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Whole genome MBD-seq and RRBS
analyses reveal that hypermethylation
of gastrointestinal hormone receptors
is associated with gastric carcinogenesis
Hee-Jin Kim1, Tae-Wook Kang1, Keeok Haam1, Mirang Kim2,3, Seon-Kyu Kim1, Seon-Young Kim 1,3, Sang-Il Lee 4,
Kyu-Sang Song5, Hyun-Yong Jeong6 and Yong Sung Kim1,3

Abstract
DNA methylation is a regulatory mechanism in epigenetics that is frequently altered during human carcinogenesis. To
detect critical methylation events associated with gastric cancer (GC), we compared three DNA methylomes from
gastric mucosa (GM), intestinal metaplasia (IM), and gastric tumor (GT) cells that were microscopically dissected from
an intestinal-type early gastric cancer (EGC) using methylated DNA binding domain sequencing (MBD-seq) and
reduced representation bisulfite sequencing (RRBS) analysis. In this study, we focused on differentially methylated
promoters (DMPs) that could be directly associated with gene expression. We detected 2,761 and 677 DMPs between
the GT and GM by MBD-seq and RRBS, respectively, and for a total of 3,035 DMPs. Then, 514 (17%) of all DMPs were
detected in the IM genome, which is a precancer of GC, supporting that some DMPs might represent an early event in
gastric carcinogenesis. A pathway analysis of all DMPs demonstrated that 59 G protein-coupled receptor (GPCR) genes
linked to the hypermethylated DMPs were significantly enriched in a neuroactive ligand–receptor interaction pathway.
Furthermore, among the 59 GPCRs, six GI hormone receptor genes (NPY1R, PPYR1, PTGDR, PTGER2, PTGER3, and SSTR2)
that play an inhibitory role in the secretion of gastrin or gastric acid were selected and validated as potential
biomarkers for the diagnosis or prognosis of GC patients in two cohorts. These data suggest that the loss of function of
gastrointestinal (GI) hormone receptors by promoter methylation may lead to gastric carcinogenesis because gastrin
and gastric acid have been known to play a role in cell differentiation and carcinogenesis in the GI tract.

Introduction
Gastric cancer (GC) remains the second most frequent

cause of death from cancer in both sexes worldwide1,
although considerable progress has been achieved in
developing early detection approaches and improving

surgical procedures and adjuvant chemotherapy2,3. Most
importantly, the precise mechanisms underlying gastric
carcinogenesis and disease progression are not fully
understood. GCs can be divided into two distinct histo-
logical groups, i.e., the intestinal and diffuse types4.
Intestinal-type GCs (IGCs) are histologically differ-
entiated and develop through the following well-
characterized sequential stages as precancerous lesions:
chronic gastritis, atrophy, intestinal metaplasia (IM), and
dysplasia. In contrast, diffuse-type GCs (DGCs) are his-
tologically undifferentiated and develop through a shorter,
less characterized sequence of events from gastric epi-
thelial cells5.
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Previous studies have shown that H. pylori infection
causes aberrant DNA methylation in gastric epithelial
cells and induces remarkable inflammation6, indicating
that epigenetic alterations are potentially some of the
earliest abnormalities during gastric carcinogenesis. Cur-
rently, epigenetic changes, such as the hypermethylation
of tumor suppressor genes and the hypomethylation of
oncogenes, are considered hallmarks of cancer that play
a key role in the development and maintenance of the
malignant phenotype7–9.
To detect differences in critical epigenetic signatures

between paired normal and tumor tissues, it is necessary
to extract a microscopic homogeneous cellular sub-
population from its complex tissue milieu10. However, the
reliability of tests based on tissue often crucially depends
on the relative abundance of the cell population in
question5. Therefore, a prerequisite for modern molecular
research is the preparation of pure samples without a
large number of “contaminating” cells11,12. Laser capture
microdissection (LCM) offers a simple single-step process
that can be used as a rapid and dependable method of
preserving and isolating clusters of cells from tissue sec-
tions by direct microscopic visualization10,13,14.
The aim of this study was to reveal sequential changes

in DNA methylation in gastric carcinogenesis and identify
the critical pathway associated with GC development.
In this study, we combined methylated DNA binding
domain sequencing (MBD-seq) with reduced representa-
tion bisulfite sequencing (RRBS) to perform a compre-
hensive methylome analysis in gastric mucosa (GM), IM,
and gastric tumor (GT) cells isolated from a patient
with IGC by LCM. Here, we provide information
regarding the hyper- and hypomethylation signatures in
IM and GT cells during intestinal-type gastric carcino-
genesis and show that gastrointestinal (GI) hormone
receptor genes in a neuroactive ligand-receptor interac-
tion pathway are predominantly hypermethylated in GCs.
To the best of our knowledge, this study is the first to
identify a unique pathway associated with human disease
based on a methylome analysis.

Materials and methods
Cell lines and tissue samples
The GC cell lines (SNU-001, SNU-005, SNU-016, SNU-

216, SNU-484, SNU-520, SNU-601, SNU-620, SNU-638,
SNU-668, SNU-719, AGS, KATOIII, MKN1, MKN45,
and MKN74) were obtained from the Korean Cell Line
Bank (http://cellbank.snu.ac.kr). The paired primary
GC tissues and adjacent normal gastric tissues from 175
patients with gastric cancers were obtained with informed
consent from the BioBank of Chungnam National Uni-
versity Hospital, Daejeon, Korea, and their use was
approved by the Institutional Review Board of the Hos-
pital. The cancer tissues were histologically confirmed by

a pathologist, and the clinical information was obtained
from the medical records.

