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Solar cell designs by maximizing energy
production based on machine learning clustering
of spectral variations
J. M. Ripalda 1, J. Buencuerpo 1,3 & I. García 2

Due to spectral sensitivity effects, using a single standard spectrum leads to a large uncer-

tainty when estimating the yearly averaged photovoltaic efficiency or energy yield. Here we

demonstrate how machine learning techniques can reduce the yearly spectral sets by three

orders of magnitude to sets of a few characteristic spectra, and use the resulting proxy

spectra to find the optimal solar cell designs maximizing the yearly energy production. When

using standard conditions, our calculated efficiency limits show good agreement with current

photovoltaic efficiency records, but solar cells designed for record efficiency under the cur-

rent standard spectra are not optimal for maximizing the yearly energy yield. Our results

show that more than 1MWhm−2 year−1 can realistically be obtained from advanced mul-

tijunction systems making use of the direct, diffuse, and back-side albedo components of the

irradiance.
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The expansion of photovoltaics (PV) used to be constrained
by the high cost of solar cells, but the cost of PV electricity
is now mostly determined by area-related costs other

than the cost of the solar cells1, thus increasing the energy effi-
ciency not only results in a higher return on investment, but
also lessens the environmental and esthetic impact of PV instal-
lations. The nominal or standard efficiency of a solar cell is
defined as the electrical power output per unit area in standard
test conditions divided by the standard value of the global hor-
izontal irradiance (or direct normal irradiance in the case of
concentrator solar cells). In practice, the standard efficiency dif-
fers from the yearly averaged efficiency, as determined by
the yearly energy yield per unit area divided by the time
integrated solar irradiance, due to spectral variations as a function
of the position of the sun and atmospheric phenomena. The
nominal standard efficiency of modules in utility-scale new
installations is increasing by 0.6% per year on an average1. At the
current rate we will reach the practical limits of single junction
photovoltaic technology within a decade. A similar trend
towards higher inverter efficiencies has also been reported, and
80% of the U.S. utility-scale systems installed in 2016 used
tracking1. Because the capacity of a PV installation is the product
of many factors (cell efficiency, inverter efficiency, tracking,
optical efficiency) the trends towards higher efficiency in each of
these factors reinforces the others in a synergistic nonlinear
positive feedback loop. Silicon wafer costs currently represent
8.6% of utility system costs and an even smaller fraction of the
levelized cost of energy1. As a consequence, there is almost no
margin left to compete in terms of solar cell costs, and demand
for emerging PV technologies can only be expected if these can
exceed the efficiency of silicon single junctions. The only
proven method to significantly increase the efficiency beyond
the limits of conventional silicon technology is the use of
multijunction devices, used either with or without optical con-
centration, but there still exists uncertainty about how the
changes of the solar spectrum as a function of time affect the
energy production of multijunction solar cells2–4.

Here we demonstrate that data sets with thousands of solar
spectra can be reduced to a few characteristic proxy spectra using
machine learning techniques, and successfully use these proxy
spectra to predict the yearly averaged efficiency as a function of
the solar cell design.

Results
Binning and clustering. A method to estimate the yearly energy
yield was proposed by García et al., where spectra are grouped or
binned according to their spectral characteristics and then all
spectra in the same group or bin are averaged to obtain a few
representative spectra2. The binning method is applied here and
compared with a clustering technique where spectra are classified
on the basis of their Euclidean distances in a highly multi-
dimensional vector space defined by the number of components
of the spectra. We use a machine learning technique known as
structured feature agglomerative clustering5, where the char-
acteristic features of the spectra (such as absorption and trans-
mission bands) are identified by searching for correlations as a
function of time. This is used as a dimensionality reduction step
for computational efficiency, but the core of our method is the
widely used k-means clustering algorithm. A visualization of the
clustering method is shown in Fig. 1. The machine learning
method, the detailed balance solar cell model, and the spectral
data set are described in detail in the Methods section. Other
machine learning techniques are discussed in Supplementary
Note 1.

