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Abstract

Background: Environmental stress induced genetic polymorphisms have been suggested to arbitrate functional
modifications influencing adaptations in microbes. The relationship between the genetic processes and concomitant
functional adaptation can now be investigated at a genomic scale with the help of next generation sequencing (NGS)
technologies. Using a NGS approach we identified genetic variations putatively underlying chromium tolerance in a
strain of Aspergillus flavus isolated from a tannery sludge. Correlation of nsSNPs in the candidate genes (n = 493) were
investigated for their influence on protein structure and possible function. Whole genome sequencing of chromium
tolerant A. flavus strain (TERIBR1) was done (lllumina HiSeq2000). The alignment of quality trimmed data of TERIBRT1
with reference NRRL3357 (accession number EQ963472) strain was performed using Bowtie2 version 2.2.8. SNP with a
minimum read depth of 5 and not in vicinity (10 bp) of INDEL were filtered. Candidate genes conferring chromium
resistance were selected and SNPs were identified. Protein structure modeling and interpretation for protein-ligand
(CrO,~?) docking for selected proteins harbouring non-synonymous substitutions were done using Phyre2 and
PatchDock programs.

Results: High rate of nsSNPs (approximately 11/kb) occurred in selected candidate genes for chromium tolerance.
Of the 16 candidate genes selected for studying effect of nsSNPs on protein structure and protein-ligand interaction,
four proteins belonging to the Major Facilitator Superfamily (MFS) and recG protein families showed significant
interaction with chromium ion only in the chromium tolerant A. flavus strain TERIBRT.

Conclusions: Presence of nsSNPs and subsequent amino-acid alterations evidently influenced the 3D structures of
the candidate proteins, which could have led to improved interaction with (CrO,~ ?) ion. Such structural modifications
might have enhanced chromium efflux efficiency of A. flavus (TERIBR1) and thereby offered the adaptation benefits
in counteracting chromate stress. Our findings are of fundamental importance to the field of heavy-metal bio-remediation.
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Background

Bioremediation of heavy metals by microbial cells has
been recognized as a potential alternative to the existing
physico-chemical technologies for recovery of heavy
metals from industrial effluents [1]. Metal uptake in
microorganisms takes place either actively (bioaccumula-
tion) or passively (biosorption) [2—6]. Several species of
bacteria and fungi have been identified for their bio-
accumulation or absorption potentials and reduced cost
and toxicity achieved by microbial bioremediation ap-
proach are appreciated over the conventional methods [7].
Various bacterial species detoxify chromium by periplas-
mic absorption, intracellular bioaccumulation and bio-
transformation through direct enzymatic reaction or
indirectly with metabolites. Filamentous fungi have been
identified as a potential biomass for removal of heavy
metals from solutions and species of Aspergillus, Rhizopus
and Penicillium are reported useful in biological treatment
of the sludge [8—11], Several reports support the promin-
ent ability of Aspergillus flavus in detoxification of chro-
mium and other heavy metals [12]. However, the
molecular mechanisms underlying heavy metal detoxifica-
tion in fungi are largely unknown. Understanding the
genes and pathways involved in metal accumulation/toler-
ance in fungi has several biotechnological implications for
bioremediation of heavy metal-contaminated sites.

The extensive use of chromium in diverse industrial
processes has made it a significant environmental con-
taminant. Chromium is a Class A human carcinogen
[13, 14] and exists in eleven valence states (from -IV to
+VI), among which Cr (III) and Cr (VI) are the most
stable forms in the environment. Due to high water solu-
bility Cr (VI) is 100-folds more toxic over Cr (III). As
per the United States Environmental Protection Agency
(US EPA) the maximum contaminant level for Cr (VI)
and total chromium content in domestic water supplies
is 0.05 and 2mg/l respectively [15]. Cr (VI) actively
crosses biological membranes [16] and generates active
intermediates Cr (V) and/or Cr (IV), free radicals, and
Cr (III). Cellular accumulation of Cr (III) causes damage
to DNA and alters the structure and activity of proteins
[17, 18]. The existing physico-chemical processes for
treating chromium-contaminated water bodies include
precipitation, ion exchange, reverse osmosis, evaporation
and electro dialysis, which are reported to display poor
efficiency [14, 19-24].