Laser capture microdissection
Fresh untreated specimen from the stomach of a patient

with early gastric cancer (EGC) was obtained by endo-
scopic submucosal dissection (ESD) and embedded in
Tissue-Tek OCT medium (Sakura, Tokyo, Japan). Using
a cryostat (Microtome, Leica, Germany), ten serial sec-
tions (8 μm thick) of the frozen specimen were cut onto
PALM Membrane Slide 1.0 PEN slides (Zeiss Microima-
ging, Munich, Germany), stained with H&E and then
coated using Liquid Cover Glass N (Carl Zeiss, Germany)
for image enhancement and sample protection. The
GM, IM, and GT cells were delineated using the PALM
Robosoftware (Zeiss Microimaging) and cut into 0.5-mL
Adhesive-Cap tubes using a PALM Laser capture micro-
dissection system (Zeiss Microimaging). The genomic
DNAs of the captured cells were obtained using a
QIAamp DNA Micro Kit (Qiagen, Valencia, CA). The
genomic DNA was subjected to electrophoresis on a
0.8% agarose gel; then, the gel was stained with GelRed
(Biotium, Fremont, CA), and the DNA concentration was
quantified using a PicoGreen dsDNA Quantitation Kit
(Molecular Probe, Eugene, OR).

Estimation of tumor cell content in GT cells isolated by
LCM
To examine the cell homogeneity in the biopsy sample

isolated by LCM, we estimated the content of the tumor
cells in the GT cells isolated by LCM through multiple
displacement amplification (MDA) of LCM-DNA, a copy
number of variation (CNV) analysis, and a pyrosequen-
cing analysis for genotyping at selected loss of hetero-
zygosity (LOH) loci. These procedures are described in
Supplementary online material.

MBD-seq analysis
For the MBD-seq analysis, LCM-DNAs from GM, IM,

and GT cells were fragmented to 100–500 bp by 44 psi of
gas for 1 min through a nebulizer (Illumina, San Diego,
CA) and then subjected to methylated DNA enrichment
using a MethylMiner Methylated DNA Enrichment Kit
(Invitrogen, Carlsbad, CA). Briefly, the methylated DNAs
were precipitated from each 500 ng of fragmented LCM-
DNAs via binding to the methyl-CpG binding domain
of`the human MBD2 protein, which was coupled to
magnetic Dynabeads. Then, the methylated fragments
were eluted with High-Salt Elution Buffer (Invitrogen)
and purified with a MinElute PCR Purification Kit (Qia-
gen). The methylated DNA fragments were ligated to a
pair of adaptors for Illumina sequencing. The ligation
products were size-fractioned on a 2% agarose gel to
obtain 200–300 bp fragments and subjected to 18 cycles
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of PCR amplification. Each library was diluted to 8 pM,
and 76 cycles of single-read sequencing was performed on
an Illumina Genome Analyzer II.

RRBS analysis
RRBS was performed as previously described15 using

each 300 ng of LCM-DNA (GM, IM, and GT) as input.
The experimental protocol steps were as follows: (i) DNA
digestion using the MspI restriction enzyme, which cuts
DNA at its recognition site (C↓CGG) independent of the
CpG methylation status; (ii) end repair and ligation of
adapters for Illumina sequencing; (iii) gel-based selection
of DNA fragments with insert sizes ranging from 40 bp to
120 bp and 120–220 bp; (iv) two successive rounds of
bisulfite treatment, after which we observed 98% con-
verted cytosines outside the CpGs; (v) 18 cycles of the
PCR amplification of the bisulfite-converted library; and
(vi) 76 cycles of single-read sequencing using an Illumina
Genome Analyzer II.

Base-calling and mapping
For the MBD-seq, base-calling was performed

throughout the routine process of the Illumina pipeline
module bclConverter v1.7 during the 76 single-read
cycles. The sequences were aligned to the human gen-
ome assembly (hg18) using ELAND version 2 with the
default parameters. To evaluate the methylation peak
signatures, the aligned coordinated sequences were
extended up to 200 bp from the start position. The
mapped reads (76 bp) are partial fragments of sonicated
DNA after size selection (200 bp). The coverage depth of
the methylated reads was counted per 200 bp resolution.
The calculated count value was converted into a methy-
lation enrichment score (MES) to remove bias among the
number of reads from the different samples. The raw
signals (n) in each bin size resolution were transformed
into an adjusted value (MES) based on the ratio of the
total number of reads (total n) to the genomic size (L)
using the following formula:

MESbini ¼ log
n=200ðbiniÞ
total n=L

� �

The adjusted MES signals were exported in a BED file
format and visualized with our lab mirror of the UCSC
Genome Browser due to the large size.
For the RRBS analysis, the base calling process was the

same as that performed for the MBD-seq. However, the
mapping step was performed with the BRAT software,
which is a methylation specific mapping tool16 for short
bisulfite-treated reads because the unmethylated cytosines
in the sequenced reads from RRBS are converted into
thymines. The methylation value of each CpG site was
calculated as ‘T’ (unmethylation) and ‘C’ (methylation)
read counts using the pysam Python package.

Efficiency of sodium bisulfite conversion
The bisulfite conversion efficiency of our sequence data

mapping was calculated with the BRAT16 tool. More than
98% of cytosines, excluding CpG sites, were converted
into thymine residues based on the reference genome.

Coverage and depth analysis
MBD-seq is sensitive to highly methylated regions that

have high CpG densities with different genomic features.
Thus, the coverage and depth of the uniquely mapped
reads were calculated against the total number of 200 bp
bins with a C, G, or CpG context as a reference 17,18. The
coverage and depth of four genomic regions, including the
whole genome, promoters, CpG islands (CGIs), and
intergenic region, were estimated. A promoter region was
defined as 2 kb centered on a TSS of RefSeq and CGI
information and was obtained from the UCSC Genome
Browser website. The coverage and depth of the RRBS
analysis were calculated using the same procedure
described for MBD-seq, except for the methylated abun-
dance at all CpG sites that are not C or G and are not
consecutive was addressed.

