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To the Editor: Diabetic nephropathy (DN) is the leading cause 
of chronic renal diseases and accounts for almost 50% of all 
end‑stage renal diseases worldwide. The prevalence of DN 
increased significantly after 2010 in China.[1,2] DN is clinically 
characterized by proteinuria and morphological and ultrastructural 
changes in the kidney. The pathogenesis of DN is multifactorial and 
extremely complex, including hyperglycemia, transforming growth 
factor (TGF)‑β1, angiotensin II, DNA methylation, chromatin 
histone modification, microRNAs, and long noncoding RNAs.

In the past 10 years, advances in high‑throughput transcriptomics 
technology and analysis methods have provided the unprecedented 
opportunity to investigate the mechanisms of complex diseases 
with high resolution. A series of transcriptomics studies have been 
performed in DN patients and animal models, but most of these 
studies only focused on the differentially expressed genes (DEGs).

In addition to identifying the DEGs, identifying the regulators, 
which are relevant or even causative to the phenotypic changes 
of DN, is a challenging and worthwhile goal. Unfortunately, this 
goal cannot be achieved using differential expression analysis 
alone, not only because the causal genes are always buried within 
a large amount of DEGs but also because a causal regulator may 
not necessarily be a DEG. For example, if a posttranslational 
modification occurs to a transcription factor (TF) in a disease 
state, the TF, at its original expression level, can no longer activate 
its original target genes, instead activating a new group of target 
genes. In such a circumstance, the expression correlation between 
the TF and its targets can be affected; this TF might be captured 
using differential coexpression analysis (DCEA) and differential 
regulation analysis (DRA).[3] To further investigate the potential 
gene regulation patterns in the DN, DCEA and DRA were used in 
this study to identify molecular regulators, which play important 
roles in the pathogenesis of DN.

The protocol for the use of human samples was approved by 
the Human Subjects Committee of Jinling Hospital, Nanjing 
University (No. 2013KLY‑013‑01), and a signed consent form was 
obtained from each patient and control donor.

Based on the guidelines of NKF‑K/DOQI (2007 edition) and the 
Expert Consensus on the Prevention and Treatment of Diabetic 
Nephropathy by the Chinese Medical Association (2014 edition), 

type 2 DN was diagnosed if the below criteria were met: (1) having 
a diagnosis of type 2 diabetes; (2) presence of a ratio of urinary 
albumin to urinary creatinine of at least 30 mg/g for a first morning 
specimen on two occasions or by a 24‑h urinary protein excretion 
concentration ≥500 mg on two consecutive occasions; and 
(3) presence of diabetic retinopathy but absence of any clinical or 
laboratory evidence of other kidney or renal tract diseases.

A total of 41 DN patients confirmed by renal biopsy were enrolled 
in this study. Kidney samples were obtained from surgical 
nephrectomies and from leftover portions of diagnostic kidney 
biopsies. All of the patients were categorized based on the pathologic 
classification, which was described in our previous work.[4] The 
clinical and pathologic characteristics of DN patients are detailed 
in Supplementary Table 1. Control samples (Ctrl, n = 20) were 
obtained from biopsy samples of the unaffected portions of tumor 
nephrectomies. Controls met the criteria described below: estimated 
glomerular filtration rate (eGFR) more than 90 ml/min, the absence 
of proteinuria, and normal serum creatinine and blood urea nitrogen. 
Based on the clinical and pathologic characteristics, the DN patients 
were divided into the early‑stage DN group (Early: n = 20, eGFR 
more than 60 ml/min, the glomerular classifications were Class I 
or Class IIa) and the late‑stage DN group (Late: n = 21, eGFR 
between 15 ml/min and 60 ml/min, the glomerular classifications 
were Class III or Class IV).

