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Abstract: The study is aimed at developing linear classifiers to predict the capacity of a given
substrate to yield reactive metabolites. While most of the hitherto reported predictive models
are based on the occurrence of known structural alerts (e.g., the presence of toxophoric groups),
the present study is focused on the generation of predictive models involving linear combinations of
physicochemical and stereo-electronic descriptors. The development of these models is carried out by
using a novel classification approach based on enrichment factor optimization (EFO) as implemented
in the VEGA suite of programs. The study took advantage of metabolic data as collected by manually
curated analysis of the primary literature and published in the years 2004–2009. The learning set
included 977 substrates among which 138 compounds yielded reactive first-generation metabolites,
plus 212 substrates generating reactive metabolites in all generations (i.e., metabolic steps). The results
emphasized the possibility of developing satisfactory predictive models especially when focusing
on the first-generation reactive metabolites. The extensive comparison of the classifier approach
presented here using a set of well-known algorithms implemented in Weka 3.8 revealed that the
proposed EFO method compares with the best available approaches and offers two relevant benefits
since it involves a limited number of descriptors and provides a score-based probability thus allowing
a critical evaluation of the obtained results. The last analyses on non-cheminformatics UCI datasets
emphasize the general applicability of the EFO approach, which conveniently performs using both
balanced and unbalanced datasets.

Keywords: reactive metabolite; toxicity prediction; machine learning; enrichment factor;
unbalanced datasets

1. Introduction

The capacity of drugs and other xenobiotics to generate electrophilic reactive metabolites (RMs) is
an unwanted property that should be carefully avoided during the design and development of drug
candidates [1,2]. This is easily explained by considering that RMs can couple with nucleophilic
sites within endogenous molecules forming stable covalent adducts endowed with clear toxic
effects [1]. Even though detailed molecular mechanisms of toxication are not always well understood,
and probably RMs are not the only trigger factor, a direct link between their formation and
idiosyncratic adverse drug reactions (IADRs) is widely accepted [1]. Moreover, RMs are also involved
in drug-induced liver injury (DILI) along with other factors such as a marked lipophilicity and high

Molecules 2018, 23, 2955; doi:10.3390/molecules23112955 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0001-5916-2029
http://www.mdpi.com/1420-3049/23/11/2955?type=check_update&version=1
http://dx.doi.org/10.3390/molecules23112955
http://www.mdpi.com/journal/molecules


Molecules 2018, 23, 2955 2 of 15

daily drug doses [2]. Not to mention that, when covalent modifications target DNA, RMs generation
can result in mutagenicity [3].

Even though endogenous protective mechanisms (many of them based on the marked scavenging
effects of glutathione (GSH), are able to detoxify these reactive species, the generation of RMs should
be minimized or, better, essentially avoided in new drug candidates, especially considering that GSH
levels are often markedly lowered under several pathological conditions such as oxidative-based
diseases [4].

Several in silico approaches have been proposed with a view to minimizing the risk of RM
generation [1]. To predict the metabolite’s reactivity, two different scenarios can be figured out.
Firstly, and when all major metabolites a given drug candidate can generate have been characterized,
several computational approaches mainly based on stereo-electronic descriptors can be used to assess
their reactivity [5]. Secondly, and when the metabolic profile of a new compound is still unknown,
its potential to yield reactive metabolites can be estimated by considering the occurrence of functional
groups (the so-called structural alerts) which are known to generate RMs based on mechanistic studies
on known drugs associated with idiosyncratic reactions or other toxicity profiles. In drug development
strategies, these structural alerts should always be avoided regardless of the advantages they would
offer [6]. Clearly, this second scenario is more frequent because toxicological screening is usually
performed in the early phases of drug development when the number of drug candidates involved is
too high to permit extended experimental metabolic studies [7].

While toxicity profiles (as expressed by LD50 values) are often predicted by correlative analyses
using structural and physicochemical descriptors [8], such molecular properties have been rarely used
to predict the ability of a given substrate to generate RMs, except for a few studies based on similarity
descriptors [9]. This lack can have a double explanation. On the one hand, the various classes of
structural alerts seem to be better related to the ability of a given compound to yield or not reactive
metabolites. On the other hand, there may be doubts that a given compound should possess structural
features able to forecast the involvement of toxication reactions.