Validation and convergence. Both the binning and the clustering
method reduce the number of spectra by averaging similar
spectra, but differ on the criteria used to merge spectra. A useful
measure of the classification error is the root mean square statistic
relative to the cluster or bin center shown in Fig. 2. While the
binning method is deterministic, always producing the same
result for a given data set, the machine learning method is sto-
chastic, as revealed by the random fluctuations that appear to be a
function of the number of clusters, but in fact are determined by
the initial random seed of the method.

To validate the proposed technique, we calculate the yearly
average efficiency for a number of random but nearly optimal
(within 2% of the efficiency maximum) six-junction band gap
combinations. In Fig. 3 we plot the difference between the results
obtained with a reduced set of proxy spectra and the result
obtained using the full yearly data set with 2 × 104 spectra. The
results obtained using the binning technique (Fig. 3a), which had
previously only been tested with a single four-junction device
design2, are compared with results from the clustering technique
(Fig. 3b). When only a small set of proxy spectra can be used,
both methods are found to yield an efficiency overestimate of the
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Fig. 1 Visualization of the method. a The solar spectra depend on the
position of the sun and atmospheric phenomena. We reduce yearly spectral
sets with 2 × 104 solar spectra to a few characteristic proxy spectra. b The
main features of the spectra are identified using structured feature
agglomerative clustering as an unsupervised dimensionality reduction step.
A set of 20 automatically identified features is shown in this example.
c Spectra with the most similar features are then clustered together into a
small set of proxy spectra using the k-means method
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Fig. 2 Spectral classification error. Root mean square statistics relative to
the cluster (or bin) center for the clustering and binning methods as a
function of the number of clusters (or bins)
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same magnitude, but the clustering method is preferable when
the number of proxy spectra is larger than 6, as smaller
overestimates (<0.3%) are obtained using the clustering technique
(Fig. 3b).

Energy yield as a function of the band gaps. As reviewed by
Kurtz et al., there have been many previous efforts to optimize
solar cell band gaps, but in all cases the target of the optimization
was aimed at maximizing the efficiency under standard condi-
tions6,7. To illustrate the possible uses of our machine learning
results, we have optimized the band gaps by maximizing the
energy yield, instead of the standard efficiency. This is a more
economically relevant target, which in principle can only be
achieved by using computationally intensive resources and
methods. The approach here discussed provides a way to over-
come these limitations while still keeping high precision in the
results. As will later be seen, the band gaps that optimize the
energy yield differ significantly from those that optimize the
standard efficiency.

In the following results we use 15 clusters resulting from a data
set of synthetic spectra obtained with the SMARTS 2.9.5 code at a
fixed latitude of 40°N8, and the detailed balance theory including
radiative coupling, photon recycling, and nonradiative recombi-
nation to compute the yearly energy yield of multijunction
devices9–13 (see Methods section for further details). Results for
flat plate devices at 1 sun are shown in Fig. 4. As illustrated in
Fig. 4b with two examples, points with the same efficiency value
and the same color (average photocurrent) are junctions
belonging to the same tandem device. These plots can be used
to find out how to adjust the band gaps to minimize the efficiency
loss when the optimal band gap combination is not attainable,
and to quantify such efficiency loss. Several local minima can be
found within 2% of the global maximum. The band gap of the
bottom junction largely determines the short circuit current and
the optimal band gaps for the other junctions. Bottom junctions
placed at the low energy edge of the A, B, C and D atmospheric
transmission bands result in different local efficiency maxima.
Figure 4c shows three junction multiple terminal devices with a
mechanically stacked and electrically isolated silicon bottom
junction, as experimentally demonstrated by Essig et al.14. In this
case the current represented by the color scale is the sum of the
currents in both mechanically stacked devices. As a consequence,
high band gap combinations have a higher current in the silicon
device and a higher total current. Devices with multiple terminals
are much less sensitive to the band gap energies than current

matched devices, allowing for greater flexibility in the choice of
band gaps.

