
Ren et al. BMC Bioinformatics (2018) 19:465
https://doi.org/10.1186/s12859-018-2480-z

RESEARCH ARTICLE Open Access

Shortest path counting in probabilistic
biological networks
Yuanfang Ren1, Ahmet Ay2 and Tamer Kahveci1*

Abstract

Background: Biological regulatory networks, representing the interactions between genes and their products,
control almost every biological activity in the cell. Shortest path search is critical to apprehend the structure of these
networks, and to detect their key components. Counting the number of shortest paths between pairs of genes in
biological networks is a polynomial time problem. The fact that biological interactions are uncertain events however
drastically complicates the problem, as it makes the topology of a given network uncertain.

Results: In this paper, we develop a novel method to count the number of shortest paths between two nodes in
probabilistic networks. Unlike earlier approaches, which uses the shortest path counting methods that are specifically
designed for deterministic networks, our method builds a new mathematical model to express and compute the
number of shortest paths. We prove the correctness of this model.

Conclusions: We compare our novel method to three existing shortest path counting methods on synthetic and real
gene regulatory networks. Our experiments demonstrate that our method is scalable, and it outperforms the existing
methods in accuracy. Application of our shortest path counting method to detect communities in probabilistic
networks shows that our method successfully finds communities in probabilistic networks. Moreover, our experiments
on cell cycle pathway among different cancer types exhibit that our method helps in uncovering key functional
characteristics of biological networks.

Keywords: Shortest path, Probabilistic networks, Edge betweenness, Community detection

Background
Biological molecules such as proteins and metabolites
work together to deliver specific functions inside the cell.
Through their cooperative interactions, these molecules
carry out key functions, such as transcriptional regula-
tion and signal transduction [1]. Molecular interactions
are often modeled as biological networks (graphs), where
nodes represent molecules and edges describe the inter-
actions between them [2]. Analyses of biological networks
have provided deep insights into understanding biological
systems at the molecular level [3–7], such as discovering
signaling pathways [8], predicting protein functions [9],
and identifying relationships between genes and disease
phenotypes [10, 11].

*Correspondence: tamer@cise.ufl.edu
1Department of Computer and Information Science and Engineering,
University of Florida, 32611 Gainesville, FL, USA
Full list of author information is available at the end of the article

Biological networks share structural properties that are
often informative to discover the key components of
the biological systems and their functional roles. One
such characteristic property is the set of ‘shortest paths’
connecting two given molecules on the network. This
measure is often used as a proxy to functional distance
between two molecules. Average of shortest paths over all
node pairs (mean path length) has been used as a mea-
sure of network’s navigability [2]. Shortest path search
has been utilized to find functional clusters in biologi-
cal systems, and to identify core pathways in glioblas-
toma and genetic determinants of longevity [12–14]. Edge
betweenness centrality and network modularity are two
closely related network characteristics to shortest path.
Edge betweenness centrality, a measure of the number of
shortest paths that go through each edge, describes the
essentiality of the underlying gene-to-gene interactions,
and helps us to discover the bottlenecks in the biologi-
cal systems [15]. Finding the centrality scores of edges is

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2480-z&domain=pdf
mailto: tamer@cise.ufl.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Ren et al. BMC Bioinformatics (2018) 19:465 Page 2 of 19

thus crucial to understand how the biological networks
operate, and how they could be fixed or manipulated.
Biological networks often contain substructures, called
communities (also referred as modules or clusters) [2].
One common way to find the communities in networks is
to remove the edges with the highest betweenness value
iteratively [5]. Nodes in a community often share com-
mon properties such as being functionally related [16, 17],
thus identifying the community structure is crucial to dis-
cover functions of genes and to decipher mechanisms of
biological systems.
Counting the number of shortest paths between two

genes in a network is a polynomial time problem. How-
ever, the fact that biological interactions are inherently
stochastic events dramatically complicates this problem
since an interaction happens with some probability. This
uncertainty follows from the fact that key biological pro-
cesses governing these interactions, like DNA replication,
gene transcription, and epigenetic mutations, are them-
selves inherently uncertain events. For example, DNA
replication can start at various chromosome locations
with different probabilities [18]. In addition, other epi-
genetic factors can alter the expression level of genes,
which in turn affect the likelihood of interactions between
molecules.
Existing studies often model the uncertainty of bio-

logical interactions using probabilistic networks. Briefly,
each edge in the probabilistic network is associated with a
probability value showing the confidence in correspond-
ing interaction’s presence. Several large databases, MINT
[19] and STRING [20], for instance, already provide inter-
action confidence values. If a biological network contains
at least one uncertain interaction, we call it a probabilistic
network. Otherwise, it is a deterministic network. Figure 1a
depicts a hypothetical probabilistic network that has five
proteins and seven interactions. An important observa-
tion is that a probabilistic network is actually a summary
of all possible deterministic networks that are determined
by the subset of interactions that takes place. This means

that a probabilistic network represented as a graph with
|E| edges will in fact describe the 2|E| deterministic net-
works. Figures 1b and c present two possible deterministic
networks of the probabilistic network in Fig. 1a among 128
(i.e., 27) alternatives. In recent studies, graph polynomi-
als which have a wide range of applications in chemistry,
physics and biology [21–25], have also been used to model
the probabilistic network [26–28].
Analysis of shortest paths in probabilistic networks

received some attention previously [29–31]. However,
these studies mainly focused on the problem of finding
shortest paths in graphs whose branches are weighted
with random lengths. Here, we consider the problem of
counting the number of shortest paths between two nodes
whose edges are weighted by their interaction probability.
This problem has been solved on deterministic network
topologies previously [32, 33]. However, the exponential
growth of the number of deterministic instances resulting
from a probabilistic network makes it infeasible to directly
apply existing solutions to probabilistic networks. There
are several ways to deal with probabilistic networks. Most
of these approaches transform the probabilistic networks
to deterministic networks using different mechanisms,
such as totally ignoring the interaction probabilities
[34, 35], generating random binary networks based on
probability [36], or considering only interactions above a
given threshold [37]. All these approaches lose some infor-
mation regarding the topology of the original network.
They either over- or under-represent the rare events. As a
result, a scalable method which takes the edge probabilities
in probabilistic networks into account is urgently needed.
The fact that some network measures (e.g., betweenness
centrality and networkmodularity) being calculated based
on shortest path search algorithmmakes a solution to this
problem relevant to a wide set of biological questions.
Our Contributions. In this paper, we develop a novel

method to count the shortest paths between a pair of
nodes in probabilistic networks. The key challenge arises
from the fact that since the topology of a network is

(a) (b) (c) (d)
Fig. 1 A probabilistic network G (a), its two possible deterministic network topologies G1 and G2 (b,c) and a sample bipartite graph between nodes
a and d (d) are shown. The bipartite graph Ga,d models the dependency between paths connecting nodes a and d in the probabilistic graph shown
in (a). H1, H2, H3, H4 and H5 are the simple paths between a and d. Collectively these paths yield seven edges, which are {e1 = (a, d), e2 = (b, c),
e3 = (b, d), e4 = (a, c), e5 = (c, e), e6 = (b, e), e7 = (e, d)}

Ren et al. BMC Bioinformatics (2018) 19:465 Page 3 of 19

uncertain, existence of paths are also uncertain. Fur-
thermore, this uncertainty is governed through complex
dependencies among paths through their shared edges.
To capture such dependency between multiple paths, we
build a novel polynomial model. Our model first builds a
bipartite graph to describe the dependency among multi-
ple paths. It then generates a special class of polynomials,
called the x-polynomial to express this dependency. We
prove that our model accurately counts the distribution
of the number of shortest paths. Our experimental results
on synthetic and real cancer datasets demonstrate that
our algorithm successfully counts the number of shortest
paths, while existing methods yield errors ranging from
12% to orders of magnitude depending on the network
characteristics. We show that our method can be used
to detect essential genes in a network. As a significant
application of our novel shortest path counting method,
we use it to identify communities in a given probabilis-
tic network. We analyze the community structure in cell
cycle pathway among different cancer types. Our results
suggest that our method can help in uncovering key func-
tional characteristics of the genes participating in those
networks.
We organize the rest of the paper as follows. We present

our method in the “Methods” section. We discuss our
experimental results in the “Results” section and conclude
in the “Discussion and Conclusion” section.

Methods
In this section, we discuss our shortest path counting
method in detail. We present the details on how we adapt
this method to compute edge betweenness and to iden-
tify communities in networks in “Community detection
problem” section.

Preliminaries
First, we present basic notations needed to define the
problem considered in this paper. We denote the set of
nodes and the set of interactions among those nodes of a
deterministic network with V and E respectively, and the
network withG = (V ,E). We denote the number of nodes
as n = |V | and the number of edges as m = |E|. For each
node vi, we denote its degree with di.
Next, we define basic notations for probabilistic net-

works. We denote a probabilistic network as a graph G =
(V , E ,P), where V and E represent the node and edge sets
respectively. P is a function defined on E (P : E → (0, 1]),
which returns the probability value of each edge. For each
edge ei in G, we denote the probability that ei is present
and absent with pi and qi respectively (i.e., pi + qi =
1). We denote the set of all possible deterministic net-
work topologies that G can yield with D(G) = {G =
(V , E ′)|E ′ ⊆ E}. We denote the probability that one can
observe a specific deterministic network G ∈ D(G) with

P(G|G) =
∏

ei∈E ′
pi

∏

ej∈E−E ′
qj. (1)

We explain the shortest path counting problem on a
hypothetical probabilistic network G with five nodes and
seven edges (see Fig. 1a). Figures 1b and c present two
deterministic instances of this network among all 27 =
128 possibilities. One way to compute the number of
shortest paths is to generate all possible deterministic net-
work topologies, find the number of shortest paths on
all of them, and accumulate the results normalizing them
with the probabilities of each deterministic network. Such
an exhaustive approach however is impossible to scale
beyond very small networks. The challenge, which lies at
the heart of this paper, is that when the given network is
probabilistic, it yields an exponential number of determin-
istic network topologies. Thus, even if one can deal with
one of those instances by adopting heuristic solutions,
this approach will fail to solve this problem for all pos-
sible deterministic topologies. In this paper, we develop
a method to tackle this problem. We next describe our
method.