The present study investigates the feasibility of predicting the ability of a given molecule to
yield reactive metabolites by using physicochemical and stereo-electronic descriptors. The predictive
models were generated by using a purposely developed classification algorithm based on enrichment
factor optimization (EFO) and implemented in the VEGA suite of programs [10]. The study takes
advantage from the already reported database which includes metabolic data as collected by manually
curated analysis of the primary literature as published in the years 2004–2009. In detail, the database
contains 1171 substrates (drugs and xenobiotics) which yield 6767 metabolic reactions and includes
information about each included metabolite being (or not) a reactive molecule [11,12]. The present
study is focused on the substrates giving reactive products in the first metabolic generation, namely
in the metabolites directly deriving from parent compound (138 molecules out of 977, i.e., 14.1%) as
well as in all generations (217 molecules out of 977, i.e., 22.2%). In detail, the first-generation RMs are
primarily produced by the oxidation of unsaturated carbon atoms which represent the most abundant
function (28%), followed by oxidations of nitrogen atoms (18%) and quinone formations (17%).

2. Results and Discussion

The predictions reported below involved both substrates yielding RMs in the first-generation
as well as those giving RMs in any generation. Indeed, one may suppose that the properties of
a given substrate might someway anticipate the reactivity of metabolites formed directly from it,
while such properties should be less effective in predicting the reactivity of metabolites, which are
indirectly generated in the subsequent generations. However, the predictions reported here involved
also substrates giving RMs in any generation, by considering that an optimal model should be
able to predict the capability of a given molecule to yield reactive metabolites regardless of the
involved metabolic generation. Moreover, and focusing on first-generation RMs, specific models
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were also developed by separately considering the reactive metabolites produced by some specific
metabolic reactions.

As mentioned earlier, the predictions were repeated by simulating the substrates in their neutral
and ionized forms. In detail, the used database includes a significant amount of ionizable molecules
(315 out of 977 among which 215 basic compounds and 100 acid substrates); notably the ionizable
molecules which yield RMs represent the 13.7% (43) a percentage truly superimposable to that seen in
the whole database thus suggesting that the ionization characteristics do not influence the propensity
to yield RMs. The relation between ionization state and predictive power should reveal whether
molecular ionization can bias some relevant stereo-electronic properties (such as those derived by
HOMO/LUMO energies) rendering them less efficient in properly accounting for chemical reactivity.
Stated differently, if neutral molecules provide encouraging results, focusing only on neutral state might
be advisable to avoid incorrect protonation states for molecules with complex ionization equilibria.

The study was organized in two parts: the first part involved a set of calibration analyses aimed
at investigating the effect of the key parameters influencing the here reported classification approach
as well as the role of ionization state in developing the predictive models. Based on these preliminary
results, the second part will involve the generation of optimized predictive models that will be then
compared with those which can be generated by applying a set of well-known classification algorithms
as implemented in Weka 3.8 software [13].

Apart from for the models developed in the first part, which involved the entire dataset, the dataset
was randomly subdivided into a learning and a test set (by default 70% and 30%). This was done by
using a specially developed VEGA script (Training and test set creator.c), the models being generated
using only the learning set, followed by their validation using them to predict the molecules yielding
RMs included in the test set. To minimize the influence of randomness, this task was repeated 5 times.
The results below describe the best predictors obtained by this approach.

2.1. Calibration (Preliminary) Analyses

Since these preliminary analyses have the primary objective to calibrate the algorithm parameters,
the model generation was performed for simplicity on the entire dataset avoiding validation procedures.
Among the user-defined parameters able to influence the proposed classification algorithm, attention
was focused here on four key parameters, namely (1) the size of the cluster by which the quality
function is calculated (see Equation (1)), (2) the exhaustiveness of random sampling, (3) the filtering
cut-off in the top 5% enrichment factor below which a variable is discarded, thus influencing the
number of considered descriptors, and (4) the number of variables included in each model. All these
initial analyses were performed by predicting the substrates which gave RMs in their first generation,
and by considering the compounds in their neutral state.

Table 1 shows the results of these calibration analyses obtained by monitoring the performance
of the generated classifiers as parameterized by three relevant metrics: the average values for the 20
considered models of the substrates giving RMs in the top 1% and in the top 10% of the corresponding
rankings, and the highest number of substrates found in the top 10%. These two percentages were
chosen because the enrichment factor as computed in the top 1% encodes the ability of the method to
concentrate “active” molecules in the top of the ranking, a feature which is particularly relevant in
typical virtual screening campaigns, while the top 10% corresponds to the percentage of the ranking
which is particularly relevant in these preliminary analyses since it roughly corresponds to the number
of substrates giving first-generation RMs. Indeed, the dataset includes 138 RM-yielding substrates out
of 978 compounds. These numbers imply that the RM-yielding compounds represent about 10% of
the dataset.
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Table 1. Model performances obtained in the calibration study.