For survival in Cr (VI) contaminated environments,
microorganisms must develop efficient systems to detox-
ify the effects of chromium. These mechanisms involve
detoxification or repair strategies such as Cr (VI) efflux
pumps, Cr (VI) reduction to Cr (III), and activation of
enzymes involved in the detoxifying processes, repair of
DNA lesions, sulfur metabolism, and iron homeostasis
[16, 18, 25]. Additionally, alterations in gene function

Page 2 of 16

due to mutation have been suggested to support survival
under chromium toxic conditions [26]. Biotransform-
ation and biosorption are suggested as the putative fun-
gal processes that help them transform or adsorb heavy
metals [27]. The fungal cell walls predominantly consist
of chitins, glucans, mannans and proteins in addition to
other polysaccharides, lipids and pigments [28, 29]. The
functional groups on these structural components enable
binding of metal ions on the fungal cell walls [30]. Up-
take and reduction of hexavalent chromium has been
suggested as the mechanisms for chromium tolerance in
Aspergillus sp. [27, 31].

Information on genes supporting survival under environ-
mental stress in bacterial system has been recently curated
in BacMet database (http://bacmet.biomedicine.gu.se)
which primarily contains several experimentally verified
Chromate ion transporter (CHR) genes [32] responsible
for chromium efflux, transport or binding, and other en-
zymes involved in chromium uptake. However, very less
knowledge is available on genetic mechanisms responsible
for chromium tolerance in fungi. In the Neurospora crassa
strain 74-A, chr-1 gene that encodes a putative CHR-1
protein and belongs to the CHR superfamily was identi-
fied [33]. However, contrary to the bacterial ChrA (chro-
mate transport protein) homologues that confer chromate
resistance by exporting chromate ions from the cell’s cyto-
plasm, the experimental data suggested that the N. crassa
CHR-1 protein functions as a transporter that takes up
chromate [34]. The presence of CHR-1 protein was re-
ported to cause chromate sensitivity and chromium accu-
mulation in N. crassa.

Experimental evidences in a recent study suggested
that environmental stress could induce adaptation in a
wide range of micro-organisms by extensive positive
pleiotropy in a manner that multiple beneficial muta-
tions dramatically enhance numerous fitness compo-
nents simultaneously [35]. Environmentally induced
mutations and polymorphisms in DNA and subsequently
the alteration in proteins are hypothesized to offer a sig-
nificant evolutionary advantage by enabling faster adap-
tation to toxic conditions [36]. We identified a high
chromium tolerant Aspergillus flavus strain (TERIBR1)
from a tannery sludge in Kanpur, Uttar Pradesh, India.
TERIBR1 showed accumulation of Cr (III) in its biomass
while growing in Cr containing media. It showed no
toxic effect of Cr (VI) up to 250 mg/l. In order to iden-
tify the genetic factors underlying chromium tolerance
in TERIBR1, we investigated effects of nonsynonymous
variations (nsSNPs) in candidate genes on protein struc-
ture and their interaction with chromate ion.

Our study comprises whole genome sequencing of A.
flavus strain TERIBR1 followed by single nucleotide
polymorphism (SNPs) analysis in candidate genes for
chromium-resistance. Protein modeling for candidate
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genes with nsSNPs was done and interactions between
modeled proteins and the ligand (CrO,~ 2) were assessed
by protein-ligand docking. For all comparative genomics
and genetics analyses the A. flavus strain TERIBR1 was
considered as the “test” and previously sequenced strain
NRRL3357 as the “reference” type.