Figure 5 shows the dependence of the energy yield on the band
gaps for series connected devices at 1000 suns. As the number of
junctions is increased, the band gaps of the top junctions shift
towards higher energies, while gaps of the bottom junctions
remain pinned at the low energy edges of the infrared
transmission bands. Due to practical constraints, top junction
band gap energies lower than those here reported as optimal
might have in practice a higher energy yield15. The energy
yield of the optimal six-junction series connected device is
911.6 kWhm−2 year−1 using synthetic spectra obtained with the
SMARTS 2.9.5 code. If measured spectra from the National Solar
Resource DataBase are used, the same device yields 1139.9, 897.6,
739.3 and 744.7 kWhm−2 year−1, at Reno, Boulder, Indianapolis,
and Philadelphia, respectively16. All these locations are at the
same latitude used to generate the synthetic spectra (40°N); thus,
the observed differences are mostly attributed to differences in
cloud cover and other atmospheric phenomena, but also to
differences in height above sea level and ambient temperatures.

Table 1 shows the optimal band gap combinations in order of
increasing yearly energy yield, assuming dual axis tracking in all
cases. The yearly averaged efficiency (Ef.) is compared with the
standard efficiency (Std. Ef.) and current efficiency records
(Rec.)14,17,18. Some of the entries correspond to low current, high
band gap (HG) local efficiency maxima. For multiple terminal,
mechanically stacked devices, the number of junctions is
expressed as the number of junctions in the top device+ number
of junctions in the bottom device. Gaps for the experimental
efficiency records are near optimal in most cases, but do not
correspond exactly to the here reported optimal gaps. The
contribution of separate bifacial silicon devices (Bi) at the back of
the concentrator modules is only considered in the energy yield
calculations, not in the efficiency values. Our calculated
efficiencies under standard conditions (25 °C operation tempera-
ture and ASTM G173 spectra) are close to the corresponding
efficiency records (except for the recent silicon-based triple
junction by Cariou et al., with 33.3% efficiency18). The effects of
spectral variability cause the yearly averaged efficiency to be lower
than the standard efficiency. In contrast with previously
published optimal band gaps6,19, our results show significantly
higher bottom junction band gaps (no optimal bottom junction is
found to lie on the A transmission band, 0.50–0.69 eV) and lower
energy top junction band gaps. The red-shifts are approximately
30 meV for the top junction, while middle cell band gaps show
red-shifts of the order of 10–20 meV relative to the gaps obtained
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Fig. 3 Validation and convergence. Scatter plots of the yearly averaged efficiency overestimate as a function of the number of proxy spectra. The data
correspond to a set of random, but near optimal (within 2% of the maximum efficiency), series connecting six-junction devices. a Binning method.
b Clustering method
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using the standard spectrum. A similar, but larger, red-shift was
reported by García et al. when using an experimental yearly
spectral data set based on observations at Golden CO, a location
that is expected to be a close match to the ASTM G173 standard2.
Solar cells designed for record efficiency under the ASTM
G173 standard spectra are therefore not optimal for maximum
yearly energy yield, and there might be good reason to define a
new standard based on at least two proxy spectra so that new
record solar cell developments are optimal for maximum yearly
energy yield. Another advantage of defining a new standard

would be related to the fact that energy band gaps above 2 eV can
currently only be reached at the expense of material quality,
compromising quantum efficiency and voltage. This problem is
alleviated by the fact that the top junction band gaps that
maximize the yearly energy yield are red-shifted relative to those
that maximize the efficiency under the current standard.

Extending the spectral response to long wavelengths implies a
number of trade-offs such as the need to increase the lattice
parameter of the bottom junctions, reduced material quality, and
increased difficulty in the design of antireflective coatings. But
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tandems based on high band gap bottom junctions (HG) have
nearly the same efficiency with lower short circuit currents. This
could be advantageous for very high concentration devices, as
resistance losses scale as the current squared.