Counting shortest paths in probabilistic networks
The probabilistic nature of biological networks makes it
infeasible to directly extend the shortest path counting
methods for deterministic networks to probabilistic net-
works. The main reason behind this limitation is that the
existence of the shortest path between a pair of nodes
is uncertain and thus a longer path has the probabil-
ity to be a shortest path. For example, consider a source
node a and a sink node d in the probabilistic network
G in Fig. 1a. In one possible deterministic topology G1
(see Fig. 1b), a shortest path with length 1 (i.e., {(a, d)})
between nodes a and d exists. However in another deter-
ministic topology G2 (see Fig. 1c), two paths with length
3 (i.e., {(a, c), (c, e), (e, d)} and {(a, c), (c, b), (b, d)}) become
the shortest paths as the edge directly linking nodes a and
d is absent. Thus, in probabilistic networks, the number
of shortest paths is uncertain and depends on the proba-
bility of edges constituting the paths between source and
sink nodes.
Given a probabilistic network G = (V , E ,P), we repre-

sent the number of shortest paths connecting nodes s and
t with a random variable Bs∼t . Let us denote the number
of paths of length k between s and t in the deterministic
networkG = (V , E), with πk

s,t . Let us denote the frequency
of the most abundant path length with π∗

s,t = maxk
{
πk
s,t

}
.

The sample space for Bs∼t is the set of integers � ={
0, 1, . . . ,π∗

s,t
}
. For example, given the probabilistic net-

work in Fig. 1a, the sample space for Ba∼d is � = {0, 1, 2}
since there are at most two paths of lengths three and four
(e.g., The two paths of length three are {(a, c), (c, e), (e, d)}
and {(a, c), (c, b), (b, d)}). For each possible deterministic

Ren et al. BMC Bioinformatics (2018) 19:465 Page 4 of 19

network topology G ∈ D(G), we define an indicator func-
tion ϕ(G, k). It takes the value 1 if there exists k shortest
paths between source and sink nodes in network G and 0
otherwise. Thus the distribution of Bs∼t is defined by

Pr (Bs∼t = k) = �
G∈D(G)

ϕ(G, k) · P(G|G).

Computing the distribution of Bs∼t is a challenging task.
This is because as the network topology is uncertain,
any path between nodes s and t has a nonzero prob-
ability to be a shortest path. This depends on which
possible paths are observed in a given deterministic net-
work instance. Thus there is dependency between the
existence probability of each path with those of remain-
ing paths. There are two reasons behind this depen-
dency. First, an edge can be shared by multiple paths.
As a result, the absence/presence of this edge affects the
absence/presence of all those paths containing it at the
same time. Second, even when two different paths share
no edges, the absence/presence of the shorter one affects
the relevance of the other. This is because if the shorter
one is present, then the other cannot be the shortest path.
Next we provide an overview on how we calculate the
distribution of Bs∼t .
We model the dependency between a set of paths using

a polynomial model. Our solution works in three steps.
First, it locates all simple paths between nodes s and t in
the deterministic network Ḡ = (V , E) which inherits all
nodes and edges from G and assumes that all edges in
E exist. We do this using a recursive depth-first search
method. It then captures the dependency between paths
connecting nodes s and t through the set of edges con-
tributing to those paths. To do this, we build an undirected
bipartite graph. After building this graph, we develop a
new polynomial class, called the x-polynomial to express
the contribution of the edges to the value of Bs∼t as
imposed by this bipartite graph. We use this polynomial
to compute the distribution of Bs∼t .

Building the bipartite graph
We first discuss in detail how we capture the depen-
dency between a set of paths with the help of a bipar-
tite graph. Consider a probabilistic network G. For each
pair of nodes s and t, we denote the set of all possi-
ble paths between s and t with Hs,t . For a given path
Hi ∈ Hs,t , let us denote the set of edges in Hi with
E (Hi). Let us express the bipartite graph we construct
with Gs,t = (V1,V2,M), where V1 and V2 represent the
set of nodes and M represents the edges in Gs,t respec-
tively. Each path Hi ∈ Hs,t corresponds to a node in V1.
Each edge in

⊔
Hi∈H E(Hi) corresponds to a node in V2.

We insert an edge between nodes u ∈ V1 and v ∈ V2
if the path denoted by u contains the edge denoted by v.
For instance, in Fig. 1a, consider the two nodes a and d.
There are five simple paths between nodes a and d,

Ha,d = {H1 = {(a, d)},H2 = {(a, c), (c, b), (b, d)},H3 =
{(a, c), (c, e), (e, d},H4 = {(a, c), (c, b), (b, e), (e, d)},H5 =
{(a, c), (c, e), (e, b), (b, d)}}. Figure 1d shows the bipartite
graph we construct forHa,d.

Computing the x-polynomial
We next discuss how we build the x-polynomial using
the bipartite graph Gs,t = (V1,V2,M) for Hs,t . This
polynomial models all possible scenarios (i.e., subsets of
feasible paths in Hs,t) which can arise as a result of
absence/presence of the edges denoted by V2. For each
node vi ∈ V1, we define a unique variable xi. For each node
vj ∈ V2, we represent its corresponding edge’s probability
of presence and absence with pj and qj respectively (i.e.,
pj + qj = 1). Using these notations, for each node vj ∈ V2,
we construct a polynomial, called the edge polynomial,
and denote it with Zj. Formally

Zj = pj
∏

(vi,vj)∈M
xi + qj. (2)

This edge polynomial contains two terms. The first term
is the product of the variables corresponding to all paths
which contain that edge. The coefficient of this term is the
probability of the presence of this edge. The second term
only contains the probability of this edge being absent. To
better understand edge polynomial, we explain it on the
bipartite graph in Fig. 1d. Consider the node e4. There are
four nodes connected to it, which are H2, H3, H4 and H5.
Thus, the edge polynomial of e4 is (p4x2x3x4x5 + q4). The
first term of this polynomial represents the case that when
edge e4 is present, it contributes to the existence of all four
paths with a probability p4. The second term represents
the case that if edge e4 is missing, none of four paths exists
with a probability q4.
Now we are ready to define the x-polynomial which lies

at the heart of our algorithm. As we explain later in this
section, the x-polynomial provides a precise solution to
the distribution of the random variable Bs∼t .

Definition 1 Given a set of paths Hs,t between nodes s
and t, and its bipartite graph Gs,t = (V1,V2,M), we denote
the x-polynomial of Hs,t with Zs,t and compute it as the
product of all edge polynomials,

Zs,t =
∏

vj∈V2

Zj. (3)

Notice that the x-polynomial of a given bipartite graph
Gs,t = (V1,V2,M) contains 2|V2| terms, with each term
describing one possible deterministic network scenario
for the edges in V2. Thus, the x-polynomial models all
possible deterministic network topologies for the edges
denoted by V2. Consider the bipartite graph in Fig. 1d. The
x-polynomial is

Ren et al. BMC Bioinformatics (2018) 19:465 Page 5 of 19

Za,d = (p1x1 + q1) (p2x2x4 + q2)
(p3x2x5 + q3) (p4x2x3x4x5 + q4)
(p5x3x5 + q5) (p6x4x5 + q6) (p7x3x4 + q7) .

Consider one of the terms resulting from the prod-
uct of all edge polynomials in Za,d, for example,
p1p2p3p4q5q6q7x1x32x3x

2
4x

2
5. This term represents one

possible deterministic topology where edges e1, e2, e3 and
e4 are present with probability p1p2p3p4 while other edges
are absent with probability q5q6q7.
In order to compute the distribution of Bs∼t from the

x-polynomial, we introduce an operator called collapse
operator. As we explain later, this operator will reduce the
number of terms in the x-polynomial. It will also provide a
representation of the number and the length of the paths.
For each node vi ∈ V1, we denote its correspond-

ing path’s length with li. We also denote its degree with
deg(vi) (i.e., deg(vi) = li). This value indicates that dur-
ing the construction of x-polynomial, at each term of the
x-polynomial, variable xi has an integer exponent ranging
from 0 to deg(vi). Thus, we can write the jth term of the
x-polynomial in the form αj

∏
vi∈V1

xciji , where αj is the prob-

ability and cij is the exponent of the ith variable. For each
variable xr , we define an indicator function ψr(c). It takes
the value 1 if c = deg(vr) and 0 otherwise. Using these
notations, we define the collapse operator next.
Collapse operator. For each variable xr , we define a

collapse operator φr . This operator takes a term of the x-
polynomial as the input. Let us assume the input is the jth
term. We define the collapse operator as

φr

⎛

⎝αj
∏

vi∈V1

xciji

⎞

⎠ = αj
[
tlrψr

(
crj
)+ (

1 − ψr
(
crj
))] ∏

vi∈V1\vr
xciji .

(4)

Notice that the collapse operator φr only alters the vari-
able xr in each term of the x-polynomial. It has two
possible outcomes. (1) If ψr() = 1, it means that all edges
in the path Hr are present so that a path with length lr
exists. In that case, we replace xr with the variable tlr . (2)
If ψr() = 0, it means that at least one edge in the path Hr
is missing. Thus, the entire Hr is missing. In that case, we
remove the term xr .
To understand the collapse operator better, consider

one term of the x-polynomial Za,d (see above), namely
p1p2p3p4q5q6q7x1x32x3x

2
4x

2
5. Applying φ1() to this term,

replaces the variable x1 with t1 as deg(H1) = 1 and the
exponent of x1 in this term is 1. Similarly, applying φ2()
to this term, transforms it to p1p2p3p4q5q6q7t1t3x3x24x

2
5

as deg(H2) = 3 and the exponent of x2 is 3. Finally,
applying φ3(), φ4() and φ5() to this term, eliminates the
variables x3, x4 and x5 as their exponents are smaller than

the degrees of their corresponding nodes in the bipartite
graph. Thus, the term gets simplified to only two variables
(i.e., p1p2p3p4q5q6q7t1t3).
Next, we discuss when we apply the collapse operator.