Identification of differentially methylated regions
The sliding-window approach was applied to identify

differentially methylated regions (DMRs) with methylation
differences greater than 2-fold between the samples (GM vs.
IM or GM vs. GT) within a 1 kb tile per 200 bp bin shift (t-
test, P < 0.01) in the MBD-seq data. Hyper- or hypo-
methylated DMRs indicate DNA regions that are methy-
lated by more or less than 2-fold in the GT or IM compared
to those in the GM. We defined “early-onset DMRs” as
DMRs commonly observed in the IM and GT compared to
the GM and “GT-specific DMRs” as DMRs observed in the
GT but not the IM compared to the GM. In the RRBS data,
the methylated and unmethylated CpGs were counted, and
Fisher’s exact test was used to determine the methylation
frequency during gastric carcinogenesis using a 2 by 3
contingency table. After the frequency test, Bonferroni
correction criteria were applied to all CpG sites sequenced
by RRBS to restrict type 1 errors. Then, the regions showing
methylation differences with more than 20% changes
between the samples (GM vs. IM or GM vs. GT) at a CpG
site were selected as DMRs for RRBS. The DMRs in the
promoter regions from the MBD-seq data were defined as
differentially methylated promoters (DMPs), and promoter
regions with three or more significant CpG sites from the
RRBS data were defined as DMPs for RRBS.

Influence of DMRs on genomic features
To infer the biological significance of the DMRs on the

genomic features, the distributions of the DMRs from the
MBD-seq and RRBS data were compared in terms of the
following four genomic features: (i) whole genome, (ii)
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promoters (CGI-associated, shore, shelf, and non-CGI-
associated), (iii) intragenic (exons, except for the first
exon, introns, 3′UTRs, repeat elements and CGIs), and
(iv) intergenic regions (repeat elements and CGIs) based
on the UCSC website (hg18). In the promoter regions,
regions 0–2 kb or 2–4 kb upstream of the CGIs were
defined as CGI shores or CGI shelves, respectively, as
previously described16.

Pathway enrichment analysis
A KEGG pathway enrichment analysis was conducted

using the Functional Annotation tool in DAVID Bioin-
formatics Resources19. Gene sets linked to hypermethy-
lated or hypomethylated DMPs were used as input in
DAVID for the mining of the functional relevance of the
methylation changes.

RT-PCR and real-time quantitative RT-PCR
RT-PCR and qRT-PCR analyses were performed to

validate the expression levels of genes identified as
methylated targets in the GC cell lines and clinical tissues
as previously described20. The primer sequences are listed
in Supplementary Table S12. The PCR conditions were as
follows: 94 °C for 5min, 25–35 cycles at 94 °C for 30 s,
annealing temperature (60–68 °C) for 30 s, 72 °C for 30 s
and a final cycle at 72 °C for 7 min. The RT-PCR products
were analyzed on 1.5% agarose gels stained with ethidium
bromide. The β-actin gene was used as a control. The
cDNA (100 ng) was amplified by 45 cycles with 2 × SYBR
Green Supermix (Bio- Rad, Hercules, CA) using the pri-
mer sets. Real-time qRT-PCR was performed using a
C1000 Thermal Cycler (Bio-Rad, Hercules, CA, USA). The
gene encoding β-actin was amplified as a control. The
relative quantification of the target mRNAs was performed
using the comparative threshold cycle (Ct) methods.

Treatment of GC cells with 5-aza-2′-deoxycytidine and
trichostatin A
GC cell lines, including SNU-216, SNU-484, SNU-638,

and MKN1, were seeded at a density of 1 × 106 cells per 10-
cm dish and cultured for 1 d before the drug treatment. The
cells were treated with 10 μmol/L 5-aza-2′-deoxycytidine
(AZA; Sigma) every 24 h for 3 days and then harvested.
Another culture of cells was treated with 250 nmol/L tri-
chostatin A (TSA; Sigma) for 1 day and then harvested. To
test the synergistic effects of AZA and TSA, the cells were
first treated with 10 μmol/L AZA for 3 days, followed by
treatment with 500 nmol/L TSA for 1 day. The total RNA
was prepared, and the effect on the target expression was
assessed by real-time qRT-PCR.

Bisulfite sequencing analysis
Genomic DNA (2 μg) from the GC cell lines or clinical

tissues was modified with sodium bisulfite for 16 h using

an EZ DNA Methylation Kit (ZYMO Research, Orange,
CA). The bisulfite-modified DNA was amplified using
primer sets designed to amplify the regions of interest.
The PCR primer sequences used for the bisulfite
sequencing were designed by MethPrimer (http://www.
urogene.org/methprimer/index1.html; see Supplementary
Table S12). The amplification was performed using the
following conditions: initial denaturation step at 95 °C for
10min; 35 cycles of denaturation at 95 °C for 45 s, 60–63 °
C for 45 s, and 72 °C for 1 min; and a final cycle at 72 °C
for 10min. The PCR products were purified from a gel
using a Qiagen Gel Extraction Kit (Qiagen, Valencia, CA)
and cloned into a pGEM-T Easy Vector (Promega,
Madison, WI) for sequencing. Five to ten clones were
selected for sequencing. The methylation percentage of
each sample was calculated as the number of methylated
CpG dinucleotides from the total number of CpGs.

Risk score development
To develop an easy-to-use risk score for patients, a

previously developed strategy using a Cox regression
coefficient for several genes from patient cohorts was
adopted21,22. The risk score of each patient was calculated
as the sum of each gene’s score, which was calculated by
multiplying the expression level of the gene by its corre-
sponding coefficient using the following formula: Risk
score= ∑ Cox coefficient of gene Gi × expression value of
gene Gi. Then, the patients were divided into two groups
(i.e., high- or low-risk of survival) using the median cut-off
of the risk score as a threshold. The differences in survival
between the patient groups were estimated by the
Kaplan–Meier method and a log-rank test.