Materials and methods

Fungal strain and DNA extraction

The protocol followed for isolation and characterization
of fungi from a tannery sludge is previously described
[37]. Briefly, the Cr-resistant fungi were isolated from a
tannery sludge [containing 250 mg/l of Cr (III)] through
an enrichment culture technique. The sludge sample was
collected from a tannery waste disposal site in Kanpur,
India. Pure culture of the isolated A. flavus strain (TER-
IBR1) was grown in potato dextrose broth (PDB) at 28 °C
in a shaking incubator (100 rpm) for 72 h in dark condi-
tion. After incubation, culture was centrifuged at 5000 g
for 10 min at room temperature. The pellet was washed
thrice with sterile distilled water to remove any media
components and was further used for DNA extraction.
Genomic DNA was extracted using the DNeasy plant mini
kit (QIAGEN, USA), according to the manufacturer’s in-
structions. Genetic characterization of isolated fungi was
done using universal fungal ITS (nuclear ribosomal
internal transcribed spacer) primer set [[TS1: 5 TCCG
TAGGTGAACCTGCGG, 3’ and ITS4: 5 TCCTCCGCT
TATTGATATGC 3’; [38] that amplified the ITS1, 5.8S
and ITS2 regions of the nuclear ribosomal RNA genes.

Growth kinetics and sensitivity to Cr (VI)

The effect of different concentrations of chromium
[Cr (VD)], 0 mg/l, 100 mg/1 and 250 mg/], on the growth of
A. flavus strains TERIBR1 and NRRL3357 was compared.
The strains were grown in PDB and mycelial biomass
(dry weight) was measured at different time periods
(0, 1, 2, 3, 4 and 5 days).

Genome sequencing and assembly

Genome sequencing was performed at MOgene LC, USA,
using next generation sequencing technology Illumina as
reported previously [39]. Two paired end libraries (insert
sizes 180 bp and 500 bp) and one mate pair library (5 kb)
were constructed. DNA libraries were purified using
AMPure XP beads. KAPA was done to quantify the librar-
ies, which were then normalized and pooled at 4nM
concentration.

A total of 8 GB raw data was subjected to adaptor- and
quality-based trimming. Quality-passed data was assem-
bled using the de novo genome assembler AllpathsLG
[40]. Reads with overlaps were first combined to form
contigs. The reads were mapped back to contigs. With
paired-end reads, contigs from the same transcript, as well
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as the distances between these contigs, were detected. In
order to generate scaffolds, contigs were connected using
“N” to represent unknown sequences between two con-
tigs. Mate-pair reads were used for gap filling of scaffolds
in order to get sequences with minimal N’s and the
longest length. The whole genome project has been de-
posited at https://submit.ncbi.nlm.nih.gov/subs/wgs/under
Bioproject PRINA362980.

Structural and functional annotation of A. flavus TER-
IBR1 genome was done using MAKER [41] pipeline,
InterProScan [42] and nrBlast [39] as described previously.

Identification of single nucleotide polymorphisms (SNPs)

Genome and protein sequences for reference genome
were retrieved from the Aspergillus flavus Database
(http://fungidb.org/fungidb/app/record/organism/aflaNR
RL3357). The alignment of quality trimmed data of
TERIBR1 with NRRL3357 (assembly) was performed
using Bowtie2 version 2.2.8 [43]. Samtools [http://sam
tools.sourceforge.net/] was used for SNP identification.

SNP analysis in candidate genes for chromium resistance
Genes conferring chromium resistance in bacterial system
were selected from BacMet database [32]. BacMet is freely
available antibacterial biocide and metal resistance genes
database for bacteria. InterProScan analysis [42] was per-
formed to identify A. flavus genes harbouring atleast one
IPR domains that are present in the chromium resistance
genes documented in the BacMet database. SNPs were
identified in the selected candidate genes using variant
calling format (VCF) file and Blastn tool. SNPs were
further annotated as synonymous or non-synonymous
(nsSNPs) using an in-house perl script.

Protein structure modeling

Protein modeling was done by fold recognition methods
through Phyre2 server [44]. The amino acid sequences of
candidate genes in both the reference (NRRL3357) and
the test strains were modeled. The top model with highest
confidence and coverage was selected for each protein.
The predicted confidence score and coverage for all the
final structures were recorded. To assess the reliability of
all the predicted models, structural analysis and verifica-
tion was exercised. The selected models were validated
using the PROCHECK [45] and ERRAT [46] to estimate
the stereo chemical figures, geometry, and hydrogen
bonding energy, torsion angles and error rate of the pre-
dicted structures. In addition, energy minimization was
performed with in vacuo GROMOS96 43B1 parameters
set using GROMOS96 implementation in Swiss-Pdb
Viewer [47]. The energy optimized protein structures were
used for protein-small ligand docking.
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Prediction of ligand binding sites

Prior to docking, a web based approach 3DLigandSite [48]
was used to predict the ligand binding sites. 3DLigandSite
utilizes protein-structure prediction to provide structural
models for proteins that have not been solved. Ligands
bound to structures similar to the query are superimposed
onto the model and used to predict the binding site.

