKA¼ protein kinase A
PNP¼ purine nucleoside phosphorylase

PPAR¼ peroxisome proliferator-activated receptor
PRPP¼ 5-phosphoribosyl-1-pyrophosphate
QPRT¼ quinolinic acid phosphoribosyltransferase
QUIN¼ quinolinic acid

ROS¼ reactive oxygen species
SDH¼ succinate dehydrogenase
SIRT¼ sirtuin
TDO¼ tryptophan 2,3-dioxygenase

tg¼ transgenic
TOR¼ target of rapamycin
TXN¼ thioredoxin
URI¼ unconventional prefoldin RPB5 interactor
UV¼ ultraviolet

294 BRAIDY ET AL.