Public data
Expression and 450 K HumanMethylation array data for

GCs were downloaded from The Cancer Genome Atlas
(TCGA) data portal (https://portal.gdc.cancer.gov/). We
obtained expression and methylome data of primary GCs
and normal tissues. The CGI coordinates were obtained
from the UCSC browser. The CGI shores and shelves
were obtained from the CGI coordinates by considering
the 0–2 kb and 2–4 kb regions upstream of the CGI
flanking regions.

Results
Isolation of highly homogeneous cell clusters using LCM
The overall six-step process of this study is summarized in

Fig. 1. We performed a methylome analysis of ESD tissue
from a patient with EGC. To procure highly homogenous
tissue cells, we isolated approximately 4,000 crypt-containing
GT cells (1.1 × 105 cells) and 4000 crypt-containing GM and
IM cells (1.2–1.3 × 105 cells) from frozen ESD tissue using an
LCM procedure (Step 1 in Fig. 1 and Supplementary Fig. S1).
We obtained 0.86–1.16 μg of DNA from each isolated cell
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(Supplementary Table S1), and gel electrophoresis was per-
formed to show the high molecular weight DNAs in all cell
types (Supplementary Fig. S2a).
To test the cell homogeneity, we performed a CNV

analysis of the GM, IM, and GT DNAs using an Affy-
metrix SNP 6.0 array. The GM and IM DNAs did not
show changes in the copy number compared to a refer-
ence set, while the GT cells harbored copy number gains
in eight chromosomal regions and losses in six chromo-
somal regions (Supplementary Fig. S3a–c and Supple-
mentary Table S2).
Based on the copy number loss data, we selected five

LOH loci that were presented as heterozygous alleles in
the GM cells, although one allele was missing in the
GT cells. The cell homogeneity test showed that the
average frequencies of the A allele in the five loci were
0.56 and 0.66 in the DNA from the bulk normal and
tumor tissues and 0.53 and 0.94 in the DNA from the GM
and GT cells isolated by LCM, respectively (Supplemen-
tary Fig. S4). These results indicate that the LCM proce-
dure isolated cell clusters with high homogeneity from the
tissue sections based on the tumor cell contents.

Methylome profiling of GM, IM, and GT cells using MBD-
seq and RRBS
As shown in Fig. 1, in Step 2, we established libraries for

the MBD-seq and RRBS analyses using 500 ng and 300 ng
of LCM-isolated DNA, respectively (Supplementary
Fig. S2b and S2c). A Genetic Analyzer II generated 24.3,
28.3, and 24.6 million reads for the GM, IM, and GT
MBD-seq libraries, and 70.4, 64.7, and 69.9% of the reads
were aligned to hg18, respectively (Supplementary

Table S3). The MBD-seq reads covered approximately
68% of the 14,288,463 segments (200 bp bins) in the
human whole-genome, 82% of the 232,315 segments in
the promoters, 88% of the 120,586 segments in the CGIs,
and 73% of the 7,379,326 segments in the intergenic
regions (Fig. 2a) Highly covered regions with a read depth
ranging from 26–100 were significantly increased in the
promoter and CGI regions of the GT cells compared to
those in the GM and IM cells. The coverage distribution
was very similar between the GM and IM cells.
In contrast, the number of sequencing reads from the

RRBS libraries was estimated to be half of the number of
reads from MBD-seq, including 13.0, 18.9, and 13.4
million reads in the GM, IM, and GT libraries, and 62.4,
37.9, and 40% of the reads were aligned to hg18,
respectively (Supplementary Table S3). The DNA
sequences covered approximately 3.9% of the 28,163,863
CpG sites in the human whole-genome, 15.7% of the
1,952,237 CpG sites in the promoters, 25.1% of the
1,964,581 CpG sites in the CGIs, and 2.9% of the
14,701,909 CpG sites in the intergenic regions (Fig. 2b).
These data indicate that the RRBS procedure enriched
genomic regions (selectivity by MspI), such as CGIs or
gene promoters, and that the distribution patterns
appear to be relatively similar among the three cell types
(Fig. 2b). The methylation signatures in the MBD-seq
and RRBS data matched 21,514 (79%) and 14,991 (55%)
of the 27,191 RefSeq promoters predicted in hg18,
respectively.

Identification of DMRs in the MBD-seq and RRBS data
We found unusual methylation enrichment patterns,

such as mono-, tri-, or tetra-ploidy, in the aneuploidy
chromosomes of the GT cells, highlighting the direct
correlation between methylation enrichment and chro-
mosomal aneuploidy. To account for the effects of
aneuploidy on methylation enrichment, we normalized
the read counts from the GT cell MBD-seq data con-
sidering the CNV effect (Supplementary Fig. S5). Subse-
quently, we performed scatter plot analyses to determine
the methylation pattern differences between the IM and
GT cells and the GM cells. For the MBD-seq data, the
average methylation values were counted within a 1 kb tile
and spotted for IM vs. GM (Fig. 3a) or GT vs. GM
(Fig. 3b). The hyper- ( > 2-fold) or hypomethylated ( < 2-
fold) signatures in the IM vs. GM cells (t-test, P < 0.01)
accounted for 3 or 4% of all spots (479,941), respectively,
(Fig. 3a). The hyper- or hypomethylated signatures in the
GT vs. GM cells accounted for 10 or 14% of all spots
(479,941), respectively (Fig. 3b).
To identify the DMRs between the IM and GT cells and

the GM cells, the methylation values between the IM and
GM and between the GT and GM were spotted two-
dimensionally (Fig. 3c). First, we identified 40,031 DMRs