Tissue was placed into RNALater and manually microdissected at 
4°C to obtain the glomerular compartment. Dissected glomeruli 
were homogenized, and RNA was prepared using RNAeasy mini 
kit (Qiagen Sciences Inc., Germantown, MD, USA) according to 
the manufacturer’s instructions. Genome‑wide gene expression 
profiling was performed using an Affymetrix GeneChip® Human 
Transcriptome Array 2.0 (Affymetrix, Santa Clara, California, 
USA).
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Gene microarray data were received in the form of Affymetrix CEL 
files. The CEL files were submitted to the GEO database (accession 
number: GSE96804).[5] These files were then read into Expression 
Console (Affymetrix, Santa Clara, California, USA) and preprocessed 
using the gene level (RMA‑Sketch) workflow. All of the samples 
were determined to be high quality during the quality control step 
of the workflow. Next, we exported the gene expression profile 
with annotation information into a TXT file to process it using R 
language (Free Software, https://www.r‑project.org). To decrease 
computational constraints and to facilitate subsequent analysis, 
probe sets that were not associated with mRNA were omitted, and 
probe sets for the same mRNA were collapsed into one using the 
median value. We ultimately constructed an expression table, listing 
61 samples (Ctrl: n = 20; Early: n = 20; Late: n = 21) and 18,418 genes.

TRANSFAC (geneXplain GmbH, Wolfenbüttel, Germany) is a 
unique knowledge database containing published data on eukaryotic 
TFs and miRNAs, their experimentally demonstrated binding sites, 
and regulated genes.[6] The human TFs and their regulated human 
genes were extracted from TRANSFAC (TFP_2013.4_data.tar.gz) 
and compiled as the human TF‑to‑target library, including 7569 
relationships involving 573 human TFs and 2024 target genes.

Using the R package “limma”, we obtained two sets of 
DEGs (Benjamini‑Hochberg adjusted P value <0.05 and |log fold 
change| >1.5) through pairwise comparisons (Early vs. Ctrl and 
Late vs. Early). We then utilized the R package “GeneAnswers” 
to find the enriched categories for the DEGs. The “GeneAnswers” 
package functionally categorizes the gene list based on Fisher’s 
exact test with annotation libraries of gene ontology (GO), the 
Kyoto Encyclopedia of Genes and Genomes (KEGG), and the 
human TF‑to‑target library based on TRANSFAC.

In the transcriptome analysis domain, DCEA is emerging as 
a unique complement to traditional differential expression 
and coexpression analysis. The rationale behind DCEA is that 
changes in gene coexpression patterns between two contrasting 
phenotypes (e.g., healthy and disease) provide hints regarding 
the disrupted regulatory relationships or affected regulatory 
subnetworks specific to the phenotype of interest (in this case, 
the disease phenotype). DCGL (Differential Co‑expression 
Analysis and Differential Regulation Analysis of Gene Expression 
Microarray Data) is an R package designed to identify DCGs 
(differentially coexpressed genes), DCLs (differentially 
coexpressed links), DRGs (differentially regulated genes), and 
DRLs (differentially regulated links).[3]

For our transcriptome data, we applied the R package “DCGL” to 
identify DCGs and DCLs through two comparisons (Early vs. Ctrl 
and Late vs. Early). The method “DCp” was used for identifying 
DCGs, while the method “DCe” was used for identifying both 
DCGs and DCLs, and the function “DCsum” was used for 
summarizing DCGs and DCLs.

In pairwise comparisons between two states, there are four types 
of DCLs. For example, a pair of genes is positively correlated 
in state A and is still positively correlated in state B; this pair 
is noted as “Positive‑Positive”. By that analogy, the other three 
types of DCLs are “Positive‑Negative”, “Negative‑Positive”, 
and “Negative‑Negative.” The “Positive‑Positive” and 
“Negative‑Negative” are defined as “Same type relationship”, 
while “Positive‑Negative” and “Negative‑Positive” are defined 
as “Different type relationship”. If the correlation coefficients 
of a pair of genes in two states both exceed the threshold, this 
DCL is defined as “Regulation‑switch”, which is a special case of 
“Different type relationship”.

We incorporated the human TF‑to‑target library into the DCGs 
and DCLs to identify DRGs and DRLs respectively. If a DCG 
was a TF, this type of DCG was termed a DRG. It was intuitively 
speculated that its related differential coexpression might be 
attributed to the change in its transcriptional regulation activity. If 
a DCL coincided with a TF‑to‑target relation, this type of DCL was 
termed a TF2target_DCL, belonging to the DRLs. The rationale 
here was that the disruption of regulatory relations could affect 
the coexpression links between a regulator and its targets. With 
the function “DRplot”, TF2target_DCLs could be visualized as a 
DRG‑highlighted, DRL‑centered network. The algorithm DR rank, 
calculating Targets’ Enrichment Density (TED) scores, was used 
to prioritize TFs that were putatively causative to DN occurrence 
and development.