As shown in Table 1, the use of concentration does not
necessarily lead to a higher energy yield. The advantage of optical
concentration is mostly one of sustainability and cost when using
scarce materials and advanced cell technologies such as III–V
semiconductors.

The high energy yield for silicon devices is due to the
assumption of dual axis tracking for all calculations in Table 1.
Without tracking the calculated yearly energy yield for silicon
devices is 469.0 kWhm−2 and 582.2 kWhm−2 with single axis
azimuthal tracking. Even though the gap of silicon is not optimal,
this is compensated by the fact that the external quantum
efficiency (EQE) of state of the art silicon devices is approximately
1 in the whole spectral range.

Benitez et al. have proposed multijunction concentrator
modules with bifacial silicon solar cells covering the whole back
plane of the module20. The energy yield increase due to back-side
albedo irradiance in bifacial cells can reach 50%, but depends on a
number of factors21. For two axis tracking, low ground cover
ratios, panel height larger than the panel dimensions, and a 0.8
albedo, the energy yield increase due to bifacial operation is 25%
22. This factor has been multiplied by the energy yield of
monofacial flat plate silicon in Table 1 to obtain an optimistic
upper limit to the energy yield increase due to back-side albedo
irradiance. As shown in Table 1, the combination of bifacial and
concentrator technology leads to the highest photovoltaic energy
yields practically attainable due to the additional back-side albedo
contribution of 154.4 kWhm−2 per year, and the diffuse sky
irradiance contribution of 92 kWhm−2 per year.

Discussion
There is a need for solar cell testing standards that better reflect
the yearly averaged efficiency, as solar cells designed for record
efficiency under the ASTM G173 standard spectra are not opti-
mal for maximum yearly energy yield. The methods here dis-
cussed, or a variation thereof, will enable accurate determinations
of the yearly energy yield using a few characteristic spectra. Using
these methods we show that technologies integrating multi-
junctions with silicon bifacial single junctions are capable of

energy yields of more than 1MWhm−2 per year by harvesting
the direct, diffuse, and back-side albedo components of the
irradiance.

Methods
Spectral data set. All parameters that are not explicitly mentioned here are those
corresponding to the ASTM G173 standard23. We have obtained data sets of
synthetic spectra with 2 × 104 spectra per year from the SMARTS 2.9.5 code at a
fixed latitude of 40°N8, as this latitude is a good match to the current standard. The
distance between trackers has an effect on the yearly energy yield due to sha-
dowing24. To consider this effect we have used the same approach used by Villa
and Marti, where the maximum usable air mass (AM) is limited to 4 (sun near the
horizon), corresponding to a maximum solar zenith angle of 75.5°19. This is
roughly equivalent to a ground cover ratio of 13% assuming a total tracker shut-
down in the case of partial shadowing, or a correspondingly higher ground cover
ratio in case of a higher shadow tolerance24.

Jaus and Gueymard have published statistics on 6.9 million measurements of
aerosol optical depth (AOD) and precipitable water (PW) from 379 sites of the
worldwide AERONET network25. To include the effects of variability of the
atmospheric conditions in our simulations, the AOD and PW histograms
presented by Jaus and Gueymard are here fitted by a lognormal and chi squared
distribution respectively. Random AOD and PW values have been sampled from
said model distributions when generating random spectra.

Diffuse spectra have been obtained by subtracting the direct normal irradiance
from the global normal irradiance collected by a sun tracking surface. The
subtraction has been done prior to clustering to preserve the temporal correlation
between global and direct spectra.