Protein- ligand docking

In order to investigate protein—ligand interactions,
proteins were docked with the chromate ion (CrO, ?)
through a rigid docking protocol using PatchDock
(http://bioinfo3d.cs.tau.ac.il/PatchDock/) [49, 50] which
docks the ligand with the protein based on structure com-
plementarity. Also, binding sites predicted by 3DLigand-
Site in the receptor/proteins were specified and uploaded
in PatchDock analysis. The protein-ligand interactions
were interpreted based on Atomic Contact Energy (ACE)
and docking score. The pdb file of chromate ion was
downloaded from the RCSB PDB (research collaborator fo
structural Bioinformatics protein data bank) site [51]. The
PDB structures of target proteins and protein-ligand inter-
action were visualized using the PyMOL [52].

Results

Growth kinetics and sensitivity to Cr (VI)

Dry weight of fungal biomass was recorded at different
time periods (from 1 to 5days) for both the strains under
the conditions mentioned above. No significant difference
in growth was observed between the two strains under the
control condition (Fig. 1). However, stark difference in the
mycelial biomass (dry weight) between the reference strain
(NRRL3357) and the test strain (TERIBR1) was observed
when potato dextrose broth was amended with chromium
100 mg/l and 250 mg/l. Growth kinetics of the TERIBR1
strain at chromium concentration of 100 mg/l were similar
to that observed under control condition (no chromium).
The reference strain exhibited delayed growth response
with concomitant decrease in biomass in comparison to
the test strain at different time intervals (between day 1
and day 5) when the growth media was amended with
chromium at concentrations of 100 mg/1 and 250 mg/1.

Global genome structure

The genome of A. flavus strain TERIBR1 was sequenced
to 200x coverage and reads were assembled into 322 scaf-
folds. The sum of the scaffolds length is equal to 38.2 Mb.
The three largest scaffolds are 2.76 kb, 2.64 kb, and 2.50
kb in size. The MAKER annotation pipeline predicted
13,587 protein coding genes as compared to 13,659 in
NRRL3357. Gain or loss of unique genes, DNA duplica-
tion, gene family expansion, and translocation of
transposon-like elements are often observed between dif-
ferent isolates of a fungal species [53]. This may suggest
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Fig. 1 Chromium [Cr (VI)] dose response exhibited by TERIBRT and
NRRL3357 strains of A. flavus. Chromium dose/growth response
(measured by dry weight) exhibited by TERIBRT and NRRL3357
strains of A. flavus grown up to 5 days in potato dextrose broth

supplemented with Cr (VI): (@) 0 mg/l, (b) 100 mg/l and 250 mg/I

that some of the genes present in NRRL3357 could have
been lost in TERIBRI, possibly during environmental
adaptations.

Identification of candidate genes in A. flavus

No homologue of CHR-1 protein (XP_961667.3) coded
by N. crassa was identified in both the A. flavus strains
included in this study. A total of 34 InterProScan do-
mains coding for transporter or regulator proteins re-
sponsible for chromium bio-accumulation or tolerance
in bacteria were reported in the BacMet database.
nrBlast was performed to identify genes containing at
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least one IPR domain associated with chromium toler-
ance in the genome of A.

Flavus strain TERIBR1, NRRL3357 (http://fungidb.org/
fungidb/app/record/organism/aflaNRRL3357) and AF70
(https://www.ncbi.nlm.nih.gov/assembly/GCA_000952835
.1). 23/34 bacterial IPR domains were not found in any of
the three strains of A. flavus. A total of 493 candidate
genes was identified to harbor one or more IPR domains
of interest in TERIBR1(Table 1). IPR domains mdrL/yfmO
(IPRO11701; n =334), recG (IPR0O01650; n =71), ruvB
(IPR003959; n =45) and recG (IPR011545; n =44) were
among the maximally present protein domains related to
chromium resistance.