In pairwise comparisons between Early and Ctrl, a total of 194 genes 
were determined to be DEGs, including 20 upregulated and 174 
downregulated genes. The enriched GO terms and pathways 
were primarily involved in metabolic processes [Supplementary 
Figure 1]. In pairwise comparisons between Late and Early, a total 
of 374 genes were identified as DEGs, including 239 upregulated 
and 135 downregulated genes. The most enriched GO terms were 
“extracellular region”, “protein binding”, “extracellular structure 
organization”, “immune system process”, and “cell adhesion” among 
others. The most enriched KEGG pathways were “complement and 
coagulation cascades”, “Staphylococcus aureus infection”, “focal 
adhesion”, and “extracellular matrix (ECM)‑receptor interaction” 
among others [Supplementary Figure 2].

The enriched TFs (Benjamini‑Hochberg adjusted P value <0.2) 
of DEGs between Early and Ctrl were HNF1A, MAFK, NFIC, 
NR1H3, and RXRA [Figure 1a]. HNF1A, NR1H3, and RXRA 
were nuclear hormone receptors, and their target genes were all 
downregulated in Early versus Ctrl. The enriched TFs (Benjamini‑
Hochberg adjusted P value <0.2) of DEGs between Late and 
Early were SMAD2, SMAD3, SPI1, STAT1, GATA2, and 
FLI1 [Figure 1b]. The target genes of SMAD2, SMAD3, and STAT1 
were all upregulated in Late versus Early.

We applied the DCGL package to our DN transcriptome data 
to identify the DCGs and DCLs. Based on the criterion of 
P < 0.05, 872 DCGs were identified in pairwise comparisons 
between Early and Ctrl, 440 DCGs were identified between 
Late and Ctrl, and 317 DCGs were identified between Late and 
Early [Table 1]. The number of “Regulation‑switch” DCLs 
may indicate the difference in gene coexpression relationships 
between different phenotypes. Therefore, the difference in gene 
coexpression relationships between Ctrl and Early was the largest 
(41,555 “Regulation‑switch” DCLs), while that between Early and 
Late was the smallest (9384 “Regulation‑switch” DCLs).

We compared the DCLs of the three comparisons in pairs to observe 
the similarities and differences in gene coexpression relationship 
changes [Supplementary Table 2]. The consistently related common 
DCLs between “Early versus Ctrl” and “Late versus Ctrl” had the 
highest proportion (4.22%), which indicated the highest consistency 
of differential coexpression relationships is between “Early versus 
Ctrl” and “Late versus Ctrl”.

We further matched the DCGs and DCLs to the known regulatory 
data between TFs and target genes and then obtained a number of 
disrupted regulatory relationships between TFs and target genes. 
To focus on the most meaningful information, we calculated the 
TED scores of each TF and selected the important TFs (Benjamini‑
Hochberg adjusted P value <0.05) in Early versus Ctrl and Late 
versus Early, respectively [Supplementary Table 3].
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The pathogenesis of DN is complex and still not fully elucidated. 
Identifying the regulators that are relevant or even causative to 
the phenotypic changes of DN is a challenging and worthwhile 
goal. In our study, based on the gene expression profiles, we 
investigate the changes of transcription regulation in DN glomeruli, 
especially comparing the early‑stage DN samples with the control 
and the late‑stage DN samples, and tried to dissect the regulatory 
factors in the early stage of DN. These findings will improve the 
understanding of the molecular mechanisms of DN. In addition, 
our results will provide a novel resource for investigators focused 
on DN.

There were only 194 DEGs between Early and Ctrl, mainly 
involving metabolic processes. The DEGs between Late and Early 
were related to “extracellular structure organization”, “immune 
system process”, “cell adhesion”, “complement and coagulation 
cascades”, “focal adhesion”, and “ECM‑receptor interaction” 
among others [Supplementary Figure 2]. These GO terms and 
KEGG pathways were widely related to the pathogenesis of DN 
and agreed well with our previous works.[4]