Without violating the generality of the discussion, let us
assume that wemultiply the edge polynomials in the order
Z1,Z2, . . . ,Z|V2|. We say that Zj is the final edge polyno-
mial of the variable xr in this ordering if the following two
conditions hold: 1)Zj contains variable xr , and 2) ∀i > j,Zi
does not contain xr . We apply the collapse operator φr() to
the resulting polynomial terms as soon as we finish mul-
tiplying the final edge polynomial of xr . This is because
multiplying the remaining edge polynomials does not alter
the exponent of xr . Thus, each term at this point either
denotes the presence or absence of the path Hr .
After multiplying all edge polynomials and collapsing,

the x-polynomial Zs,t takes the following form:

Zs,t =
∑

j
αj
∏

i
tciji . (5)

Notice that the jth term of the x-polynomial lists
the number of paths (i.e., cij) for each path length
(i.e., i) and the existence probability of these paths
(i.e., αj). We observe that one term may contain mul-
tiple paths with different length. For example, the term
p1p2p3p4q5q6q7t1t3 describes a deterministic topology
which contains two paths connecting a pair of nodes, one
path with length 1 and another with length 3. Notice that,
given the existence of a path of length 1, the existence of
path of length 3 becomes irrelevant as the former path is
shorter. In order to count the number of shortest paths,
for each term of the x-polynomial, we remove all paths
whose lengths are not the smallest. To do that, we intro-
duce an operator called select operator. Let ζj(tr) represent
an indicator function for each variable tr in the jth term.
ζj(tr) = 1 if path with length r is shortest in the specific
deterministic network topology described by the jth term,
and 0 otherwise. We denote a shortest path by variable y.
Using these notations, we define our select operator next.
Select operator. For the jth term of the x-polynomial (i.e.,

αj
∏

i t
cij
i), we define the select operator δj() as:

δj

(
αj
∏

i
tciji

)
=αj

∏

i

(
ζj (ti) y + (

1 − ζj (ti)
))cij

=αjycj .

(6)

Assume that in the jth term, the path with length r is
the shortest path. Thus, in the above equation, cj equals
to the exponent of variable tr (that is cj = crj). Notice that
select operator only replace tr with variable ywhile remov-
ing other ti (i.e, i > r). For example, given that the term
p1p2p3p4q5q6q7t1t3 contains t1, by applying select opera-
tor, we remove t3 and replace t1 with y further simplifying

Ren et al. BMC Bioinformatics (2018) 19:465 Page 6 of 19

this term to p1p2p3p4q5q6q7y. Notice that, the select oper-
ator can also track the length of the shortest path for each
term if we use yr to represent the shortest path in the jth
term instead of y. As we only count the number of short-
est paths in this paper, for simplicity, we only use y to
represent the shortest path.
After applying select operator, the final x-polynomial

takes the following form:

Zs,t =
π∗
s,t∑

k=0
pkyk . (7)

Theorem 1 Consider a probabilistic graph G, two nodes
s and t in G, the set of all pathsHs,t between s and t, and its
collapsed polynomial Zs,t . The coefficients of the polyno-
mial Zs,t are the true distribution of the random variable
Bs∼t .

Proof. We focus on the jth term αjycj after applying
select operator. By its definition, it generates a term con-
taining cj shortest paths between nodes s and t. Thus,
after adding the coefficients of all the terms yk , pk equals
the probability that exactly k shortest paths exist between
nodes s and t. Recall that Bs∼t takes an integer value
in the [0, π∗

s,t] interval. The probability distribution val-
ues of Bs∼t which are corresponding to [0, 1, . . . ,π∗

s,t] are
[p0, p1, . . . , pπ∗

s,t].
Once we have the probability distribution of Bs∼t , we

can characterize the number of shortest paths precisely.

Corollary 1 Consider a probabilistic graph G, two nodes
s and t in G, the set of all pathsHs,t between s and t, and its
collapsed polynomialZs,t . The expected number of shortest
paths between nodes s and t is

Exp (Bs∼t) =
π∗
s,t∑

k=0
k × pk . (8)

We use the expected number of shortest paths to quan-
tify the number of shortest paths between a pair of nodes
in our experiment.
Implementation Details. Recall that the select opera-

tor requires identifying the shortest paths while removing
other longer paths. In our implementation, however we
develop a two-step solution to avoid generating such vari-
ables tj when there exists another variable ti with i < j.
The key idea of our two-step solution is that we apply the
select operator whenever possible. For all possible path
length of paths between source and sink nodes, we rank
them in ascending order. Without violating the generality
of the discussion, let us assume that we multiply the edge
polynomials in the order Z1,Z2, . . . ,Z|V2|. Based on this
ordering, for the current smallest path length (say k) to be

processed, we say Zj is the final edge polynomial of path
length k if the following two conditions hold: 1) Zj con-
tains at least one variable xr with deg(vr) = k; 2) ∀i > j, all
variables in Zi have deg() > k.
We apply the select operator to all polynomial terms

containing tk as soon as we complete the multiplication
and collapsation of the final edge polynomial of path
length k. The rationale behind this is that given that the
current shortest path length is k, after multiplying the final
edge polynomial of path length k, if one term already has
variable tk (i.e., already has at least one path with length k),
the longer paths generated by multiplying following edge
polynomials can not be the shortest paths any more. We
discuss this solution in detail next.
First, we order the nodes in V1 in ascending order of

their degrees, and group nodes with the same degree. Let
us denote the subset of nodes of V1 with degree r with
Sr . For example, in Fig. 1d, five paths can be divided into
three groups. S1 = {H1} as the degree ofH1 is 1. Similarly,
S3 = {H2,H3} and S4 = {H4,H5} (i.e., the degree of them
are 3 and 4 respectively).
In the second step, we iteratively consider the groups Sr

in ascending order of r. At each iteration, we multiply the
edge polynomials associated with the nodes of the group
Sr considered at that iteration as follows. For each group
Sr , its associated edge polynomials are

⊔
vi∈Sr ,(vi,vj)∈M{Zj}.

We iterate over the edge polynomials in this set. For each
edge polynomial, if it has not been multiplied before, we
multiply it with the existing product and collapse it if it
is the final edge polynomial of some x variables; other-
wise, we skip it. Thus, the last multiplied edge polynomial
in this set is the final edge polynomial of path length r.
Once we complete the iterations for Sr , we apply the select
operators to the resulting polynomial terms. In doing that,
we consider the terms in two different categories. Those,
that contain the variable tr constitute the first category.
The remaining terms make up the second category. We
only apply the select operator on the terms in the first
category, in which we remove all xi variables and replace
tr with variable y. We also do not multiply terms in the
first category with any other edge polynomial in the sub-
sequent iterations. We do this to prevent the formation of
paths longer than r as we are ensured to have at least one
path of length r for those terms. The following example
demonstrates how our strategy works.

Example of the counting shortest paths strategy
Consider the bipartite graph in Fig. 1d. This graph has
three groups of nodes in V1, namely S1, S3, and S4.We first
deal with the edge polynomials of S1. Since Z1 = p1x1+q1
is the only edge polynomial, we apply the collapse oper-
ator φ1(). After collapsing, we obtain two terms p1t1 and
q1. Notice that the first term p1t1 indicates that there is a
shortest path of length one with probability p1. Given p1t1

Ren et al. BMC Bioinformatics (2018) 19:465 Page 7 of 19

contains t1 belonging to the first category, we apply select
operator on it and do not consider this term for further
polynomial multiplication. We only use the other term q1
for further multiplication. Next, we consider the group
S3 = {H2,H3}. Its associated edge polynomials are Z2, Z3,
Z4, Z5 and Z7. We multiply these polynomials with the
existing one (i.e., simply q1). We then apply the collapse
operators φ2() and φ3(). This process will introduce new
terms containing variables t3. We then apply select oper-
ator on all such terms as they fall into the first category
showing the probability that the shortest path length is
three. Finally, we focus on group S4 = {H4,H5}. Although
its associated edge polynomial set contains all edge poly-
nomials (except Z1), we only multiply Z6 as remaining
ones have already been multiplied in the previous iter-
ations. We then collapse the resulting polynomial using
operators φ4() and φ5() to obtain the terms containing t4.
This way, we aggregate all possible scenarios of shortest
path lengths.
We observe that the terms applying select operator

early (i.e., the terms constituting the first category) will
not attend the following edge polynomial multiplica-
tion, which may have the potential to generate incor-
rect polynomial terms. Following lemma proves that the
terms applying select operator early are exactly same
with those generated after multiplying all edge polyno-
mials, collapsing and then applying select operator. We
start by defining our notation. We denote the function
to apply all collapse operators to polynomial terms with
�(). Now we are ready to prove the correctness of our
two-step solution.

Lemma 1 Consider a probabilistic graph G, two nodes
s and t in G, and the set of all paths Hs,t between
s and t. Given the current smallest unprocessed path
length k, after multiplying the final edge polynomial Zr of
path length k, consider the collapsed polynomial Zs,t =(

�
j
αjt

ckj
k
∏
i>k

tciji
∏
i
xciji

)
+�

j
αj
∏
i>k

tciji
∏
i
xciji . Assume that the

remaining unprocessed edge polynomial set is S. Applying
select operator to terms containing tk (i.e., the first term
constitutes the first category) outputs the exact same terms
as those generated after multiplying all remaining edge
polynomials, collapsing and then applying select operator.
Mathematically

�
j
δj

(
αjt

ckj
k

∏

i>k
tciji
∏

i
xciji

)

=�
j
δj

⎛

⎝�

⎛

⎝αjt
ckj
k

∏

i>k
tciji
∏

i
xciji

∏

Zi∈S
Zi

⎞

⎠

⎞

⎠ .

Proof. We focus on the jth term containing tr ,
αjt

ckj
k
∏
i>k

tciji
∏
i
xciji . After applying select operator, we

obtain

δj

(
αjt

ckj
k

∏

i>k
tciji
∏

i
xciji

)
= αjyckj . (9)

Now, we first multiply the jth term with the remaining
edge polynomials, collapse and then apply select operator,
we obtain

δj

⎛

⎝�

⎛

⎝αjt
ckj
k

∏

i>k
tciji
∏

i
xciji

∏

Zi∈S
Zi

⎞

⎠

⎞

⎠

=δj

⎛

⎝αjt
ckj
k

∏

i>k
tciji �

⎛

⎝
∏

i
xciji

∏

Zi∈S
Zi

⎞

⎠

⎞

⎠

(10)

We expand the product of edge polynomials, and

rewrite �

(
∏
i
xciji

∏
Zi∈S

Zi

)
as

�

⎛

⎝
∏

i
xciji

∏

Zi∈S
Zi

⎞

⎠

=�

⎛

⎝
∏

i
xciji

∏

Zi∈S

⎛

⎝pi
∏

(vk ,vi)∈M
xk + qi

⎞

⎠

⎞

⎠

=�

(
�rβr

∏

i
xciri

)

=�rβr
∏

i>k
tciri

Here, βr is the coefficient of the rth polynomial term.
Notice that after multiplying the final edge polynomial of
length k, multiplying the remaining edge polynomials and
collapsing leads to only variables ti (i > k). We inject the
above equation to Eq. 10, we obtain

δj

⎛

⎝αjt
ckj
k

∏

i>k
tciji �

⎛

⎝
∏

i
xciji

∏

Zi∈S
Zi

⎞

⎠

⎞

⎠

=δj

(
αjt

ckj
k

∏

i>k
tciji �rβr

∏

i>k
tciri

)

=αjyckj�rβr

Notice that �rβr equals to the sum of coefficients of
product of edge polynomials, that is

�rβr =
∏

Zi∈S
(pi + qi) = 1.

