Skip to main content
. 2018 Nov 8;23(11):2907. doi: 10.3390/molecules23112907

Table 5.

Classification results for SVM, k-NN, and RBFNN models based on optimal wavelengths selected by PCA.

Model Parameter 5 Calibration Set Prediction Set
Acc. 6 (%) Sen. 7 Spe. 8 Acc. (%) Sen. Spe.
Pixel to pixel 1 SVM (256, 5.28) 91.83 0.898 0.939 80.10 0.800 0.802
k-NN 3 78.48 0.700 0.870 78.18 0.642 0.895
RBFNN 7 88.40 0.842 0.926 80.89 0.797 0.819
Pixel to object 2 SVM (256, 5.28) 91.83 0.898 0.939 93.62 0.785 0.998
k-NN 3 78.48 0.700 0.870 83.82 0.464 0.992
RBFNN 7 88.40 0.842 0.926 91.40 0.711 0.997
Object to pixel 3 SVM (147, 9.12) 99.72 0.994 0.998 71.10 0.817 0.626
k-NN 5 95.46 0.870 0.991 76.86 0.727 0.803
RBFNN 3 99.78 0.994 0.999 54.14 0.819 0.317
Object to object 4 SVM (147, 9.12) 99.72 0.994 0.998 99.12 0.987 0.993
k-NN 5 95.46 0.870 0.991 94.06 0.839 0.982
RBFNN 3 99.78 0.994 0.999 99.30 0.983 0.997

1 Pixel to pixel means to use models using pixel-wise spectra to predict pixel-wise spectra; 2 Pixel to object means models using pixel-wise spectra to predict object-wise spectra; 3 Object to pixel means to use models using object-wise spectra to predict pixel-wise spectra; 4 Object to object means to use models using object-wise spectra to predict object-wise spectra; 5 Parameters for SVM models are C and γ, parameter for k-NN is number of neighbors (k) and parameter for RBFNN is spread value; 6 Acc. means accuracy; 7 Sen. means sensitivity; 8 Spe. means specificity.