Three of the five enriched TFs in DEGs of the early stage of 
DN are nuclear hormone receptors, including HNF1A, NR1H3, 
and RXRA. Nuclear hormone receptors are TFs that regulate 
carbohydrate metabolism, lipid metabolism, the immune response, 
and inflammation. The nuclear hormone receptors, including 
peroxisome‑proliferator‑activated receptors (PPARs), estrogen 
receptors, the Vitamin D receptor (VDR), hepatocyte nuclear 
factor‑1α (HNF-1α), hepatocyte nuclear factor‑4α (HNF-4α), 
farnesoid X receptor (FXR), and liver X receptors (LXRs), were 
thought to play roles in the pathogenesis of DN, and many of them 
have been suggested to provide protection against DN.[7]

HNF1A, which encodes HNF-1α ,  i s  responsible  for 
maturity‑onset diabetes of the young type 3. Certain 
combinations of common variants in HNF1A are associated 
with decreased transcriptional activity in vitro and a decreased 
insulin response to oral glucose in vivo.[8] In the early stage of 
DN, the target genes of HNF-1α were downregulated, which 
indicated that the transcriptional activity of HNF-1α decreased 
in the glomeruli of DN patients.

NR1H3, which encodes LXR-α, is found in every segment along 
the nephron. In the glomeruli, this receptor seems to be present in 
all major renal cells, including mesangial cells, endothelial cells, 
and podocytes. Activation of LXR-α reduces the activation of RAS 
in mouse kidney.[9] In the early stage of DN, the target genes of 
LXR-α were downregulated, but the NR1H3 mRNA expression was 
unchanged. Collectively, these data suggest that reduced LXR-α 
activity may aggravate the progression of DN.

RXRA, which encodes retinoid X receptor‑α (RXR-α), serves as a 
common heterodimeric partner for a number of nuclear receptors, 
including PPARs, LXRs, FXRs, and VDRs. RXR heterodimers act 
as ligand‑dependent transcriptional regulators and increase the 
DNA‑binding efficiency of its partner. In the early stage of DN, the 
target genes of RXR-α were all downregulated. Collectively, these 
data indicated that the transcriptional activities of PPARs, FXRs, 
and VDRs might also decrease in the glomeruli of DN patients.

SMAD2, SMAD3, STAT1 and other 3 TFs were enriched in 
DEGs between the late and early stage of DN. The target genes 
of these three TFs were all upregulated, which may indicate that 
the transcriptional activity of the three TFs increased during the 
progression of DN.

SMAD2 and SMAD3 are TFs activated by TGF-β receptor 
signaling, which is a leading candidate to mediate the progression 

Table 1: Statistics information of DCGs and DCLs

Comparison DCG DCL

Total number, n Same type relationship, n Different type relationship, n Regulation‑switch, n Total number, n
Early versus Ctrl 872 147,805 112,339 41,555 301,699
Late versus Ctrl 440 74,142 61,759 26,916 162,817
Late versus Early 317 61,495 36,742 9384 107,621
DCGs: Differentially coexpressed genes; DCLs: Differentially coexpressed links.

Figure 1: TFs enriched in the DEGs between the early‑stage DN 
group (n = 20) and the control group (n = 20) (a). TFs enriched in the 
DEGs between the late‑stage DN group (n = 21) and the early‑stage DN 
group (n = 20) (b). Gold nodes represent the TFs; red nodes represent 
upregulated genes, while blue nodes represent downregulated genes. All 
gene symbols are approved HGNC symbols. TFs: Transcription factors; 
DEGs: Differentially expressed genes; DN: Diabetic nephropathy; 
HGNC: HUGO Gene Nomenclature Committee.

b

a
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of DN. SMAD2 and SMAD3 are phosphorylated by TGF-β type I 
receptor, homodimerize, and subsequently bind to SMAD4. 
The heteromeric complex of SMAD2 or SMAD3 and SMAD4 
translocates to the nucleus, where it regulates the transcription of 
target genes.[10] The Janus kinase (JAK) family substrate STAT1 is 
tyrosine phosphorylated and translocates to the nucleus in response 
to angiotensin II.[11]

A number of DCGs and “Regulation‑switch” DCLs in pairwise 
comparisons between Early and Ctrl were more than those 
between Late and Early, which indicated that the change of gene 
coexpression relationships in the early stage is more than that in 
the progression stage. In summary, we observed that the gene 
expression changes mainly occurred during the progression of DN, 
while the gene coexpression relationship changes mainly occurred 
in the early stage of DN.