Identification of single nucleotide polymorphisms (SNPs)
The read alignment rate of TERIBR1 with NRRL3357
(assembly) was 78.62% (29,001,807 / 36,890,268) of which
78.23% (22,681,743) were uniquely mapped reads. A total
of 201,145 SNPs (read depth >5) was identified at a fre-
quency of ~5 SNPs per Kb of the TERIBR1 genome. SNP
mapping in # =493 candidate genes, homologous among
A. flavus NRRL3357 and TERIBRI isolates was done using
Samtools. No SNP was identified in 325/493 genes. SNPs
identified in the remaining # = 168 genes were annotated
as synonymous or non-synonymous (Additional file 1:
Table S1). 28/168 candidate genes contained only
synonymous polymorphisms whereas 16/168 candidate
genes, belonging to MFES (n =12), recG (n =3) and chrE
(n=1) protein families, showed higher rate of nsSNP as
compared to other candidate genes (Additional file 2:
Table S2).

Protein- ligand docking

For studying protein-chromate ion interaction, we pre-
dicted tertiary protein structures of homologous pairs of
the 16 highly polymorphic proteins (Additional file 2:
Table S2) using Phyre2 server (Additional file 3: Table S3).
Prediction for Cr binding sites in the target proteins was
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done by 3DLigandSite (Table 2). Strength of
protein-ligand interaction was measured based on the
atomic contact energy (ACE) in the PatchDock score
(Table 3). Also change in free energy (AG) of the amino
acid residues present in the predicted binding and ligand
docking sites was recorded (Fig. 2). Structures of 8 pro-
teins in both the reference and test strains did not show
any possible interaction between the ligand and the target
proteins. Ligand docking was observed in both the strains
for four proteins (g8975, g685, g6212, g9525; Add-
itional file 4: Figure S1). Binding residues that showed a
drop in free energy on chromate docking in PatchDock
analysis are depicted on the 3D structures of these four
proteins (Additional file 4: Figure S1).

Interestingly, the presence of non-synonymous muta-
tions correlated with change in bioactive conformation
and drop in free energy (AG) of four proteins (g9986,
g3683, g4104, g4641) belonging to three MFS and one
recG (helicase) superfamilies in the test strain only
(Fig. 2). The structural changes in these proteins lead
to successful protein-ligand interactions.

Discussion
As expected for functional conservation, majority of can-
didate genes in the TERIBR1 genome showed the presence
of a large number of sSNPs and a few nsSNPs. Notably,
28/168 candidate genes contained only synonymous poly-
morphisms. Synonymous codon positions, though do not
alter amino acid sequences of the encoded proteins, they
may determine secondary structure, stability and transla-
tion rate of the mRNA [54]. Presence of sSNPs in the
chromium tolerance candidate genes in the test strain
could have affected folding and post-translational modifi-
cations of the nascent polypeptides which could in turn
affect candidate protein expression and function towards
Cr tolerance.

The polymorphism rate in 16 candidate genes that
showed a high frequency of nsSNPs as compared to

Table 1 Distribution of IPR domains important in chromium bio-accumulation in A. flavus strains TERIBRT, NRRL3357 & AF70

Gene Family (BacMet db) Description Interproscan Domain # of Genes containing IPR domains of interest
NRRL3357 TERIBR1 AF70
Chromate ion transporter (CHR) family (chrA) Efflux IPRO03370 1 1 2
Rhodanese family (chrE) Enzyme IPROO1763 9 6 10
NADH_dh2 family (chrR) Enzyme IPRO05025 4 4 4
IPRO00415 0 3 0
MFS superfamily (mdrL/yfmO) Efflux IPRO11701 374 334 394
Contains 1 DEAD/DEAH box helicase domain (recG) Enzyme IPROT1545 43 44 42
IPRO0T650 74 71 80
IPRO04365 2 5 4
RuvB family (ruvB) Enzyme IPR003959 47 45 48