Fig. 1 Schematic diagram of DNA methylation profiling of gastric
carcinogenesis using MBD-seq and RRBS. The six-step process of
the initial methylome profiling, identification of the promoter DMRs,
and pathway analysis associated with gastric carcinogenesis
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with methylation differences > 2-fold change between the
GT cells and the GM cells on the y-axis (Fig. 3c, Sup-
plementary Table S4). These DMRs were divided into two
subsets as follows: 36,528 ‘GT-specific’ and 3503 ‘early-
onset’ hypermethylated DMRs with methylation differ-
ences > 2-fold change between the IM cells and GM cells
on the x-axis. Similarly, 48,638 hypomethylated DMRs
exhibited methylation differences < 2-fold change
between the GT cells and GM cells on the y-axis,
including 41,046 DMRs classified as GT-specific and
7,592 DMRs classified as early-onset hypomethylated
DMRs (Supplementary Table S4 and Fig. 3c).
In the RRBS analysis, we compared the DNA methy-

lomes of the two different cell types at 332,448 CpG sites
with a minimum read depth of 10 using scatter plots and
observed significant Pearson’s correlations between the
IM and GM cells (R= 0.85, P < 2.2 × 10−16) (Fig. 3d) and
between the GT and GM cells (R= 0.67, P < 2.2 × 10−16)
(Fig. 3e). In contrast to the MBD-seq analysis, the
methylation in the RRBS analysis was unaffected by the
CNV data. Thus, we directly identified 95,727 DMRs with
methylation differences > 20% changes between the sam-
ples at a single CpG site. These DMRs included 46,936
hypermethylated DMRs (20,209 early-onset and 26,727
GT-specific) and 48,791 hypomethylated DMRs (22,534
early-onset and 26,257 GT-specific) (Fig. 3f).

Global distribution of DMRs in the human genome
Based on our both methylome data, we performed a

relative enrichment analysis based on the number of
DMRs in each genomic feature group (see Materials and
methods section) to identify where methylation events
frequently occur in the GT and IM cell genomes. On the
whole genome level, the number and distribution of hypo-
and hypermethylated DMRs (48,638 and 40,031) in the
MBD-seq data (Fig. 3g) in the GT cells did not different
from those (48,791 and 46,936) in the RRBS data (Fig. 3h),
but the proportion of early-onset DMRs in the RRBS data
was larger than that in the MBD-seq data. However, in the
CGI-associated promoters in the GT cells, 92% (3,745 of
4,090) of the DMRs were hypermethylated in the MBD-
seq data, while only 66% (15,989 of 24,176) of the DMRs
were hypermethylated in the RRBS data, suggesting that
CGI hypermethylation at promoter regions may be
inconsistent using the two methods partially due to the
methods’ properties.
Both sets of methylome data showed a similar dis-

tribution of hypo- and hypermethylated DMRs in the
intergenic region. For example, in the GT cell genome, we
found that repeat elements, such as LINEs (83%), SINEs
(76%), LTRs (83%), and satellites (93%), are pre-
dominantly hypomethylated in intergenic regions in the
MBD-seq data, although they display balanced

Fig. 2 Genome coverage of the methylation signatures from the MBD-seq and RRBS data of samples from a patient with GC. (a) For the
MBD-seq analysis, the methylation enrichment signatures were searched by 200 bp sliding on the whole-genome, gene promoters (2 kb regions
centered on TSSs from RefSeq), CGIs, and intergenic (intergenic regions without promoters) regions. (b) For the RRBS analysis, the genomic coverage
was assessed at the single base level in the same regions as those included in the MBD-seq analysis

Kim et al. Experimental & Molecular Medicine (2018) 50:156 Page 6 of 14

Official journal of the Korean Society for Biochemistry and Molecular Biology



hypermethylation and hypomethylation in intragenic
regions (Fig. 3g). This finding indicates that the intergenic
repeat elements are heavily methylated in the GM cell

genome but become demethylated in GT cells. Thus,
these data indicate that the epigenetic mechanism
repressing the activity of transposable elements, such as

Fig. 3 Global comparison of three methylome datasets from MBD-seq and RRBS analyses of samples from a patient with GC. a, b For the
MBD-seq data, a pairwise correlation of DNA methylation in 1 kb tiles was performed. The genomic tiling was obtained by sliding a 1 kb window
through the genome such that each tile starts at the position where the previous tile moves 200 bp down. The average methylation value of each 1
kb tile was calculated, and 479,941 1-kb tiles had an average methylation value greater than 10 in at least one of the three cell types. Red or green
spots indicate significant 2-fold increases (hypermethylation) or decreases (hypomethylation) between the data sets. c Two-dimensional scatter plot
of the MBD-seq data. d, e For the RRBS data, a pairwise correlation of the DNA methylation data at individual CpG sites was performed. Red or green
lines indicate 20% increased methylation levels (hypermethylation) or 20% decreased methylation levels (hypomethylation) between the cell types.
f Two-dimensional scatter plot of the RRBS data. g, h Genomic distribution of DMRs according to the genomic features in the MBD-seq and
RRBS data
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LINEs, can be disrupted by demethylation in cancer cells,
which facilitates mutagenic retrotranspositions. The most
statistically significant changes in repeat elements were
observed in satellite DNAs in intergenic regions, sug-
gesting that satellite DNA hypomethylation may partici-
pate in the development of GC by inducing aneuploidy.