Cluster
Size

Sampling
Cycles Variables EF Cut-Off

Top 5%
Ionization

State
Mean

Top 1%
Mean

Top 10%
Best

Top 10%

10 12 3 2.0 N 82.2 25.95 32
20 12 3 2.0 N 68.9 28.2 34
40 12 3 2.0 N 59.4 32.7 42
60 12 3 2.0 N 58.3 34.5 45
80 12 3 2.0 N 55.7 36.1 46

100 12 3 2.0 (12) N 47.8 38.2 46
100 6 3 2.0 N 48.8 38.2 47
100 24 3 2.0 N 47.2 37.9 46
100 12 3 2.5 (18) N 44.4 38.1 45
100 12 3 1.5 (6) N 48.8 36.4 45
100 12 3 1.0 (2) N 49.4 32.5 43
100 12 3 0.0 (0) N 51.1 32.7 43
100 12 1 2.0 N 37.4 25.1 30
100 12 2 2.0 N 49.4 32.2 40
100 12 4 2.0 N 49.9 39.7 45
100 12 5 2.0 N 51.1 41.6 47
100 12 6 2.0 N 55.5 43.6 48
100 12 8 2.0 N 56.7 44.3 48
100 12 10 2.0 N 57.2 45.5 48
100 12 2 2.0 I 44.4 34.3 42
100 12 3 2.0 I 47.2 39.4 46
100 12 4 2.0 I 49.4 40.6 47
100 12 5 2.0 I 50.2 42.2 47
100 12 6 2.0 I 54.4 44.0 48

The performances, as encoded by the mean percentage of substrates giving RMs in the top 1% and
top 10% as well as highest number of “positive” substrates in the top 10%, are evaluated by exhaustively
varying the cluster size, the sampling cycles, the number of included variables, the cut-off of the
preliminary filtering to discard uninformative descriptors (in parenthesis, the number of discarded
descriptors when lowering the threshold cut-off value) and the ionization state of the substrates. Notice
that in these analyses the mean and best Top 10% correspond to the mean and best model sensitivity.
N and I stand for substrates simulated in their neutral and ionized forms, respectively.

Regarding the effect of cluster size, Table 1 reveals that the two monitored enrichment factors
(EFs) show contrasting trends: indeed, the EF in the top 1% improves when cluster size is reduced
yet becomes worse when increasing the cluster size. In contrast, the EF in the top 10% parallels the
cluster size, reaching a maximal value in clusters with a size equal to that of the considered top 10%.
As discussed under methods, these preliminary analyses confirm that the cluster size must be almost
equal to the number of positive compounds included in the used dataset. Based on these results,
the following preliminary analyses were carried out by constantly considering the cluster size to be
equal to 100.

The exhaustiveness of the random sampling is encoded by the number of sampling cycles
performed to generate each model. This parameter is equal to 12 by default; but, as shown in Table 1,
model generation involved doubling or halving the number of sampling cycles. The calculations seem
to be modestly influenced by this parameter and show roughly constant results. However, it should be
noted that a lower number of cycles speeds up calculations but unavoidably increases the randomness
of the results, thus reducing their reproducibility. Hence, the proposed default value appears to be
a reasonable compromise, which can be cautiously lowered when generating classifiers including either
many variables or involving very extended dataset of descriptors to reduce the computational cost.

The role of the criterion by which the descriptors were filtered was investigated by progressively
lowering the cut-off in the Top 5% enrichment factor below which a variable is discarded from 2.5 to
0.0 (default value = 2.0). As reported in Table 1, the number of discarded descriptors is proportional
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to the considered cut-off ranging from 18 (cut-off = 2.5) to 0. Nevertheless, increasing the number
of considered descriptors does not enhance the performances of the models but induces a modest
negative effect, which is more evident when lowering the cut-off below 1.5. More generally, the results
show that filtering descriptors using a cut-off equal to 2.0 can extract the most informative variables
and suggests that this cut-off could be slightly increased to speed up the calculations involving very
large sets of descriptors.

Conceivably, the performances of the generated models increase with the number of included
variables, even though Table 1 shows that marked statistical enhancements are seen up to 4 variables,
while the inclusion of additional variables induces more limited improvements probably due to
overfitting problems. Thus, classifiers including five or (at most) six variables should represents an
optimal balance between computational time, predictive power, and robustness of the classifiers.
In contrast, the generation of models with more variables requires a computational cost, which is
not justified by the marginal increase of the corresponding performances as clearly witnessed by the
models including 8 or 10 variables.