Ren et al. BMC Bioinformatics (2018) 19:465 Page 8 of 19

Thus

δj

⎛

⎝�

⎛

⎝αjt
ckj
k

∏

i>k
tciji
∏

i
xciji

∏

Zi∈S
Zi

⎞

⎠

⎞

⎠ = αjyckj .

Theorem 1 proves that the final x-polynomial gener-
ated by multiplying and collapsing all edge polynomi-
als, and applying the select operator in the end, does
generate the true distribution of the random variable
Bs∼t . Different from this method, our two step solu-
tion however applies the select operator to some terms
whenever possible and prevents their multiplication with
remaining edge polynomials. Notice that Lemma 1 proves
that applying select operator early to those polynomial
terms making up the first category does output the
same results with those generated by applying select
operator to final polynomial terms. Thus, our two step
solution outputs the true distribution of the random
variable Bs∼t . We test the correctness of this proof on
the probabilistic network in Fig. 1. Recall that the set
of paths between nodes a and d in this figure are
Ha,d = {H1 = {(a, d)},H2 = {(a, c), (c, b), (b, d)},H3 =
{(a, c), (c, e), (e, d},H4 = {(a, c), (c, b), (b, e), (e, d)},H5 =
{(a, c), (c, e), (e, b), (b, d)}}. Using our two step strategy, we
obtain Za,d = 0.8270352 + 0.1517968y + 0.021168y2.
Notice that the coefficient of yk is the probability that
exactly k shortest paths exist. In this figure, in order to
have exactly two shortest paths, the pathsH2 andH3 must
exist and the path H1 must be absent. This is because H2
andH3 have the same length (i.e., three), andH1 is shorter
than those two paths. This condition is satisfied only when
edges Set1 = {(a, c), (c, b), (b, d), (c, e), (e, d)} exist and the
edge Set2 = {(a, d)} does not exist. The absence/presence
of the edge (b, e) has no influence on the outcome. Multi-
plying the existance probabilities of the edges in Set1 and
the absence probabilities of the edge in Set2 yields the
coefficient of y2 as calculated by our algorithm.

Results
In this section, we evaluate performance of our shortest
path counting method and its application to identify com-
munities in networks on both synthetic and real datasets.
We compare our method’s accuracy and computational
cost to three existing approaches, namely binary, thresh-
old, and sampling methods. Next we describe the datasets
we use in our experiments and the methods we compare
against.
Datasets In this section we describe the synthetic and

real datasets we used in our experiments.

Synthetic datasets. To observe the performance of our
method under controlled dataset characteristics, we per-
form extensive experiments on synthetically generated

directed networks. In the following, to simplify our nota-
tion, we use the size and average degree of the network
to represent the number of nodes and the number of
edges per node in a network respectively. We run experi-
ments on synthetic directed networks under three varying
parameters; network size, average degree, and the prob-
ability model. To do this, we generate LFR benchmark
networks [38]. This benchmark uses several parameters
in constructing networks. We set the exponents of the
degree distribution and the community size distribution
to 2 and 1 respectively. We fix the mixing parameter μ to
0.2, which means that each node shares a fraction 1−μ of
edges with the other nodes of its community and a frac-
tion μ with the other nodes of other communities. We
vary all the other parameters, such as number of nodes
and average degree.
After generating LFR benchmark networks, we assign

probability values to the edges of these networks using
three probability models. These models include identical,
uniform and normal distribution models. For the identi-
cal model, we assign each edge with the same probability
value. Under the uniform and normal distribution mod-
els, we assign each edge with a random number in the
(0,1] interval generated from the uniform and normal dis-
tribution respectively. We vary the standard deviation to
observe the impact of variation in probability values.

Real datasets. We analyze the cell cycle network of dif-
ferent cancer types from KEGG database using our short-
est path counting and community detection methods.
The network contains 60 nodes and 83 edges. We use
five cancer datasets, including the prostate cancer dataset
from the The Cancer Genome Atlas (TCGA), and breast
cancer (GSE50948), colon cancer (GSE17536), lung can-
cer (GSE19804) and leukemia cancer (GSE71014) datasets
from NCBI. For each cancer dataset, we build its corre-
sponding cell cycle network where the probability of each
interaction within the network is equal to the correlation
value between corresponding genes. Thus, we have five
versions of the cell cycle network.

Competing methods. Recall from the “Background”
section that current approaches to the probabilis-
tic networks often transform probabilistic networks to
deterministic networks first, and then apply methods
developed specifically for deterministic networks. These
approaches include ignoring probability values [34, 35],
considering edges with probability values above a given
threshold [37], and sampling the probabilistic network by
doing a Bernoulli trial with probability pi for each edge ei
[36]. We call these three approaches as binary, threshold,
and samplingmethods, respectively. For these threemeth-
ods, after transforming probabilistic networks to deter-
ministic networks, we calculate the number of shortest

Ren et al. BMC Bioinformatics (2018) 19:465 Page 9 of 19

paths. To detect communities in biological networks, we
apply Newman and Grivan method [39] on the determin-
istic networks. Please note that finding the shortest path
between two nodes in a probabilistic network comprises
finding the path with minimum length, which utilizes a
nonlinear function (see “Shortest path counting utilizes a
nonlinear function” section for details). Although, a sam-
pling approach can provide provable confidence intervals
for estimating linear functions such as sum and average,
it fails to do that for nonlinear functions such as finding
the minimum. Due to the nonlinear nature of our problem
a sampling approach is expected to produce inaccurate
results even when a large number of samples are used.

Accuracy and computational cost of shortest path
counting methods
In this section, we evaluate accuracy and speed of our
shortest path counting method on synthetic networks
under three parameters; network size, average degree and
probability model. To observe the effect of each parame-
ter, in each experiment we vary only one parameter while
fixing the others. To ensure the reliability of our results,
for each parameter, we conduct experiments on 10 dif-
ferent networks and report the median. Specifically, for
samplingmethod, to get a reliable result, for each network,
we sample the network 1000 times and count the average
number of shortest paths.
Our shortest path counting method is exact (see “Methods”

section for proof), and thus we use it here as the ref-
erence. We calculate the aforementioned three existing
methods’ relative error in comparison to our method as
|f−f ∗|
f ∗ , where f ∗ and f represent the number of shortest

paths found between two nodes by using our method (i.e.,
true value) and one of the three existing methods, respec-
tively. Next, we test the effect of network size on accuracy
and speed.
Effect of network size. Here, we explore the impact of

network size on accuracy of the three existing shortest

path counting methods. We set the synthetic networks’
average degree to three and the probability model to uni-
form model. We experiment for network sizes 50, 100,
250, 500, 750 and 1000. Figure 2a reports the result. Our
results demonstrate that binary method has massive rel-
ative error rate for all the networks. The threshold and
sampling methods achieve better results than the binary
method; yet their relative error rates are still substantial
(around 95% and 45%, respectively). It is also worth noting
that we give a positive bias towards the threshold method
since we fix the threshold to 0.6, which minimizes its
error rate in our experiments (see “Effect of the threshold
value” section). We observe that the error rate in count-
ing number of shortest paths for the binary method and
sampling methods grow with network size, but error for
the threshold method is slightly invariant. These results
suggest that existing methods, which model probabilistic
networks as deterministic ones, are grossly inaccurate for
counting the number shortest paths. Our novelmethod on
the other hand is provably precise for the same problem.
Effect of average degree. Next, we explore the impact of

average node degree on shortest path counting. We use
networks of average degree 2, 3 and 4. We fix the network
size to 250 nodes and apply the uniform model to assign
interaction probabilities. Figure 2b shows the results. We
observe that the error rate for binary method is larger
than the threshold and sampling methods. In compari-
son to ourmethod, threshold and samplingmethods incur
up to 96% and 58% relative error values, respectively. We
observe that the error rate increases for all methods as
average degree increases. We conjecture this is probably
due to the fact that as the number of edges increases, the
number of shortest paths increases between pairs of nodes
as well, leading to increase in error.
Effect of probability model. Finally, we focus on the

impact of probability model on shortest path count-
ing. For each network topology model, we generate
10 networks with size 250 and average degree 3. For

(a) (b) (c)
Fig. 2 The accuracy of shortest path counting methods on synthetic networks with different network sizes (a), average degrees (b) and probability
models (c)

Ren et al. BMC Bioinformatics (2018) 19:465 Page 10 of 19

each network, we assign probability values to interac-
tions using three probability models: identical, uniform
and normal distribution. Identical model sets the proba-
bility of all edges to 0.5. We use three different normal
distribution models. All three models have the samemean
(0.5), but varying standard deviations (0.1, 0.2 and 0.3).
This way, we test a wide spectrum of possible variations in
interaction probabilities ranging from no variation (iden-
tical model) to very large variation (normal distribution
with 0.3 standard deviation). Notice that identical prob-
ability model is meaningless to apply when threshold
method is used for shortest path counting. This is because
either all edges are removed or all are retained depending
on the threshold since all edges have identical probabil-
ities. Therefore, we do not report the threshold method
for the identical probability model. Figure 2c presents the
results.
Our results demonstrate that binary and sampling

methods produce the highest and lowest errors over-
all across different probability models, respectively. The
threshold and sampling methods’ errors range between
95%-100% and 28%-48%, respectively. In the extreme case,
when all probabilities are identical, we observe that binary
method yields less error in comparison to when the edge
probability values are heterogeneous. We would like to
note that threshold and sampling methods are less sensi-
tive to the distribution of the edge probabilities in com-
parison to the binary method. Thus they can adapt to
variations in interaction probabilities better.
Our analysis on synthetic networks demonstrate that

existing shortest path counting methods for probabilis-
tic networks are inaccurate. To discern the source of
their failure, next, we plotted the distribution of num-
ber of paths across all pairs of nodes for our method and
the three existing methods for a uniformly distributed
probabilistic network of size 250 and average degree 4.
Figure 3a shows the results. Please note that for illustra-
tive purposes we ranked the gene pairs in regards to their
number of paths in this plot. Our experiments demon-
strate that existing shortest path counting methods either
under or over estimates the number of shortest paths. We

observe that usually the binary approach overestimates,
and the threshold method underestimates the number of
shortest paths for a given node pair. Although, random
sampling approach provides somewhat similar results to
ourmethod, for some gene pairs it over or under estimates
the number of shortest paths also. As we have mentioned
before, sampling methods might provide quite accurate
results for linear functions, however they do not work
well for nonlinear functions such as shortest path count-
ing (see “Shortest path counting utilizes a nonlinear func-
tion” section). Due to the nonlinear nature of our problem,
sampling method leads to unreliable results in our exper-
iments even if a large number of samples are used. These
observations suggest that the right treatment of proba-
bilistic interactions is essential for precisely counting the
number of shortest paths in biological networks.
Finally, we evaluate the running time of our method.