Identification of DMPs based on the RRBS and MBD-seq
analyses
To identify epigenetic targets associated with gastric

carcinogenesis, we focused on the DMPs, which were
defined as DMRs in promoter regions based on both the
MBD-seq and RRBS data. Based on the hyper- and
hypomethylated DMRs (Supplementary Table S4) detec-
ted in the MBD-seq data, 1,942 hyper- (Supplementary
Table S5) and 819 hypomethylated DMPs were identified
(Supplementary Table S6).
The RRBS procedure is enriched in genomic regions

with high densities of CpGs, such as gene promoters
(Fig. 2b); thus, we directly identified DMRs in the pro-
moter regions covered by the RRBS reads between
GT cells and GM cells and defined these DMPs in
the RRBS analysis as three or more DMRs located in a
promoter region. Of the 14,991 promoters covered by
the RRBS reads (Step 3 in Fig. 1), we selected 677 DMPs
that significantly differed between the GM and IM cells
and/or GT cells (Supplementary Table S7) based on
observations by two investigators of each track on the
genome browser with the naked eye. The DMPs could be
divided into 503 hyper- (Supplementary Table S8) and
174 hypomethylated DMPs (Supplementary Table S9)
(Step 4 in Fig. 1).
The different attributes of the MBD-seq and RRBS

technologies may lead to discrepancies regarding the
presence of methylation signatures in CpG sequences.
Nevertheless, we found that many (403) DMPs were
detected in both analyses, indicating consistency between
the two technologies. However, we expect that the two
different approaches may be mutually complementary and
thereby provide information regarding useful targets that
a single technology may not be able to detect. Thus, in
Step 5 shown in Fig. 1, we combined the DMPs from the
MBD-seq and RRBS analyses and identified a total of
3,035 DMPs, including 2081 hypermethylated and 954
hypomethylated DMPs. The DMPs were classified as 514
early-onset and 2,521 GT-specific DMPs (Table S10 and
Supplementary Table S11).

Pathway enrichment analysis of DMPs
To infer the functional role of the identified DMPs, we

performed a pathway enrichment analysis of a gene set
linked to the 3,035 DMPs using DAVID, which is a web-
based tool developed for Gene Ontology ranking (Step 6
in Fig. 1). We identified 59 G protein-coupled receptor

(GPCR) genes linked to the hypermethylated DMPs,
including 13 GPCRs associated with early-onset DMRs
and 46 GPCRs associated with GT-specific DMRs, that
were significantly enriched in a neuroactive ligand-
receptor interaction pathway (Benjamini test, P= 0.005
in the early-onset group; P= 5.78 × 10−6 in the GT-
specific group) (Fig. 4a, Table 1).

Hypermethylation of GI hormone receptors in the stomach
Of the 59 GPCRs, we selected 17 GI hormone receptor

genes related to the regulation of gastric acid secretion
and/or gastric injury healing and validated their gene
expression levels in 16 GC cell lines and 10 paired primary
GC tissues. Most genes were not found to be expressed or
downregulated in most tested GC cell lines (Fig. 4b). The
expression of nine genes was down-regulated in over 50%
of primary gastric tumors compared with that in the
paired normal tissues (Fig. 4b).
The treatment with AZA and/or TSA in four GC cell

lines restored the expression of the 17 GI hormone
receptor genes in at least one of the GC cell lines tested,
indicating that the expression of these genes might be
controlled by epigenetic mechanisms (Fig.4c). Among
these genes, we further selected six GI hormone receptors
whose expression was significantly down-regulated by
80–100% in the primary gastric tumors, including neu-
ropeptide Y receptors (NPY1R and PPYR1), prostanoid
receptors (PTGDR, PTGER2, and PTGER3), and a soma-
tostatin receptor (SSTR2) (Fig. 4b).

Validation of the expression and methylation of the six GI
hormone receptors
Using Genome Browser, we confirmed that the CGIs in

the promoter regions of the six GI hormone receptors
were heavily methylated in the GT cells compared with
those in the GM and/or IM cells and that the methylation
status of each target corresponded well between the
MBD-seq and RRBS data (Fig. 5a). The qRT-PCR and
bisulfite sequencing analyses of the six genes (NPY1R,
PPYR1, PTGDR, PTGER2, PTGER3, and SSTR2) demon-
strated a negative correlation between methylation and
gene expression in two sets of paired gastric tumor and
normal tissues (Fig. 5b).
We further examined the expression of these six GI

hormone receptors in 175 paired clinical tissues from
the Chungnam National University Hospital (CNUH)
cohort and found that these receptors were greatly
downregulated in the primary GCs (paired t-test, P=
0.009 ~ 1.655 × 10−9) (Fig. 5c). We also investigated the
clinical relevance of these six genes using a public data-
base including 272 gastric tumors and 29 normal controls
from TCGA cohort23. The RNA-seq data showed that the
expression of the PPYR1, PTGER2, and PTGER3 genes
was significantly decreased during the TNM stage of
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gastric tumors compared to that in normal gastric tissues
and that the expression of the remaining three genes
tended to be decreased, but not statistically significant, in
gastric tumors (Fig. 6a).

The Infinium Human Methylation 450 BeadChip data
from TCGA also showed that the CpGs at the promoters
of the five genes, except for the PTGER2 gene, were
heavily methylated during all TNM stages, especially

Table 1 Pathway enrichment analysis of all genes selected from the MBD-seq and RRBS analyses

KEGG pathway Matched Characteristics Benjaminia Gene list

Neuroactive ligand-receptor

interaction (256 genes)

13 Early-onset,

hypermethylated

0.005 SSTR4, EDNRB, DRD1, GRIK1, GRIK2, CHRM2, NPBWR1, PTGDR, GABRA5,

ADRA1A, GHSR, HTR2C, GABRQ

Neuroactive ligand-receptor

interaction (256 genes)

46 GT-specific,

hypermethylated

5.78 × 10−6 CALCR, TACR3, GABRB3, GRIK3, ADCYAP1R1, LEPR, LHCGR, PPYR1,

DRD4, LPAR3, VIPR2, EDNRA, APLNR, HTR1B, HTR1A, GALR1, P2RY4,

LTB4R, GRID1, PTGER2, GLRB, PTGER3, PTH2R, OPRL1, GRIN1, NPY1R,

GRIA4, NTSR1, GRM1, NPY5R, CRHR2, SSTR2, P2RY11, GRM2, CHRM4,

ADRB1, GRIA2, GRM7, MLNR, LTB4R2, P2RX2, F2, GRM6, MTNR1B,

GPR50, UTS2R

aSignificant pathway was examined by Benjamini test (P < 0.05)