After differential regulatory network construction and TED 
scoring, we found that the interferon regulatory factor (IRF) 
family members, including IRF1, IRF3, IRF5, IRF7, and IRF9, 
are important TFs in the early stage of DN. Among them, IRF1 
and IRF9 are DRGs, which indicate that IRF1 and IRF9 might be 
posttranslationally modified in the early stage of DN.

The mammalian IRF family has nine members, IRF‑1 through 
IRF‑9. IRFs are critical regulators of immune responses and 
immune cell development, and abnormalities in IRF expression 
and/or function have been increasingly linked to numerous 
diseases. Interestingly, IRFs are also involved in the pathogenesis 
of metabolic diseases.[12,13] It is not surprising that a regulator 
originally considered to be involved in the immune system has 
been subsequently shown to play a role in metabolism, as numerous 
studies have reported that the immune and metabolic systems are 
intrinsically interconnected.[14]

The high glucose‑induced proliferation of vascular smooth 
muscle cells (VSMCs) plays an important role in the development 
of diabetic angiopathy. IRF1 is a positive regulator of the high 
glucose‑induced proliferation of VSMCs.[12] Under normal glucose 
conditions, IRF1 overexpression led to downregulation of cyclin 
D1/CDK4 and inhibited cell cycle progression in VSMCs. In high 
glucose conditions, IRF1 overexpression led to an upregulation of 
cyclin E/CDK2 and an acceleration of cell cycle progression.[15] The 
opposite effects of IRF1 under normal and high glucose conditions 
are consistent with our finding that IRF1 is a DRG.

IRF9 is primarily localized in the nucleus, and by promoting PPARα 
transactivation, it accelerates lipid catabolism and mitigates hepatic 
steatosis, suggesting a key role for IRF9 in metabolic functions that 
is independent of its role in immunity.[13]

Our results show that IRF9, STAT2, and NFKB2 are important 
TFs during the progression of DN. Among them, STAT2 is a DRG, 
which indicates that STAT2 might be posttranslationally modified 
during the progression of DN.

Excessive cellular growth is a major contributor to pathological 
changes associated with DN. In particular, high glucose‑induced 
growth of glomerular mesangial cells is a characteristic feature of 
diabetes‑induced renal complications. High glucose and ANG II 
activate intracellular signaling processes, including the polyol 
pathway and the generation of reactive oxygen species. These 
pathways activate the JAK/signal transducers and activators of 
transcription (STAT) signaling cascades in glomerular mesangial 
cells. Activation of the JAK/STAT signaling cascade can stimulate 
excessive proliferation and growth of glomerular mesangial cells, 
contributing to DN.[11]

Nuclear factor‑κB (NF-κB) is the most important TF in the 
pathogenesis of DN. NF-κB1 or NF-κB2 is bound to REL 
(V‑rel avian reticuloendotheliosis viral oncogene homolog), 
RELA, and RELB to form the NF-κB complex, which binds to 
the promoter regions of several genes, including those encoding 
TGF-β1, AKR1B1 (aldo‑keto reductase family 1, member B1), 
CCL2 (CC chemokine ligand 2), and ICAM1 (intercellular adhesion 
molecule 1). NF-κB is also integrated in various biological 
pathways that are functionally involved in the pathogenesis of 
DN, such as PKCβ, RAS, AGE accumulation, and oxidative stress.

There were two strengths in our study. First, we enrolled patients 
at two stages of DN, especially including the early stage of DN, 
which provided us a great opportunity to investigate the special 
gene regulatory pattern in the initiation stage of DN. Second, we 
utilized the DCEA and DRA to explore the changes in transcription 
regulatory relationships in different stages of DN, which might lead 
to a greater understanding of the molecular mechanism of DN. 
One limitation of our studies was that the study was performed 
in Chinese Han patients; thus, the results might not be applied to 
other ethnic groups. Another limitation was that the results should 
be validated in cell culture and animal models.

In summary, this study utilized the gene expression profiles of 
glomeruli from DN patients to further investigate the potential 
transcriptional regulatory mechanisms in the early and late stages 
of the disease. We observed that the gene coexpression relationship 
changes occurred mainly in the early stage of DN, while the gene 
expression changes occurred mainly during the progression of DN. 
Although the results should be further validated, this study offered 
additional insights into the transcriptional regulatory mechanisms 
of DN.