We experiment for network sizes varying from 50 to 1000.
We set the average degree of these networks to three, and
probability model to uniform model. Figure 3b presents
the results. Our results suggest that binary and threshold
methods’ computational times are comparable, and they
take the least amount of time. Our method’s running time
is similar to that of the sampling method. Both of these
methods are slower than binary and threshold methods.
In networks of varying sizes (50-1000) our method runs
in 0.05-14.2 s. This suggests that although our method
is slightly slower than binary and threshold methods, it
is still very fast, and scalable to large scale biological
networks. Next, we test our method on a real cancer
dataset.
Evaluation of shortest path counting algorithm on

cancer networks. In this experiment, first, we analyze
the accuracy of the existing shortest path counting algo-
rithms using cell cycle pathway in a few cancer types.
Recall that the interaction probabilities can change across
different cancer types. Our results on cancer networks
coincide with those on the synthetic dataset (see Fig. 4a).
Binary method is the least accurate method among
the three existing approaches. Although threshold and
random sampling approaches are more accurate than the

(a) (b)

5

Fig. 3 The distribution of number of paths (a) and computational cost (b) of shortest path counting methods on synthetic networks

Ren et al. BMC Bioinformatics (2018) 19:465 Page 11 of 19

(a) (b)
Fig. 4 The accuracy of shortest path counting methods on real cancer networks (a), and the rand index of the community structures of different
cancer types (b)

binary method, their accuracies are much lower than
that of our method. Threshold and random sampling
approaches result in up to 100% and 40% relative errors in
comparison to our method, respectively.
Next, using our method, we count the number of short-

est paths for each cell cycle gene pair in five cancer
datasets (breast, colon, leukemia, lung and prostate). We
rank these genes according to the number of shortest
paths between them and others. Our algorithm success-
fully ranks the CDK1 gene as the top gene for all cancer
types analyzed here. CDK1 gene is known to be a key reg-
ulator of the cell cycle pathway, and it is a potential ther-
apeutic target for inhibitors in cancer treatment. CDK1
gene’s major role in development and cancer is supported
by many experimental studies [40–43]. Genetic substitu-
tion of CDK1 gene has been shown to cause embryonic
lethality [44], and its inhibition has been suggested as a
potential therapy for MYC-dependent breast cancer [41].
We also rank the genes using their expected node

betweenness. Table 1 presents the result. As five cancer
networks have the same network topology, we identify the
same set of genes that appear in the shortest paths (i.e.,
node betweenness is greater than 0) but with different
ranking. For these identified genes, we do the literature
analysis as follows. Given a specific cancer type, for each
gene on the shortest path, we count the number of publi-
cations in PubMed containing this gene and this specific
cancer type. Figure 5 shows the results. We observe that
all genes have a large number of publications related to
specific cancer. Furthermore, we also observe that the per-
centage of publications of top 3 genes exceeds 50% in
almost all cancer types, which suggests that the genes with
high node betweenness have great potential to exhibit
biological significance.
In summary, our experiments on synthetic and real

datasets demonstrate that existing methods either under
or over estimate the number of shortest paths with a large
margin. The binary method performs the worst among
the existing three methods under varying network sizes,
average node degrees and probability distributions. In

comparison to the existing methods, our novel method
solves the shortest path counting problem accurately in a
feasible time. The low accuracy level of existing methods
suggests that our novel method is truly needed in the field
since the existingmethodsmight potentially lead to wrong
biological implications. Our analysis on real datasets sup-
port our findings on synthetic data, and suggest that our
approach could be used to discover key genes in biological
systems.

Effects of network model parameters on community
detection
In this section, we use our shortest path counting method
to identify communities in biological networks. We use
the same experimental set up from the previous section.
We test the robustness of our community detection
approach under varying network sizes, average node
degrees and probability models. We run experiments on
both synthetic and real cancer networks, and compare the
expected modularity value of our method to three existing
methods. We run experiments on synthetic networks and
compare the expected modularity value of our method
to three existing methods. To observe the effect of each
parameter, in each experiment we vary only one param-
eter and fix the other two. To ensure the reliability of
our results, for each parameter, we conduct experiments
on 10 different networks and report the median. Specifi-
cally, for sampling method, we calculate the modularity by
sampling the network 1000 times and report the average
modularity.
Effect of network size on community detection. First, we

explore the impact of network size. We set the average
degree to three and the probability model to uniform
model. We experiment for network sizes 50, 100, 250,
500 and 750. Figure 6a reports the result. Our results
demonstrate that our method has the highest modularity
value for all networks with over 50 nodes. The threshold
method achieves the second best modularity value. That
said, it is worth noting that we give a positive bias towards
the threshold method since we fix the threshold to the

Ren et al. BMC Bioinformatics (2018) 19:465 Page 12 of 19

Table 1 The node betweenness of genes appearing in the shortest paths

Prostate Breast Lung Colon Leukemia

Ranking A B A B A B A B A B

1 CDC25C 1.83 CDC25A 0.37 CDC25C 1.87 CDC25A 2.20 TP53 3.00

2 CDC25A 1.51 TP53 0.35 CDC25A 1.66 CHEK1 0.59 CDC25A 2.12

3 CDC25B 0.88 CDC25C 0.33 TP53 1.24 TP53 0.56 CDC25C 1.53

4 CHEK2 0.61 CHEK2 0.24 CHEK1 0.62 CDC25C 0.47 CHEK2 1.15

5 PKMYT1 0.38 CHEK1 0.24 GADD45A 0.28 CHEK2 0.47 CDC25B 0.77

6 TP53 0.18 GADD45G 0.14 GADD45B 0.27 CDC25B 0.42 GADD45A 0.60

7 CHEK1 0.13 CDC25B 0.10 PKMYT1 0.23 SFN 0.24 GADD45G 0.52

8 GADD45G 0.06 SFN 0.05 CDC25B 0.20 PKMYT1 0.12 CHEK1 0.37

9 GADD45B 0.06 GADD45A 0.05 CHEK2 0.18 MAD1L1 0.11 PKMYT1 0.33

10 MDM2 0.04 MDM2 0.04 GADD45G 0.16 GADD45B 0.08 GADD45B 0.27

11 SFN 0.02 PKMYT1 0.03 SFN 0.15 MDM2 0.03 SFN 0.04

12 GADD45A 0.01 ZBTB17 0.02 ZBTB17 0.10 ZBTB17 0.02 MDM2 0.03

13 MAD1L1 0.00 MAD1L1 0.02 MDM2 0.02 GADD45A 0.02 MAD1L1 0.01

14 ZBTB17 0.00 GADD45B 0.00 MAD1L1 0.01 GADD45G 0.02 ZBTB17 0.01

A = gene name. B = node betweenness

value which maximized its modularity in our experiments
(see “Effect of the threshold value” section). Sampling and
binary methods obtain similar results. We observe that
the expected modularity value of all methods grows with
the network size. This is maybe because the effect of the
wrong placement of nodes is diluted by the enlargement
of the network size. Furthermore, the growth of the mod-
ularity value between the interval [50,100] is most notable
while the following increment gradually decreases.
Effect of average degree on community detection. Next,

we explore the impact of average node degree.We use net-
works of average degree 2, 3 and 4. We fix the network
size to 250 nodes and apply the uniform model to assign
interaction probabilities. Figure 6b shows the results. Sim-
ilar to previous experiment, for all degree settings, our
method obtains the highest modularity value. We observe
that the averagemodularity value of all methods decreases
notably with the increasing average degree. We conjec-
ture that the reason behind this is that as the number
of edges increases, the connectivity between different
modules increase as well, thus reducing the modularity
value.
Effect of probability model on community detection.

Finally, we focus on the impact of probability model. For
each network topology model, we generate 10 networks
with size 250 and average degree 3. For each network,
we assign probability values to interactions using three
probability models: identical, uniform and normal dis-
tribution. We set the probability of all edges to 0.5 in
the identical model. Three different normal distribution
models are used in our experiment. Three models have

the same mean (0.5) but varying standard deviation val-
ues (0.1, 0.2 and 0.3). This way, we test a wide spectrum
of possible variations in interaction probabilities ranging
from no variation (identical model) to very large variation
(normal distribution with 0.3 standard deviation). Sim-
ilar to the previous section, identical probability model
is meaningless to apply when threshold method is used
for community identification. Threshold method yields
the same result as the binary method for small threshold.
Because of that we do not report the threshold method
for the identical probability model. Figure 6c presents the
results.
Our results demonstrate that our method produces the

highest modularity value overall across different prob-
ability models. Similar to previous experiment, sam-
pling method have similar modularity value with binary
method. In the extreme case, when all probabilities
are identical, we observe that binary/sampling method
achieves slightly better modularity than our method.
However, when the edge probability values are heteroge-
neous, we observe that our method performs best. Fur-
thermore, we observe that as standard deviation increases,
the gap between the expected modularity value of our
method and the binary/sampling method grows. The
modularity value of the threshold method also grows
with increasing standard deviation. It however consis-
tently remains below that of our method. The main rea-
son behind it is that all methods we tested except the
binary/sampling method are sensitive to the distribution
of the edge probabilities. Thus they can adapt to variations
in interaction probabilities better.