The seasonal variations of the clouds have an effect on the statistics of the
spectra. The typically cloudy skies in winter will block a higher proportion of
winter spectra, and these have a higher air mass than summer spectra. This effect is
automatically included when using experimental spectra, but not when using
synthetic spectra. After comparing with results obtained using experimental spectra
from Boulder and other locations with 40°N latitude from the National Solar
Resource DataBase16, we have reduced the energy yield obtained with synthetic
spectra by corrective factors to account for the energy loss caused by clouds and
other effects not included in the synthetic spectra. These factors are 0.74, 0.75, and
0.80 for devices harvesting direct, global, and diffuse irradiance, respectively. The
choice of Boulder as a reference is somewhat conservative, as the cloud cover is
much lower in areas where concentrators are of most interest (e.g.: Arizona,
Nevada, and Australia).

Machine learning and binning. In the clustering method the dimensionality of the
vector space has been reduced using structured feature agglomerative clustering
with a connectivity constraint matrix to ensure that only contiguous points are
included in each spectral feature. We have found that 24 spectral features suffice to
give a complete description of the whole data set, but have chosen to use
200 spectral features to ensure that no significant information is lost in this step.
The resulting spectral features correspond to the Fraunhofer absorption bands due
to atomic and molecular transitions (mostly those of O2 and H2O), and the
transmission bands in between those absorption bands. Distances between each

Table 1 Solar cell designs in order of increasing yearly energy yield

Junctions Suns kWhm−2 year−1 Ef. (%) Std. Ef. (%) Rec. (%) Gaps (eV)

1 Diffuse 1 106.3 27.76 — — 1.42 Diffuse light only
1 Si 1 617.7 25.87 26.98 26.7 1.12 Gap not optimal, EQE= 1
1 1 648.2 27.14 27.84 28.8 1.35 ERE= 0.2
2 1 758.0 31.81 33.39 32.8 1.13, 1.69
1+ 1 1 792.6 33.26 34.32 32.8 1.13, 1.81
3 1000 805.5 41.56 44.31 44.4 0.95, 1.35, 1.82
3 HG 1 830.6 34.78 36.88 33.3 1.12, 1.48, 1.94
3 1 849.3 35.63 37.65 37.9 0.95, 1.38, 1.86
4 1000 856.6 44.19 47.15 46.0 0.74, 1.14, 1.48, 1.91
5 HG 1000 870.4 44.90 47.71 — 0.94, 1.18, 1.44, 1.71, 2.09
2+ 2 1000 879.6 45.38 47.56 — 0.73, 1.14, 1.54, 1.97
5 1000 884.1 45.61 49.11 — 0.72, 1.02, 1.29, 1.61, 2.01
6 1000 911.6 47.03 50.19 — 0.70, 0.98, 1.21, 1.46, 1.74, 2.11
3+ 3 1000 939.8 48.48 51.21 — 0.71, 1.00, 1.25, 1.56, 1.83, 2.19
Bi+ 2 1 1007.9 36.00 37.62 35.9 1.12+ 1.58, 2.02
Bi+ 5 HG 1000 1116.8 44.90 47.71 — 1.12+ 0.94, 1.18, 1.44, 1.71, 2.09

Mechanical stacking is denoted by a plus sign
Ef. is the yearly averaged efficiency, Rec. is the experimental record efficiency17, HG is the high band gap local efficiency maximum, Bi is the energy yield of concentrator modules including bifacial silicon
solar cells in the back of the module for collecting diffuse and albedo irradiance20
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pair of the resulting 200 dimensional vectors could be computed to cluster or group
together the most similar spectra, but rather than computing the whole matrix it is
much more efficient to compute the distance between each spectrum and a ten-
tative set of cluster centers. In this widely used method known as k-means, the
position of each center is iteratively refined by computing the average of all spectra
closest to the center. The performance of several variations of the k-means method
is compared in Supplementary Figure 1 and Supplementary Table 1. We have
empirically found that the accuracy of the method improves substantially if each
spectra is normalized (divided by its vector length) before the k-means clustering,
and converted back to the original values after a cluster has been assigned to each
input spectrum. This is necessary to avoid the total integrated irradiance having too
much weight during the spectrum classification, as the multijunction efficiency is
most sensitive to the spectral distribution due to current matching constraints. We
have also found that the number of needed proxy spectra can be reduced sub-
stantially by merging the smallest clusters with their nearest neighboring clusters,
as k-means tends to produce a fraction of small clusters having a small impact on
the yearly energy yield. In this final step, additional merging with the neighboring
clusters reduces the number of obtained proxy spectra by a factor of approximately
2/3. Other clustering methods are evaluated in Supplementary Note 2 and Sup-
plementary Figure 2.

