Skip to main content
. 2018 Nov 6;23(11):2892. doi: 10.3390/molecules23112892

Table 2.

Performance of top ten binary classification models for the training and external test sets 1.

Data Set Model CA AUC SE SP TP TN FP FN
Training set Ext-RF 0.865 0.926 0.88 0.85 44 46 8 6
Ext-LR 0.885 0.922 0.90 0.87 45 47 7 5
Ext-ANN 0.846 0.913 0.88 0.81 44 44 10 6
Ext-SVM 0.865 0.912 0.88 0.85 44 46 8 6
Graph-RF 0.817 0.897 0.84 0.80 42 43 11 8
PubChem-LR 0.798 0.887 0.74 0.85 37 46 8 13
Ext-Tree 0.837 0.879 0.78 0.89 39 48 6 11
PubChem-RF 0.750 0.871 0.68 0.81 34 44 10 16
Graph-LR 0.779 0.870 0.76 0.80 38 43 11 12
PubChem-Tree 0.827 0.867 0.82 0.83 41 45 9 9
External test set Ext-RF 0.840 0.930 0.75 0.92 9 12 1 3
Ext-LR 0.840 0.974 0.75 0.92 9 12 1 3
Ext-ANN 0.800 0.962 0.67 0.92 8 12 1 4
Ext-SVM 0.880 0.904 0.83 0.92 10 12 1 2
Graph-RF 0.880 0.920 0.92 0.85 11 11 2 1
PubChem-LR 0.840 0.936 0.92 0.77 11 10 3 1
Ext-Tree 0.880 0.901 0.83 0.92 10 12 1 2
PubChem-RF 0.800 0.917 0.75 0.85 9 11 2 3
Graph-LR 0.840 0.936 0.75 0.92 9 12 1 3
PubChem-Tree 0.640 0.667 0.67 0.62 8 8 5 4

1 CA, classification accuracy; AUC, the area under the ROC curve; SE, sensitivity; SP, specificity; TP, the number of true positive compounds; TN, the number of true negative compounds; FP, the number of false positive compounds; FN, the number of true negative compounds.