IPRO12301 2 2 2
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Figure was produced using the PyMOL Molecular Graphics System

\

Fig. 2 Protein-chromate ion interaction observed with four MFS transporter proteins of A. flavus strain TERIBR1. Docking of chromate ion with
MFS transporter proteins in occluded conformation. The chromate ion is depicted as a sphere model. The amino acids of the interacting protein
showing negative energy are depicted as bright orange sticks and the interacting binding sites as green sticks. Presence of nsSNPs in the protein
sequence is shown in magenta. Amino-acids present in the close vicinity of the binding sites are marked in black (sSNP) and magenta (nsSNP).

synonymous changes (Table 2) was ~ 16 SNPs/Kb with a
frequency of ~ 11 nsSNPs/Kb. The observed high rate of
nsSNPs in chromium-tolerance candidate genes of
TERIBR1 as compared to the housekeeping genes
(0.4 nsSNPs/kb; Table 4) could mirror environmental
stress induced DNA variations and might provide an ad-
vantage in counteracting chromate stress. These included
genes from mdrL/yfmO (12), recG (3) and chrE (1) fam-
ilies. The mdrL/yfmO genes belonged to the major facili-
tator superfamily (MFS), which codes for a metal

ion-specific efflux protein [55]. High frequency of nsSNPs
observed in the mdrL/yfmO genes in TERIBR1 could have
led to altered protein structure and subsequent chromium
efflux efficacy under extreme environmental condition,
which we discussed in detail under the protein-ligand
docking section. recG is a conserved enzyme present in
bacteria, archaea, and eukaryota. recG encodes for the
ATP-dependent recG DNA helicase which plays a critical
role in DNA recombination and repair [56]. In vivo exper-
iments conducted in E. coli showed that chromium salt
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Table 3 Docking analysis using PatchDock for selected proteins
of A flavus strain TERIBR1

Protein ID TERIBR1 Score Area ACE (kcal/mol)
g652 2764 3305 —13.58
g9548 2496 304.5 —58.67
bg8975 2806 3334 —29.90
g5755 2746 3296 31.22
bg685 2576 3214 -1.40
g641 2846 3229 19.42
bg621 2 2924 3268 -62.95
299986 2644 296.6 -46.56
g9401 2594 3246 —7747
%93683 2788 306.3 -30.21
g4359 2664 2858 —60.63
294104 3034 3354 -72.70
bg9525 2966 3622 —83.82
g712 2454 2994 -7.63
g9088 2368 258 —62.84
294641 2772 302.9 -66.10

Protein - ligand interaction observed only in A. flavus strain TERIBR1
PProtein - ligand interaction observed in both the strains of A. flavus
The entries marked in bold indicate significant interaction of ligand with
the protein

stimulates several stress promoters associated with differ-
ent types of DNA damage, indicating that DNA is one of
the main targets for Cr (III) inside the cell [57]. After be-
ing internalized in cells Cr (VI) is reduced to Cr (III); recG
eliminates polymerase arresting lesions (PALs), caused by
Cr (III). The observed high frequency of nsSNPs in recG
genes observed in our study might have resulted in higher
efficiency of the enzyme to remove PAL lesions, thus me-
diating chromium stress tolerance in the fungal strain. In
congruence, a study in Pseudomonas corrugata suggested
that recG helicase played a crucial role in chromium toler-
ance by dismissing PAL lesions caused by Cr (VI)/Cr (III)
[58]. The chrE gene encodes a rhodanese type enzyme
[59]. Rhodanese protein subfamilies are suggested to be
involved in different biological functions including cyanide
detoxification, arsenic resistance and chromate responsive
DNA-binding regulator. In addition, UniProt database de-
fines ChrE as proteins involved in the processing of
chromium-glutathione-complexes. An abundance of
nsSNPs in these candidate genes for chromium tolerance
could be the result of environment induced variations,
perhaps for achieving functional relevance in TERIBRI.
Environmentally guided changes in DNA and subse-
quently the proteins could be advantageous and may en-
able functional adaptation to extreme environmental
influences [36].