The criteria chosen for classifying the spectra in the binning method has been
the ratio of the photon flux at wavelengths longer than 650 nm to the photon flux
at wavelengths shorter than 650 nm (EPR650)2.

Detailed balance model and radiative coupling. As in the work by McMahon
et al., the external radiative efficiency (ERE) is assumed to be 0.01 for junctions
without a back mirror, the β radiative coupling parameter is assumed to be given by
n2= 11, and the recombination current is given by an ideal diode equation. We
also use the same common approximation for the detailed balance radiative
saturation current under the assumption of high EQE and the thermal energy being
negligible in comparison with the band gap7. The ERE value of 0.01 used in this
work is not representative of the particular case of GaAs and other high-quality III
−V semiconductor single junction devices that typically operate with negligible
nonradiative recombination26. We have therefore exceptionally used a value of
ERE= 0.2 for single junctions other than silicon in Table 1. The voltage is obtained
as a function of current as:

V ¼
X

i

kT
q
log

Ii � I
I0

þ 1

� �
� RI; ð1Þ

I0 ¼ ð1þ βÞ Idb =ERE; ð2Þ

Idb ¼
2π q ðkTÞ3

h3 c2
Eg
kT

þ 1

� �2

þ1

 !
e�Eg=kT ; ð3Þ

where Ii are the photocurrents of each junction, R is the series resistance, q, h, and c
are fundamental constants, kT is the thermal energy, and Eg is the band gap. When
comparing with previous calculations based on the assumption of purely radiative
recombination, using realistic values of the ERE favors higher energy band gaps.
Recent developments in rear heterojunction designs have led to experimental ERE
values near the internal radiative limit26. We include an ideal back mirror for each
junction at the bottom of a series connected stack, increasing the ERE for such
junction by a factor (1+ n2)= 12. Radiative coupling is included self-consistently.
The radiative coupling depends on the maximum power point, and the maximum
power point depends on the radiative coupling. The calculation is repeated until
there is a negligible shift in the maximum power point.

As demonstrated by Geisz et al., shunt resistance effects are negligible in high-
quality devices13. The effects of reverse bias breakdown are also negligible near the
maximum power point under nearly current matched conditions, which are the
cases of interest in this work. Series resistance cannot be overlooked, as it imposes a
higher penalty on devices based on low energy band gaps. As we are interested in
the upper practical limits of efficiency, we have assumed an optimistic series
resistance R= 5 mΩ cm2 for concentrator devices and 0.4Ω cm2 for one sun
devices. For comparison, in the concentrator device efficiency projections made by
Geisz et al., the range of values considered was 5−20 mΩ cm215. For our purposes,
the photoluminescence can be safely assumed to be negligible in comparison with
the electroluminescence near the maximum power point.

To verify our extended detailed balance model we calculate the efficiency of the
current world record solar cell, which has a slightly suboptimal band gap
combination due to the choice of non-alloyed GaAs for the second subcell27. Our
calculations predict 46.58% efficiency at 508 suns under standard conditions (all
other parameters being those previously mentioned), while the experimentally
reported value is 46.0%. The small difference is probably due to the fact that we do
not include tunnel junction losses in our calculations. Including the effects of
spectral and thermal variations yields a much lower yearly averaged efficiency of
42.6%. The loss due to spectral variations is 2.18%, and the loss due to higher cell
operating temperatures is 1.69%.