Supplementary information is linked to the online version of the 
paper on the Chinese Medical Journal website.
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Supplementary Table 1: Clinical and pathologic 
characteristics of DN patients

Characteristics Early 
(n = 20)

Late 
(n = 21)

χ2 P

Age (years) 46.5 ± 8.7 47.7 ± 7.0 0.04 0.835
Sex (female), n (%) 9 (45.0) 3 (14.3) – 0.043
Ethnicity Han Han – –
BMI (kg/m2) 25.2 ± 2.12 24.6 ± 1.22 0.43 0.514
Serum creatinine (mg/dl) 0.81 ± 0.19 1.95 ± 0.70 25.08 <0.001
eGFR (ml/min) 99.16 ± 15.47 42.61 ± 13.47 30.00 <0.001
Proteinuria (g/24 h) 0.60 ± 0.27 5.41 ± 3.88 22.78 <0.001
HbA1c (%) 6.51 ± 1.12 6.91 ± 2.08 3.63 0.056
Glomerular lesions, n

Class I 5 0 – <0.001
Class II 0 0

IIa 15 0
IIb 0 0

Class III 0 16
Class IV 0 5

IFTA, n
0 6 0 – <0.001
1 14 2
2 0 7
3 0 12

Interstitial inflammation, n
0 6 0 – <0.001
1 9 1
2 5 20

Arteriolar hyalinosis, n
0 0 0 – 1
1 0 0
2 20 21

Arteriosclerosis, n
NA 0 0 – 0.007
0 6 0
1 3 2
2 11 19

Values are presented as n or mean ± SD. P values were obtained using the 
Wilcoxon rank‑sum test for continuous variables and Fisher’s exact test 
for categorical variables. –: Not available. DN: Diabetic nephropathy; 
BMI: Body mass index; eGFR: Estimated glomerular filtration rate, 
calculated using the EPI‑CKD (Chronic Kidney Disease Epidemiology 
Collaboration) formula; HbA1c: Glycated hemoglobin; SD: Standard 
deviation; IFTA: Interstitial fibrosis and tubular atrophy.

Supplementary Table 2: Comparison of DCLs between different comparisons

Items (Comparison A vs. 
Comparison B)

Number 
of DCLs

Number of DCLs common to the double 
comparison (%)

Number of DCLs 
specifically found 
in Comparison A

Number of DCLs 
specifically found 
in Comparison BConsistently related Inconsistently related

(Early vs. Ctrl) versus (Late vs. Ctrl) 443,820 18,713 (4.22) 1983 (0.45) 281,003 142,121
(Early vs. Ctrl) versus (Late vs. Early) 402,133 5114 (1.27) 2073 (0.52) 294,512 100,434
(Late vs. Ctrl) versus (Late vs. Early) 266,605 2464 (0.92) 1369 (0.51) 158,984 103,788
DCLs: Differentially coexpressed links.



Supplementary Table 3: Important TFs with high TED 
scores

TF TED score
Early versus Ctrl

STAT2 5.249
IRF9 4.397
IRF5 1.920
TAF12 1.919
TAF6 1.919
TAF9 1.919
IRF1 1.353
IRF3 1.207
IRF7 1.207
TFAP4 1.207

Late versus Early
IRF9 4.962
STAT2 4.627
NFKB2 1.704

TF: Transcription factor; TED: Targets’ Enrichment Density.

Supplementary Figure 1: GO categories and KEGG pathways enriched in the glomerular DEGs between the early stage of DN patients and the 
control group. (a) GO cellular component; (b) GO molecular function; (c) GO biological process; (d) KEGG pathways. GO: Gene ontology; KEGG: 
Kyoto Encyclopedia of Genes and Genomes; DEGs: Differentially expressed genes; DN: Diabetic nephropathy.
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Supplementary Figure 2: GO categories and KEGG pathways enriched in the glomerular DEGs between the late and early stage of DN patients. (a) 
GO cellular component; (b) GO molecular function; (c) GO biological process; (d) KEGG pathways. GO: Gene ontology; KEGG: Kyoto Encyclopedia 
of Genes and Genomes; DEGs: Differentially expressed genes; DN: Diabetic nephropathy.
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