Several studies have shown that non-synonymous sub-
stitutions are likely to affect protein structure [60].
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Mapping of nsSNPs to a known 3D structure reveals
whether the replacement is likely to destroy the hydro-
phobic property of a protein, electrostatic interactions or
interactions with ligands. Many nsSNPs have been found
near or inside the protein-protein interaction interfaces
that alter the protein function [61]. Sequence-based
structure predictions help in identifying the positions of
a protein that are located in the active site. Protein — lig-
and docking analysis further helps in identifying crucial
amino-acids that are involved in ligand binding.
Non-synonymous mutations mediated change in free
energy (AG) and concomitant bioactive conformation of
four proteins (g9986, g3683, g4104, g4641) belonging to
the MFS and recG helicase super families were note-
worthy. A decrease in free energy and atomic contact en-
ergy (ACE) putatively resulted in target-ligand interaction
with a significant PatchDock score in the case of the pro-
teins coded by the chromium tolerant strain, TERIBR1
(Table 2); whereas no ligand interaction was observed in
the corresponding proteins coded by reference strain. Fig-
ure 2 shows the results of the molecular docking studies
of the four proteins (g9986, g4104, g4641, g3683) coded
by TERIBRI1 strain. Ligand binding free energy estimates
(ACE) indicated a significant decrease in free energy of
these proteins (Table 3). The nsSNPs in the candidate
genes of the chromium tolerant A. flavus strain TERIBR1
seemed to have influenced protein structure that could
have mediated protein and chromium interaction. How-
ever, not much overlapping between the predicted binding
sites (by 3DLigandSite) and the ligand docking position
was observed for these proteins. The multidrug trans-
porters of the MFS superfamily are polyspecific and can
extrude a remarkably diverse range of substrates.
However, discussions pertaining to multi-substrate recog-
nition and transport by members of the MFS are still open
and it is not clear if the same amino acid residues are in-
volved in substrate recognition and binding in varying
conformations of the protein [62]. Biochemical studies on
the Escherichia coli MFS drug/H+ antiporter concluded
that the structural basis of substrate promiscuity is gov-
erned by a large, flexible and complex substrate recogni-
tion cavity within the protein, which enables different
substrates to interact with different amino acid residues of
the cavity, and to form different interactions with MFS
transporter [63, 64]. The putative correlation between the
influence of genetic polymorphisms on the structure and
function of MFS transporters and chromium tolerance in
A. flavus suggested the importance of efflux mechanism in
microbial chromium tolerance. Our results supported pre-
vious reports of heavy metal efflux as one of the primary
mechanisms of tolerance in microbial systems [65, 66].
Furthermore, ligand docking was observed in four proteins
(g8975, g685, g6212, g9525) and their homologs coded by
the test and the reference strains respectively. The non-
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synonymous amino acid changes in these cases seemed to
have no influence on protein-ligand interaction.

In a recent study four populations of yeast, exposed to
arsenic in its most toxic form, As (III), accumulated
changes in DNA, adapted faster and went from poor to
optimal performance for fitness components (length of
lag phase, population doubling time and efficiency of
growth) within just a few mitotic divisions. The study
concluded that fitness component enhancements in
yeast populations were adaptive responses to arsenic and
not to other selective pressures [35]. The observed high
rate of variations in the DNA of A. flavus strain TER-
IBR1 in our study, especially nsSNP polymorphisms,
highlights the scope for additional research on genetic
mechanisms operating in A. flavus in order to conclude
on the role of stress mediated alterations in DNA on
adaptation in micro-organisms.

Conclusions

Changes in DNA, guided by extreme environmental condi-
tions, could influence the structure of proteins important in
chromium stress tolerance in Aspergillus flavus. The struc-
tural changes in transporter proteins and enzymes are ex-
pected to have potential influence on their functional
efficacy. Our study provided insights into the genetic fac-
tors governing heavy metal tolerance, which may aid in the
development of future heavy metal bio-remediation tech-
nologies. Further, to ensure that the genes presenting
nsSNPs are involved in the tolerance to chromium of the
TERIBRI strain, the results obtained in the present study
demand cross validation by a proteome analysis.
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