External quantum efficiency model. Most of the previous works on photovoltaic
efficiency limits assume a 100% EQE at all wavelengths, but this assumption is not
realistic. High band gap solar cells currently have quantum efficiencies below 80%
at 400 nm, below 50% at 350 nm, and below 30% at 300 nm17. In contrast, the best
Si solar cells have quantum efficiencies above 80% up to 320 nm due to much lower
near surface light absorption (a consequence of the indirect band gap) and the
excellent surface passivation attainable in this material. An ideal 100% EQE at all
energies above the band gap has been assumed for silicon-based single junctions,
but in all other cases, to include realistic photocurrent losses at both ends of the
spectra, the following EQE model has been used:

EQE ¼ αe�
E�μ
σð Þ4 þ β; ð4Þ

where E is the photon energy and the parameters α= 74.53%, β= 19.92%, μ=
1.782 eV, and σ= 1.384 eV have been determined by fitting (in the 300−1700 nm
range) to the total EQE of the current record efficiency multijunction27. Each
spectra is multiplied by the total EQE before integration to determine the photon
flux available at each subcell. Undoubtedly, new and improved surface passivation
techniques will be developed in the future, as well as new window layer materials
and ARCs28, and highly transparent top contacts29. But the present model can still
be viewed as a moderately optimistic upper limit due to other economical and
technical constraints that we do not consider explicitly. The technologies and
materials that can be used in flat plate solar panels operating at 1 sun are very
much constrained by cost considerations. On the other hand, concentrators
introduce optical losses, mostly at the highest and lowest energies, that are opti-
mistically modeled here with a spectrally flat transmittance of 90%.

Each junction is assumed to absorb a fraction (1−T) of the photons with
energies above its band gap and none of the photons with energies lower than its
band gap. The transmission factor T has been set to 2%, corresponding
approximately to the transmission of a 3-μm-thick GaAs subcell (the exact value
ranges from 2 to 3% depending on the integration range).

Subcell interconnection. The efficiencies and energy yields reported here slightly
overestimate the benefit of increasing the number of junctions, as tunnel junction
losses are not included in our model. State-of-the-art tunnel junctions lead to
electrical losses under high concentration representing less than a 0.1% absolute
efficiency loss for each junction30. Optical losses caused by absorption in tunnel
junctions are of a similar magnitude, while reflection losses can be mitigated with a
proper optical design, but still represent an important loss mechanism
associated with tunnel junctions31. The losses associated with intermediate term-
inals have not been explicitly included as they are expected to be small compared to
top contact losses due to the reduced photon flux, reduced spectral bandwidth,
longer wavelengths, and much reduced current (if using three terminals rather than
four).

Temperature. Operation temperature variations have an effect on reverse
saturation currents, but the lower ambient temperatures during sunrise also
exacerbate the current mismatch due to the blue-shift of the band gaps while the
solar spectrum is red-shifted32. This later effect has been included using the
Varshni parameters for GaAs, as these are, to a first approximation, valid for most
photovoltaic materials33. Operation temperature can be assumed to be a linear
function of irradiance, as in ref. 2. Following the finite element calculations by
Marta Victoria et al.32, a 70 °C operation temperature has been assumed as
representative of small (1 mm2) cells with excellent passive cooling (directly
attached to a copper plate) under high concentrated irradiance (1000 suns)32. This
is a best case scenario with current technology, but choosing such a low operation
temperature might be justified as reliability studies have shown that good heat
extraction can prolong the life of concentrator solar cells by decades34. A minimum
temperature at zero irradiance of 15 °C is assumed.

Data availability
All the code and data used in our calculations, with instructions to reproduce the
results presented here, are available as open source. https://doi.org/10.5281/
zenodo.1466974, https://github.com/Ripalda/Tandems).
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