Ren et al. BMC Bioinformatics (2018) 19:465 Page 13 of 19

(a)

(c)

(e)

(d)

(b)

Fig. 5 The publication count of genes appearing in the shortest paths of real canner networks

(a) (b) (c)
Fig. 6 The expected modularity value of our method and other methods on synthetic networks with different network sizes (a), average degrees (b)
and probability models (c)

Ren et al. BMC Bioinformatics (2018) 19:465 Page 14 of 19

In summary, our experiments demonstrate that our
method is robust and can successfully identify commu-
nities of high quality. Both network size and average
degree have great effect on our method. Furthermore, our
method can adapt to a wide spectrum of edge probability
distributions.
Next, we summarize our community detection results

on cancer networks.
Community detection in cancer networks. In this section,

we analyze the similarities and differences among some
cancer types with respect to the community structure
in the cell cycle pathway using our method. Recall that
the interaction probabilities can change across different
cancer types. We compare the similarities of commu-
nity structures for different cancer types using Rand
Index (RI). RI is the ratio of the number of pairs of
nodes that are placed in the same way in both parti-
tionings to the total number of pairs. Given two par-
titionings of a network with |V | nodes, C1 and C2,
the total number of pairs of nodes is 1

2 |V |(|V | − 1).
We denote the number of pairs of nodes that are
in the same community and different community in
both partitionings with a0 and a1, respectively. Thus,
we calculate the rand index between two partition-
ings as RI(C1, C2) = 2(a0+a1)|V |(|V |−1) . Figure 4b plots the
results.

We observe that the community structures of the cell
cycle pathway of all cancer types have substantial simi-
larities. This suggests that the functions of most genes in
the cell cycle pathway are consistent across different can-
cer types. Especially, the community structures of breast
and leukemia cancer are highly similar as well as those of
prostate and colon cancer. Community structure for lung
cancer however shows some deviation from other cancer
types.
We conjecture that nodes in the same community tend

to serve related functions. To test this conjecture, we
do the literature analysis on pairs of nodes in the same
community as follows. Given a specific cancer type, for
each possible pair of nodes in the network, we count
the number of publications in PubMed containing these
two genes and the specified cancer. We denote the mean
and standard deviation of the number of publications
with μ and σ respectively. For each pair of genes in the
same community with η publications, we calculate its
z-score denoted with z as z = η−μ

σ
. We repeat this pro-

cess for all cancer types and list pairs of genes whose
z-scores are greater than 2. Table 2 presents the results.
We observe that the gene pairs our method places in
the same community have very high statistical signif-
icance in terms of their publication evidences relating
them to cancer. We observe that a few gene pairs have

Table 2 The pairs of genes in the same community which have z-score values greater than 2

Prostate Breast Lung Colon Leukemia

Interaction A B A B A B A B A B

CDK4 CDK2 84 14.8 179 11.4 80 9.1 70 12.1 92 8.2

TP53 CDKN1A 26 4.4 82 5.1 54 6.0 48 8.2 52 4.5

CDK1 CDK2 23 3.9 49 3.0 23 3.8 44 3.8

HDAC1 HDAC2 13 2.1 22 2.3 23 3.8 41 3.5

CDK4 CDK6 45 7.8 141 9.0 62 7.0

CDK6 CDK2 29 4.9 50 3.0 26 2.7

CDK1 CDC25C 17 2.8 20 2.0

CDKN1A MDM2 24 4.0 26 4.3

TP53 MDM2 23 3.9 29 4.8

CDK1 CDK4 14 2.3 15 2.4

CHEK2 ATM 141 9.0 13 2.0

ATR ATM 118 7.5 26 4.3

TP53 RB1 24 4.0

CDKN1A CDKN2A 20 3.3

CDKN1A CCNB1 44 2.6

CDKN1A PCNA 35 2.0

CHEK1 CHEK2 15 2.4

TP53 ATM 143 13.0

RB1 CDKN2A 38 3.2

CDKN2A ABL1 28 2.3

CHEK1 ATR 25 2.0

A = publication count. B = Z-score. The empty entries indicate that the Z-score is below 2

Ren et al. BMC Bioinformatics (2018) 19:465 Page 15 of 19

substantial evidence across all cancer types (e.g., CDK4
and CDK2 pair). Also some of the publication evidences
for some of the gene pairs are unique to certain can-
cer types. For instance, (RB1 , TP53) pair appears for
prostate cancer. Indeed, it is shown that in prostate
cancer, the lineage plasticity induced by combined loss
of RB1 and TP53 confers resistance to antiandrogen
therapy [45, 46].

Discussion and Conclusion
In this paper, we presented a novel method to count
the number of shortest paths in probabilistic biolog-
ical networks. The dependency among multiple paths
in probabilistic network makes shortest path count-
ing a challenging problem. We developed a polynomial
model to capture such dependency. Our experiments
on both synthetic and real networks demonstrate that
in comparison to existing methods, our method accu-
rately counts the shortest paths in probabilistic net-
works. As an important application of our novel shortest
path counting method, we use it to identify communi-
ties in biological networks. Our experiments show that
we could detect communities of high quality in bio-
logical networks and identify their key functional char-
acteristics. In future work, it would be interesting to
use both the number and the length of shortest paths
to characterize the structure of probabilistic biological
networks.

Appendix:
Community detection problem
Wemodel a partitioning of networkG into k communities
with C = {C1, C2, . . . , Ck}, such that the following three
conditions hold:

• ∀i, i ∈ {1, 2, . . . , k}, Ci ⊆ V .
• ∀i, j, i, j ∈ {1, 2, . . . , k} and i 	= j, Ci ∩ Cj = ∅.
• ∪k

i=1Ci = V .

Each node vi in the partitioning belongs to exactly one
community and we denote its membership with ci. That
is ci = j if vi ∈ Cj. We represent the network G with an
n × n adjacency matrix A, where each element Aij = 1 if
there is connection between vi and vj, otherwise Aij = 0.
Consider two nodes vi, vj ∈ V . We compute the Kronecker
delta function δ(ci, cj) as 1 if nodes vi and vj are in the
same community and 0 otherwise. We denote the modu-
larity value of the given partitioning C with Q(G, C) and
calculate it as [39, 47]

Q(G, C) = 1
2m

∑

i,j

[
Aij − didj

2m

]
δ
(
ci, cj

)
. (11)

Given these definitions, we formally define the commu-
nity detection problem next.

Definition 2 (DETECTING COMMUNITIES IN PROBA-
BILISTIC NETWORKS). Given a probabilistic network G =
(V , E ,P), community detection problem seeks to find a par-
titioning C of G withmaximum expectedmodularity value,
which is

argmax
C

⎧
⎨

⎩
∑

G∈D(G)

Q(G, C) · P(G|G)

⎫
⎬

⎭ . (12)

Our method adopts Grivan and Newman’s algorithm
[39] (the “GN” algorithm), which works for a single deter-
ministic network, to solve the problem for probabilistic
networks without losing accuracy of the result.

Model edge betweenness in probabilistic networks
The GN algorithm finds communities by calculating edge
betweenness and iteratively removing edges with highest
betweenness. One common way to calculate the between-
ness of an edge is to count the number of shortest
paths between all node pairs, which contain this edge. As
explained in “Counting shortest paths in probabilistic net-
works” section, however, the probabilistic nature of bio-
logical networks makes the existence of the shortest path
between a pair of nodes uncertain. Thus, in probabilistic
networks, we cannot calculate the edge betweenness as
in deterministic networks. A new formulation of the edge
betweenness in probabilistic network is needed.
Given a probabilistic network G = (V , E ,P), for each

edge ei, we represent the number of shortest paths going
along ei using a random variable Bi. We denote ei’s
betweenness with f (ei) and calculate it as the expected
number of shortest paths going along ei if ei is present,
mathematically,

f (ei) = Exp (Bi)

pi
. (13)

To compute the distribution of Bi, one naive way is to
count the number of shortest paths for each alternative
deterministic network topology of G. Counting shortest
paths requires iterating over every pair of nodes. Given a
specific deterministic network G ∈ D(G), a source node
s and a sink node t, we denote the number of shortest
paths between nodes s and t containing the edge ei with
N((s ∼ t, ei)|G). Notice that N(s ∼ t, ei|G) is not a
random variable as the number of shortest paths is cer-
tain in deterministic networks.Using these definitions, we
compute the expected value of Bi as

Exp (Bi) =
∑

s,t
Pr (Bs∼t > 0)−1

∑

G∈D(G)

N ((s ∼ t, ei) |G) · P(G|G)

(14)

Equation 14 contains two summations. The inner sum-
mation enumerates the distribution of the number of

Ren et al. BMC Bioinformatics (2018) 19:465 Page 16 of 19

shortest paths connecting nodes s and t containing ei. We
denote this distribution with Bs∼t,i. The outer summation
in this equation normalizes this with the inverse of the
probability that s and t are connected through at least one
path. That is, for each pair of nodes s and t, we consider its
contribution to the edge betweenness of each edge only if
there exists paths connecting s and t.
Here our goal is to calculate the betweenness value for

all edges. The naive solution is to calculate the distribution
of Bs∼t,i for each edge ei. This is however computation-
ally expensive. We observe that for a given pair of nodes
s and t, and two edges ei and ej on a path between s and
t, computation of the two values N((s ∼ t, ei)|G) and
N((s ∼ t, ej)|G) will contain many common terms. We
avoid recomputing these terms by counting the number
of shortest paths between s and t without specifying an
edge. We then distribute the value to each edge between
those two nodes. Next, we explain how to calculate Bs∼t,i
in detail.
Probability distribution of Bs∼t is calculated as

explained in “Counting shortest paths in probabilistic
networks” section. In fact, we are able to calculate Bs∼t,i
efficiently during the calculation of Bs∼t . The occurrence
of a special term αijt

j
i means that there are j shortest paths

with length i inHs,t connecting a pair of nodes with prob-
ability αij. In the definition of edge betweenness, multiple
shortest paths between a pair of nodes are given equal
weights summing to 1 [5]. Thus, we assign each such path
with a weight of 1/j. Assume that Hr is one of the shortest
paths. For each edge eq ∈ E(Hr), 1/j of all the shortest
paths contain eq with probability αij. Thus, for every
occurring of special terms, we check the x variables that
lead to the replacing of variable t, locate these x variables
to corresponding paths and append the probability distri-
bution to Bs∼t,q for each eq on these paths. For example,
consider polynomial terms resulting from Za,d. For the
polynomial term p1x1, we replace x1 with t1 after apply-
ing collapse operator φ1(). Then for each edge on the
path H1, there is one shortest path going through it with
probability p1. Here, the edge is e1. For another polyno-
mial term q1p2p3p4p5p7x32x

3
3x

3
4x

3
5, after applying collapse

operators φ2() and φ3(), we obtain q1p2p3p4p5p7t23 where
x2 and x3 are replaced with t3, and x4 and x5 are removed
as the polynomial term becomes a special polynomial
term. For each edge on the path H2, there is 1/2 shortest
path going through it with probability q1p2p3p4p5p7.
It is similar for each edge on the path H3. Notice that
for edge e4 here, there will be 1 (i.e., 1/2 + 1/2) shortest
path going through it with probability q1p2p3p4p5p7 as
e4 appears on both paths H2 and H4. We repeat this pro-
cess while calculating the distribution of Bs∼t to obtain
the distribution of Bs∼t,i. By iterating over each pair of
nodes, we obtain the distribution of Bi and calculate
Exp(Bi).