Fig. 4 Pathway enrichment analysis of putative genes correlated with DMPs and expression analysis of genes associated with the
neuroactive ligand-receptor interaction pathway. a Pathway enrichment analysis of hypermethylated genes in GC. The x-axis shows −log
(Benjamini test, P), and the y-axis shows the pathway categories. Stars indicate significant pathway categories. b RT-PCR analysis of 16 GC cell lines
and ten paired gastric tumor (T) and normal match control (N) tissues. The LOE column indicates the loss of expression as percentages of gene
expression upregulation in gastric tumors compared to that in normal tissue. c Restoration test of gene expression in 17 genes in four GC cell lines
following treatment with the DNA methylation inhibitor AZA and/or TSA treatment. ROE indicates restoration of expression as a percentage of a GC
cell line in which expression was restored
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demonstrating that the CpG methylation level was the
highest during early stage and tended decrease along
with GC progression (Fig. 6b). Moreover, the promoter
methylation of five targets, except for PPYR1, was also
significantly correlated to the expression of each gene
(R=−0.291 ~−0.448) (Fig. 6c).

Molecular signatures of the six GI hormone receptors are
highly informative regarding GC patient prognosis
To assess the prognostic value of the six GI hormone

receptors, a survival analysis was performed in multiple
patient cohorts. The expression data of the six GI hor-
mone receptors by qRT-PCR were adopted to create a risk
score classifier, which was subsequently used as a risk
assessment tool for GC prognosis in the CNUH cohort.
The risk score of each patient was estimated using the
regression coefficient of each of the six GI hormone

receptors. Using a median cut-off risk score, the patients
were divided into two groups (i.e., high- or low-risk
groups). The survival rates significantly differed between
the two groups in a log-rank test (P= 1.2 × 10−4; Fig. 7a).
To validate the risk scoring system, a similar approach
was directly applied to the RNA-seq gene expression
data from TCGA cohort to dichotomize the patients
into high-risk and low-risk groups. The Kaplan–Meier
analysis revealed significant differences in patient
survival between the two subgroups (log-rank test,
P= 0.009; Fig. 7b). Based on the same procedure applied
to the gene expression data, an additional approach was
also applied to the six CpG methylation data sets (Fig. 7c)
from TCGA cohort. By comparing the survival of two
risk subgroups, the high-risk patient subgroup showed
a significantly poorer prognosis than the low-risk sub-
group (P= 0.039; Fig. 7c), although the predictive power

Fig. 5 Methylation and expression analysis of six hypermethylated genes. a Methylation signatures at the promoter regions of the six
hypermethylated genes from the MBD-seq and RRBS data. b Comparison of promoter methylation and expression of each gene in two sets of paired
gastric tumor tissues. Promoter methylation was estimated by bisulfite sequencing, and expression was estimated with a real-time qRT-PCR analysis.
c Comparison of the expression levels of the six genes between gastric tumor and normal tissues in the CNUH cohort using a real-time qRT-PCR
analysis. All analyses were performed by Student’s paired t-test
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of identifying the high-risk patients was clearly lower
than that of the expression signature of the six
genes. Thus, we established a proof-of-concept survival
prediction panel consisting of six GI hormone receptors
for identifying GC patients who have a high risk of
survival.

Discussion
To assess the molecular signatures and etiological

causes of human cancer, the isolation of pure targeted
cells from sequential stages of cancer development,
such as normal, premalignant or cancer cells, is an
important step. Using LCM technology, we successfully

Fig. 6 Methylation and expression analysis of six hypermethylated genes in the TCGA database. a Expression analysis of each gene in gastric
normal tissues (n= 29) and gastric tumors by TNM stages (stage I, n= 47; II, n= 108; III, n= 99; and IV, n= 18) from TCGA database using RNA-seq.
b Methylation analysis of each gene in gastric normal tissues (n= 13) and gastric tumor by TNM stages (stage I, n= 26; II, n= 110; III, n= 98; and IV,
n= 14) from TCGA database using an Infinium Human Methylation 450 BeadChip. Statistical analysis of (a) and (b) were performed by t-test at
P < 0.05 (*) or P < 0.001 (**) compared to normal gastric tissues. c Negative correlation between gene expression (RNA-seq) and promoter
methylation (450K array) of each gene in gastric tumors (n= 230) from TCGA database. Statistical analysis was performed by Pearson’s correlation test

Fig. 7 Survival analysis based on the expression data of the six GI hormone receptors in (a) CNUH and (b) TCGA cohorts and the methylation
levels in TCGA cohort (c). All statistical analyses were performed by the Kaplan–Meier method and log-rank test
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obtained an average of 1.22 × 105 pure targeted cells
from three sequential stages of GM, IM, and GT from a
patient and generated methylome data using two dif-
ferent technologies, i.e., MBD-seq and RRBS.
Here, we summarize the DMR distribution in the IM

and GT cell genomes compared to that in GM cells based
on MBD-seq data as follows. First, a positive correlation
between methylation enrichment and chromosomal
aneuploidy was detected in the GT cells, indicating that
CNV effects on methylation enrichment should be
excluded in methylome analyses. After dividing the gen-
ome into three major regions, including the promoter,
intragenic and intergenic regions, we found that the
hypermethylated DMRs were highly enriched in CGIs
in all three regions. Third, we found DMRs in the
CGI shore and shelf regions surrounding CGIs and pro-
moter CGIs, suggesting that DMRs play a significant
role in the regulation of gene expression as previously
described24. Fourth, we also found that repeat elements,
such as LINEs, SINEs, LTRs, and satellite DNA, are
predominant targets of hypomethylated DMRs in inter-
genic regions in the GT cell genome. This finding
suggests that epigenetic mechanisms repress the activities
of transposable elements, such as LINEs, and can be
disrupted by demethylation in cancer cells, thus facilitat-
ing mutagenic retrotranspositions; this finding has also
been shown in a previous report highlighting their
potential impact in tumorigenesis25. Finally, we found
that a small fraction (17%) of DMPs detected in GT cells
was observed in IM cells, which are precancerous cells
in gastric carcinogenesis, suggesting that aberrant
methylation may be an early and essential step during
gastric carcinogenesis26.
We focused on DMPs to reveal the critical pathway

