Table 5.
Model | Parameter 5 | Calibration Set | Prediction Set | |||||
---|---|---|---|---|---|---|---|---|
Acc. 6 (%) | Sen. 7 | Spe. 8 | Acc. (%) | Sen. | Spe. | |||
Pixel to pixel 1 | SVM | (256, 5.28) | 91.83 | 0.898 | 0.939 | 80.10 | 0.800 | 0.802 |
k-NN | 3 | 78.48 | 0.700 | 0.870 | 78.18 | 0.642 | 0.895 | |
RBFNN | 7 | 88.40 | 0.842 | 0.926 | 80.89 | 0.797 | 0.819 | |
Pixel to object 2 | SVM | (256, 5.28) | 91.83 | 0.898 | 0.939 | 93.62 | 0.785 | 0.998 |
k-NN | 3 | 78.48 | 0.700 | 0.870 | 83.82 | 0.464 | 0.992 | |
RBFNN | 7 | 88.40 | 0.842 | 0.926 | 91.40 | 0.711 | 0.997 | |
Object to pixel 3 | SVM | (147, 9.12) | 99.72 | 0.994 | 0.998 | 71.10 | 0.817 | 0.626 |
k-NN | 5 | 95.46 | 0.870 | 0.991 | 76.86 | 0.727 | 0.803 | |
RBFNN | 3 | 99.78 | 0.994 | 0.999 | 54.14 | 0.819 | 0.317 | |
Object to object 4 | SVM | (147, 9.12) | 99.72 | 0.994 | 0.998 | 99.12 | 0.987 | 0.993 |
k-NN | 5 | 95.46 | 0.870 | 0.991 | 94.06 | 0.839 | 0.982 | |
RBFNN | 3 | 99.78 | 0.994 | 0.999 | 99.30 | 0.983 | 0.997 |
1 Pixel to pixel means to use models using pixel-wise spectra to predict pixel-wise spectra; 2 Pixel to object means models using pixel-wise spectra to predict object-wise spectra; 3 Object to pixel means to use models using object-wise spectra to predict pixel-wise spectra; 4 Object to object means to use models using object-wise spectra to predict object-wise spectra; 5 Parameters for SVM models are C and γ, parameter for k-NN is number of neighbors (k) and parameter for RBFNN is spread value; 6 Acc. means accuracy; 7 Sen. means sensitivity; 8 Spe. means specificity.