Overview of Newman-Grivan’s divisive algorithm
Here, we briefly describe the classical Newman-Grivan’s
divisive algorithm [39] for detecting communities in
deterministic networks, as our method utilizes the same
idea in that study. This work finds communities based
on a measure called edge betweenness. The betweenness
favors edges between communities and disfavors edges
within communities. One common way to calculate the
betweenness of an edge is to count the number of short-
est paths between all node pairs, which contain this edge.
More specifically, consider a pair of nodes s and t. Let us
denote the number of shortest paths connecting s and t
with ν. Among those paths, let us denote the number of
paths which contain the edge under consideration with
ν′. We compute the contribution of the node pair (s, t)
to the betweenness of that edge with ν′/ν. We repeat this
for all possible node pairs and report the sum of their
contribution as the betweenness of that edge.
Under this definition, briefly, the Newman-Grivan algo-

rithm works iteratively as follows. First, it calculates
betweenness values for all edges. Then it removes the edge
with the highest betweenness from the given network
and recalculates betweenness for the remaining edges. It
repeats this process until the graph is empty. It then picks
the iteration which yields the highest modularity value
and reports the connected components of the network
as the community structure of that network. We refer
the interested readers to Newman et al. [39] for further
details.

Computing modularity in probabilistic networks
In this section, we discuss how we calculate the modu-
larity value of a partitioning of a probabilistic network in
detail. Recall from our problem definition (Definition 2)
that given a probabilistic network G = (V , E ,P) and a par-
titioning C of G, we calculate its expectedmodularity value
denoted withQ as

Q =
∑

G∈D(G)

Q(G, C) · P(G|G). (15)

Notice that the above formulation enumerates all pos-
sible deterministic network topologies. This however is
infeasible as the number of deterministic network topolo-
gies grows exponentially with the number of edges. To
tackle this problem efficiently, we develop a polynomial
model to compute the expected modularity value.
Before describing our polynomial model, we first take a

look at another equivalent way to calculate the modularity
value of a partitioning for a deterministic network. Given
a specific deterministic network topologyG ∈ D(G) and a
partitioning C ofG, for each communityCi ∈ C, we denote
the number of edges within Ci and the sum of the degrees
of the nodes in Ci with lCi and dCi respectively. Since the
only contributions to Q(G, C) arise from the node pairs

Ren et al. BMC Bioinformatics (2018) 19:465 Page 17 of 19

belonging to the same community (see Eq. 11), we group
these contributions while iterating over each community
and calculate Q(G, C) as

Q(G, C) =
∑

Ci∈C

[
lCi

m
−
(
dCi

2m

)2
]
. (16)

By injecting the above equation to Eq. 15, we rewrite
Eq. 15 as

Q =
∑

Ci∈C

∑

G∈D(G)

[
lCi

m
−
(
dCi

2m

)2
]

· P(G|G). (17)

This equivalent way to calculate the expected modular-
ity value summarizes the contribution of each community
to expected modularity value.
Now we are ready to define our polynomial model.

Consider a probabilistic network G = (V , E ,P) and a par-
titioning C of G. For each community Cr ∈ C, we build an
xyz-polynomial and denote it with WCr . To do that, con-
sider the edges into three categories. Those that connect
the nodes belonging to Cr constitute the first category.
For each edge ei in this category, we construct an edge
polynomial as

Xi = pix + qi.

This edge polynomial contains two terms. The former
one represents that edge ei belonging to the first cate-
gory is present with probability pi. The latter one indicates
the absence of ei. The edges between community Cr and
other communities, fall into the second category. Simi-
larly, for each edge ei in this category, we construct an edge
polynomial as

Yi = piy + qi.

The remaining edges make up the third category. We
construct an edge polynomial for each edge ei in this
category as:

Zi = piz + qi.

After multiplying all these edge polynomials, the xyz-
polynomial takes the following form:

WCr =
∑

αijkxiyjzk .

Notice that each term of this xyz-polynomial, i.e.,
αijkxiyjzk , describes a possible deterministic network
topology which has i edges in Cr , j edges between Cr
and other communities, and k remaining edges exists with
probability αijk . Under this specific deterministic topol-
ogy, the number of edges within Cr , lCr = i; the sum of
degrees of nodes within Cr , dCr = 2i + j (each edge in the
first category contributes two degrees while each edge in
the second category contributes one degree); the number
of edges,m = i+ j+ k. Thus, we compute the modularity
value of Cr as

QCr =
∑

i,j,k
αijk

[
i

i + j + k
−
(

2i + j
2(i + j + k)

)2
]
.

By repeating this process for each community and
adding the contribution of each community up, we obtain
the expected modularity value. It is worth noting that,
computing the three polynomials Xr , Yr , and Zr is trivial
since each one contains only one variable. More specif-
ically, let us denote the number of edges in a category
with κ . Computing the above polynomial has O

(
κ2) time

complexity if we iteratively multiply one polynomial at a
time.

Effect of the threshold value
Recall that the threshold method maintains the set of
edges with probability value above a given threshold value
and removes the remaining edges. Thus, the outcome
of this method depends on the threshold value. In this
section, we test the performance of the threshold method
for varying values of threshold on both the shortest path
counting and the community detection problem. We run
our experiment on synthetic networks of various sizes;
50, 100 and 250. In particular, we generate 10 random
LFR benchmark networks with average degree three for
each network size. We assign the probability value using
uniform model. For the threshold method, we vary the
threshold value from 0 to 0.8 at increments of 0.1. For each
threshold value setting, we run experiment on all gener-
ated networks, and report the relative error of the shortest
path counting method and average modularity value. We
also run our method on the same set of networks and
report the average modularity. Figure 7 plots the results.
We observe that the error rate of threshold method first

goes down sharply with the increasing threshold value
(Fig. 7a). It then becomes flat after value 0.4. The major
reason is that smaller threshold values keep most edges of
the network which makes the performance of the thresh-
old method much like that of the binary method. The
larger threshold values however remove most edges of
the network which makes the number of shortest paths
between most pairs of nodes much close to 0. As a result,
the error rate is close to 1. In our shortest path counting
experiments we set the threshold value to 0.6. In Fig. 7b,
we observe that our method achieves higher expected
modularity value than the threshold method regardless of
the threshold value. The modularity value of the threshold
method first grows with the increasing threshold value.
It then falls sharply. It obtains the peak value when the
threshold is 0.3. This is possibly because too small/large
threshold leads to the retaining/removing most of the
edges of the network. Either case may make the thresh-
old method underutilize the information available in the
interaction probabilities. As a result, a suitable thresh-
old value is necessary for the threshold method. However,

Ren et al. BMC Bioinformatics (2018) 19:465 Page 18 of 19

(a) (b)
Fig. 7 Relative error rate (a) and expected modularity value (b) of threshold method on synthetic networks

the varying distribution of edge probabilities of differ-
ent probabilistic networks makes it difficult to set a fixed
threshold value for the threshold method. In our commu-
nity detection experiments, we fix the threshold value of
the threshold method to 0.3 as it obtains the best value on
the average across a broad spectrum of parameter settings.

Shortest path counting utilizes a nonlinear function
In this section, we show that shortest path counting
method uses a nonlinear function. First, we define the key
terms that are essential to describe our method. We then
show why the function used in our method is nonlinear.
Let G = (V , E) denote a probabilistic network where V

and E represent the node and edge sets, respectively. Sup-
pose that u and v are two nodes in the network G, and Gj
is the jth possible deterministic instantiation of the prob-
abilistic network G. We denote the ith path between the
nodes u and v, and its length with xi and Li, respectively.
Let Yij be a Boolean variable that represents whether the
path xi exists between nodes u and v in Gj. We formally
define Yij as

Yij =
{
1 if xi ∈ Gj

0 else

Let Zijk denote a Boolean variable that compares the path
length of xi (Li) to all other paths in the deterministic net-
work Gj. The function Zijk is equal to 1 if paths xi and xk
exist in Gj, and length of path xi (Li) is smaller than the
length of path xk (Lk). We formally define Zijk as

Zijk =
{
1 if xi ∈ Gj, xk ∈ Gj, and Li ≤ Lk
0 else

Using the Boolean variables Ykj and Zijk we define the
shortest path counting functionNSP (Number of Shortest
Paths) as

NSP =
∑

i,j

⎡

⎣Yij ×
∏

k,i

(
Ykj × Zijk + (

1 − Ykj
))
⎤

⎦

Please note that given Yij = 1 (i.e., xi path
exists in Gj), the inner term NSP function (Yij ×∏

k,i
(
Ykj × Zijk + (

1 − Ykj
))
) will be zero if Ykj = 1 and

Zijk = 0 for at least one k (i.e., xi and xk paths exist in
Gj, and path length of xi is longer than path length of xk).
The sum of all possible products in NSP function gives
the number of shortest paths in the network G. NSP is
a nonlinear function due to the products involved in its
definition.
Abbreviations
GN: Grivan and Newman; KEGG: Kyoto encyclopedia of genes and genomes;
LFR: Lancichinetti-Fortunato-Radicchi; MINT: The molecular interaction
database; NCBI: The national center for biotechnology information; RI: Rand
index; STRING: Search tool for the retrieval of interacting genes/proteins;
TCGA: The cancer genome atlas

Acknowledgements
We thank the members of the Kahveci Lab for thoughtful discussions.