associated with gastric carcinogenesis. Using a gene
set linked to the 3,035 DMPs derived from both the MBD-
seq and RRBS data, the KEGG pathway analysis demon-
strated that 59 genes linked to hypermethylated DMPs
were significantly enriched in a neuroactive ligand-
receptor interaction pathway; these genes, all of which
code GPCRs, were associated with physiological home-
ostasis in the stomach, including the regulation of gastric
acid secretion, gastric injury healing, smooth muscle
contraction, etc. Because there are 256 members in
the neuroactive ligand-receptor interaction pathway
(GSEA, http://software.broadinstitute.org/gsea/), our
study demonstrates that 23% (59/256) of the total entry
into the pathway may be affected by epigenetic alterations
in IM and/or GT cells. To the best of our knowledge,
this report is the first to identify a unique pathway asso-
ciated with human disease based on a methylome analysis.
Here, we assert that the use of pure targeted cells could
enable the identification of a specific pathway associated
with gastric carcinogenesis.

Finally, we selected six GPCRs or GI hormone receptors
as promising targets for GC treatment because they are
functionally associated with the regulation of gastrin or
gastric acid secretion, which plays a role in cell differ-
entiation and carcinogenesis in the GI tract27. Gastric acid
is secreted from parietal cells through the release of his-
tamine from enterochromaffin-like (ECL) cells by gastrin
produced from G cells in the gastric antrum28,29. In
addition, gastrin has been shown to directly stimulate
gastric acid release from parietal cells30,31. Subsequently,
somatostatin (SST), which is secreted by D cells in the
antrum in response to luminal acid, inhibits gastrin
release in G cells by interacting with SSTR2, which
encodes a receptor for SST. In the fundus, the release
of SST by D cells in response to neurohumoral agents
mediates the direct and indirect inhibition of gastric acid
secretion in parietal cells by reducing ECL-cell histamine-
release through SSTR227. Thus, SSTR2 and SST, play an
inhibitory role in gastrin-stimulated gastric acid secre-
tion32. Furthermore, the loss of SST or SSTR2 inhibitory
function in the stomach could lead to hypergastrinemia.
Because the epigenetic silencing of SST has been descri-
bed in GC33,34, notably, the epigenetic silencing of SSTR2
might accelerate hypergastrinemia in the stomach.
The other GI hormone receptors, i.e., PTGER2,

PTGER335, NPY1R, and PPYR136, also play inhibitory
roles in gastric acid secretion, although the precise
mechanisms are not fully understood. PTGER2 and
PTGER3 encode receptors for prostaglandin E2 (PGE2)
that inhibit gastric acid secretion in both parietal and ECL
cells in the stomach35. It has been shown that the
methylation of PTGER2 is associated with neuroblastoma
progression37 and prognosis in non-small cell lung can-
cer38. PTGER3 methylation was detected in colorectal
cancer (CRC)39 and gastric noninvasive neoplasia40.
NPY1R and PPYR1 encode a transmembrane protein that
mediates the function of neuropeptide Y, which is a
neurotransmitter, and peptide YY, which is a GI hormone,
and both play inhibitory roles in gastric acid secretion41,
tumor growth, and inflammation42. Epigenetic alterations
have never been described in NPY1R and PPYR1 in any
type of human cancer thus far.
PTGDR encodes a receptor for prostaglandin D2

(PGD2) that plays protective roles against inflammatory
changes in H. pylori-induced gastritis43. A recent report
has shown that the PTGDR promoter is significantly
methylated and associated with adenoma-carcinoma for-
mation leading to CRC44. In this study, we found that
PTGDR was methylated in the IM-GT sequences, sug-
gesting that PTGDR methylation may be useful as an early
detection biomarker in the development of GC and CRC.
While TCGA project provided a comprehensive catalog

of driver genes for GC23, the sequence of genomic or
epigenomic events that characterize the progression of

Kim et al. Experimental & Molecular Medicine (2018) 50:156 Page 12 of 14

Official journal of the Korean Society for Biochemistry and Molecular Biology

http://software.broadinstitute.org/gsea/


precancerous lesions to advanced gastric cancer (AGC)
remains to be unraveled. In this study, a comprehensive
profiling of epigenomic changes that occur longitudinally
in precancerous lesions or EGC as they progress towards
AGC was provided and could be used to identify novel
targets for GC interception that can be used to both
develop early detection biomarkers and enable persona-
lized therapeutic approaches. This approach may be a part
of the “Pre-Cancer Genome Atlas (PCGA)”, which is a
concerted initiative that has been recently proposed to
characterize the molecular alterations in premalignant
lesions and the corresponding changes in the micro-
environment associated with progression to invasive
carcinoma45.
Taken together, we detected epigenomic changes in

gene promoter regions in intestinal-type EGC, and a small
fraction (17%) was observed in IM, i.e., a precancerous
lesion of the EGC. Overall, we showed that six GI hor-
mone receptor genes may be targets for GC interception
because their silencing by epigenetic alteration could lead
to the dysregulation of gastrin or gastric acid secretion
and thus progression to AGC, although the mechanism
has not been fully elucidated. In addition, the expression
panel of the six GI hormone receptors showed value as a
prognostic factor. Finally, we suggest novel targets for GC
interception that can be used to develop early detection,
treatment biomarkers or survival predictors that can be
used to identify GC patients who have a high risk of
survival. Further investigation is needed to determine
whether these targets are promising targets for GC
interception using methylation inhibitors46 or targeted
demethylation by the CRISPR/dCas9 system47.
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