Funding
This work has been supported partially by US National Science Foundation
(NSF) grant DBI-1262451 to TK, and Colgate University Research Council Major
grant to AA.

Availability of data andmaterials
All the code developed for this paper and the datasets used in our
experiments can be found at https://github.com/KahveciLab/ShortestPath.

Authors’ contributions
Developed the method: YR and TK. Conceived and designed the experiments:
YR and TK. Analyzed the data: YR, AA and TK. Wrote the manuscript: YR, AA and
TK. Agree with manuscript results and conclusions: YR, AA and TK. Jointly
developed the structure and arguments for the paper: YR, AA and TK. All
authors reviewed and approved of the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer and Information Science and Engineering,
University of Florida, 32611 Gainesville, FL, USA . 2Departments of Biology and
Mathematics, Colgate University, 13346 Hamilton, NY, USA .

https://github.com/KahveciLab/ShortestPath

Ren et al. BMC Bioinformatics (2018) 19:465 Page 19 of 19

Received: 20 January 2018 Accepted: 9 November 2018

References
1. Bray D, et al. Protein molecules as computational elements in living cells.

Nature. 1995;376(6538):307–12.
2. Barabasi A-L, Oltvai ZN. Network biology: understanding the cell’s

functional organization. Nat Rev Genet. 2004;5(2):101–13.
3. Flajolet M, Rotondo G, Daviet L, Bergametti F, Inchauspé G, Tiollais P,

Transy C, Legrain P. A genomic approach of the hepatitis c virus
generates a protein interaction map. Gene. 2000;242(1):369–79.

4. Uetz P, et al. A comprehensive analysis of protein–protein interactions in
saccharomyces cerevisiae. Nature. 2000;403(6770):623–7.

5. Girvan M, Newman ME. Community structure in social and biological
networks. Proc Natl Acad Sci. 2002;99(12):7821–6.

6. Albert R, Jeong H, Barabási A-L. Error and attack tolerance of complex
networks. Nature. 2000;406(6794):378–82.

7. GreenML, Karp PD. A bayesianmethod for identifyingmissing enzymes in
predicted metabolic pathway databases. BMC Bioinformatics. 2004;5(1):1.

8. Scott J, Ideker T, Karp RM, Sharan R. Efficient algorithms for detecting
signaling pathways in protein interaction networks. J Comput Biol.
2006;13(2):133–44.

9. Wang H, Huang H, Ding C. Function–function correlated multi-label
protein function prediction over interaction networks. J Comput Biology.
2013;20(4):322–43.

10. Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of
human disease genes. Mol Systems Biology. 2008;4(1):189.

11. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes
and protein complexes with disease via network propagation. PLoS
Comput Biol. 2010;6(1):1000641.

12. Cerami E, Demir E, Schultz N, Taylor BS, Sander C. Automated network
analysis identifies core pathways in glioblastoma. PloS ONE. 2010;5(2):
8918.

13. Dunn R, Dudbridge F, Sanderson CM. The use of edge-betweenness
clustering to investigate biological function in protein interaction
networks. BMC Bioinformatics. 2005;6(1):39.

14. Managbanag J, Witten TM, Bonchev D, Fox LA, Tsuchiya M, Kennedy BK,
Kaeberlein M. Shortest-path network analysis is a useful approach toward
identifying genetic determinants of longevity. PloS ONE. 2008;3(11):3802.

15. Vital-Lopez FG, Memišević V, Dutta B. Tutorial on biological networks.
Wiley Interdiscip Rev Data Min Knowl Disc. 2012;2(4):298–325.

16. Rives AW, Galitski T. Modular organization of cellular networks. Proc Natl
Acad Sci. 2003;100(3):1128–33.

17. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S,
Datta N, Tikuisis AP, et al. Global landscape of protein complexes in the
yeast saccharomyces cerevisiae. Nature. 2006;440(7084):637–43.

18. Ryba T, Hiratani I, Sasaki T, Battaglia D, Kulik M, Zhang J, Dalton S,
Gilbert DM. Replication timing: a fingerprint for cell identity and
pluripotency. PLoS Comput Biol. 2011;7(10):1002225.

19. Ceol A, Chatr Aryamontri A, Licata L, Peluso D, Briganti L, Perfetto L,
Castagnoli L, Cesareni G. MINT, the molecular interaction database: 2009
update. Nucleic Acids Res. 2009;38(suppl_1):D532–D539.

20. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P,
Doerks T, Stark M, Muller J, Bork P. The STRING database in 2011:
functional interaction networks of proteins, globally integrated and
scored. Nucleic Acids Res. 2010973.

21. Biggs N, Biggs NL, Biggs EN. Algebraic Graph Theory vol. 67. Cambridge:
Cambridge university press; 1993.

22. Bollobás B. Modern Graph Theory vol. 184. Heidelberg: Springer; 2013.
23. Hosoya H. On some counting polynomials in chemistry. Discret Appl

Math. 1988;19(1-3):239–57.
24. Welsh DJ, Merino C. The potts model and the tutte polynomial. J Math

Phys. 2000;41(3):1127–52.
25. Emmert-Streib F. Algorithmic computation of knot polynomials of

secondary structure elements of proteins. J Comput Biol. 2006;13(8):
1503–12.

26. Sarkar A, Ren Y, Elhesha R, Kahveci T. Counting independent motifs in
probabilistic networks. In: Proceedings of the 7th ACM International
Conference on Bioinformatics, Computational Biology, and Health
Informatics. New York: ACM; 2016. p. 231–40.

27. Gabr H, Todor A, Zandi H, Dobra A, Kahveci T. Preach: Reachability in
probabilistic signaling networks. In: Proceedings of the International
Conference on Bioinformatics, Computational Biology and Biomedical
Informatics. New York: ACM; 2013. p. 3.

28. Yuanfang Ren AS, Kahveci T. Promote: an efficient algorithm for counting
independent motifs in uncertain network topologies. BMC Bioinformatics.
2018;19(1):242:1–17.

29. Frank H. Shortest paths in probabilistic graphs. Operations Res. 1969;17(4):
583–99.

30. Sigal CE, Pritsker AAB, Solberg JJ. The stochastic shortest route problem.
Operations Res. 1980;28(5):1122–9.

31. Fu L, Rilett LR. Expected shortest paths in dynamic and stochastic traffic
networks. Transp Res B Methodol. 1998;32(7):499–516.

32. Gubichev A, Bedathur S, Seufert S, Weikum G. Fast and accurate
estimation of shortest paths in large graphs. In: Proceedings of the 19th
ACM International Conference on Information and Knowledge
Management. New York: ACM; 2010. p. 499–508.

33. Sommer C. Shortest-path queries in static networks. ACM Comput Surv
(CSUR). 2014;46(4):45.

34. Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D. A
combined algorithm for genome-wide prediction of protein function.
Nature. 1999;402(6757):83–6.

35. Schwikowski B, Uetz P, Fields S. A network of protein–protein
interactions in yeast. Nat Biotechnol. 2000;18(12):1257–61.

36. Huang H, Zhang LV, Roth FP, Bader JS. Probabilistic paths for protein
complex inference. In: Systems Biology and Computational Proteomics.
Heidelberg: Springer; 2007. p. 14–28.

37. Poisot T, Cirtwill AR, Cazelles K, Gravel D, Fortin M-J, Stouffer DB. The
structure of probabilistic networks. Methods Ecol Evol. 2015;7(3):303–312.

38. Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing
community detection algorithms. Phys Rev E. 2008;78(4):046110.

39. Newman ME, Girvan M. Finding and evaluating community structure in
networks. Phys Rev E. 2004;69(2):026113.

40. Chang L-C, Yu Y-L, Liu C-Y, Cheng Y-Y, Chou R-H, Hsieh M-T, Lin H-Y,
Hung H-Y, Huang L-J, Wu Y-C, et al. The newly synthesized
2-arylnaphthyridin-4-one, csc-3436, induces apoptosis of non-small cell
lung cancer cells by inhibiting tubulin dynamics and activating cdk1.
Cancer Chemother Pharmacol. 2015;75(6):1303–15.

41. Kang J, Sergio CM, Sutherland RL, Musgrove EA. Targeting cyclin-
dependent kinase 1 (cdk1) but not cdk4/6 or cdk2 is selectively lethal to
myc-dependent human breast cancer cells. BMC Cancer. 2014;14(1):32.

42. Hedblom A, Laursen K, Miftakhova R, Sarwar M, Anagnostaki L,
Bredberg A, Mongan N, Gudas LJ, Persson J. Cdk1 interacts with rarγ
and plays an important role in treatment response of acute myeloid
leukemia. Cell Cycle. 2013;12(8):1251–66.

43. Chang W-L, Yu C-C, Chen C-S, Guh J-H. Tubulin-binding agents
down-regulate matrix metalloproteinase-2 and-9 in human
hormone-refractory prostate cancer cells–a critical role of cdk1 in mitotic
entry. Biochem Pharmacol. 2015;94(1):12–21.

44. Satyanarayana A, Berthet C, Lopez-Molina J, Coppola V, Tessarollo L,
Kaldis P. Genetic substitution of cdk1 by cdk2 leads to embryonic lethality
and loss of meiotic function of cdk2. Development. 2008;135(20):
3389–400.

45. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen C-C,
Wongvipat J, Ku S-Y, Gao D, Cao Z, et al. Sox2 promotes lineage
plasticity and antiandrogen resistance in tp53-and rb1-deficient prostate
cancer. Science. 2017;355(6320):84–8.

46. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, Goodrich MM,
Labbé DP, Gomez EC, Wang J, et al. Rb1 and trp53 cooperate to suppress
prostate cancer lineage plasticity, metastasis, and antiandrogen
resistance. Science. 2017;355(6320):78–83.

47. Newman ME. Modularity and community structure in networks. Proc Natl
Acad Sci. 2006;103(23):8577–82.

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Preliminaries
	Counting shortest paths in probabilistic networks
	Building the bipartite graph

	Example of the counting shortest paths strategy

	Results
	Synthetic datasets.
	Real datasets.
	Competing methods.

	Accuracy and computational cost of shortest path counting methods
	Effects of network model parameters on community detection

	Discussion and Conclusion
	Appendix:
	Community detection problem
	Model edge betweenness in probabilistic networks

	Overview of Newman-Grivan's divisive algorithm
	Computing modularity in probabilistic networks

	Effect of the threshold value
	Shortest path counting utilizes a nonlinear function
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