Table 1 shows that the influence of ionization state on model performances is clearly limited;
ionized substrates afford slightly better results when considering classifiers with few variables,
while more complex models show almost identical performances regardless of the substrate’s ionization
state. When considering that the abundance of ionizable molecules within the dataset, the role of
ionization state deserves further investigations and therefore the following models will be generated
considering in parallel neutral and ionized substrates. Based on these preliminary analyses and to
speed up the model generation, the following predictive analyses were carried out by considering: (a)
a cluster size roughly equal to the number of “positive” substrates; (b) sampling cycles equal to 12;
(c) filtering cut-off equal to 2.0; (d) classifiers including six variables.

2.2. Predictive Models

2.2.1. Classifiers for Substrates Yielding RMs in the First and Any Generation

As mentioned above and reported in Table 2, the second part of the study aimed at comparing
optimized classifiers able to predict: (a) substrates giving first-generation RMs; (b) substrates giving
RMs in any generation; substrates giving first-generation RMs through specific metabolic reactions
such as (c) oxidations of Csp2 and Csp atoms, (d) oxidations to quinones or analogues and (e) oxidations
of NH or NOH moieties.

Regarding the predictive models for substrates giving first and any generation RMs, Table 2
compiles the four best classifiers (Mods. 1–4) as obtained by (1) using the training set which is randomly
collected and comprises the 70% of the entire dataset, (2) including six variables, (3) considering
cluster size roughly equal to the number of active molecules in the training set (i.e., 70 or 140) and
(4) simulating the substrates either in their neutral or ionized states. Regardless of the cluster size,
the performances of a given classifier will be evaluated from the number of positive compounds falling
in the first n position of the ranking (where n is the number of positive instances, Table 1). This number
corresponds to the true positives; from it, the entire confusion matrix can be easily calculated since:
(a) false positives = total positives − true positives; (b) false negatives = cluster size − true positives;
(c) true negatives = total molecules − other three computed values. Table 2 reports the statistics of the
selected classifiers as assessed by using them in predicting the molecules within the test set and reveals
marked differences depending on both the ionization state and the involved generation. Indeed,
while the statistics reported in Table 1 suggested that neutral and ionized substrates perform equally
and can predict RMs generation with similar reliability regardless of the involved generation, Table 2
shows that (a) neutral substrates afford a better predictive power, and (b) the classifiers focused on the
first-generation RMs perform better than those involving all generations.
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Table 2. Best developed models and relative statistics.

Mod. Gen./React. State Cluster Size Equation Statistics

1 First N 70
1.00 HBT + 2.47 Lipole − 0.0001

Electronic_Energy + 0.13 Dipole +
+ 2.55 Dn_Total − 2.73 De_Total

Precision = 0.42
Accuracy = 0.85

MCC = 0.33

2 First I 70
1.00 Rotors − 1.55 HBA + 5.09 Lipole −

0.0018 Electronic_Energy +
+5.40 Dn_Total − 5.22 PiS_Total

Precision = 0.35
Accuracy = 0.81

MCC = 0.24

3 All N 140
1.00 HBA + 1.09 Lipole − 0.0089

Heat_Formation + 0.070 Filled_Levels +
− 2.03 De_Total + 4.47 PiS_Total

Precision = 0.42
Accuracy = 0.77

MCC = 0.28

4 All I 140
1.00 Lipole − 0.033 PSA − 0.0059 ASA −

0.0004 Electronic_Energy +
− 0.23 De_Total + 2.04 PiS_Total

Precision = 0.46
Accuracy = 0.74

MCC = 0.29

5 Csp2/Csp
ox

N 30
−1.00 Angles + 19.13 Rotors − 0.43 HBA +

15.47 HBT − 9.89 Impropers +
+ 21.32 Lipole

Precision = 0.67
Accuracy = 0.83

MCC = 0.55

6 Quinone ox N 20
1.00 Angles + 1.07 Rotors + 68.34
Radius_Gyration − 8.38 HBA +

− 30.28 HBD − 1.09 ASA

Precision = 0.63
Accuracy = 0.87

MCC = 0.54

7 NH/NOH
ox N 20

−1.00 HBD + 0.041 Impropers − 0.15
Dipole − 0.0007 E_HOMO +

+ 0.68 Mulliken_Electronegativity +
− 0.46 Schuurmann_alpha

Precision = 0.63
Accuracy = 0.87

MCC = 0.54

8 Csp2/Csp
Ox

I 30
−1.00 Rotors − 10.12 HBA + 1.47 HBD +

− 1.36 Impropers + 1.04 PSA +
+ 0.40 E_LUMO

Precision = 0.61
Accuracy = 0.78

MCC = 0.46

9 Quinone ox I 20
1.00 Angles + 1.53 Rotors +

+ 14.46 Radius_Gyration − 0.42 HBA +
− 14.65 HBD − 0.46 ASA

Precision = 0.67
Accuracy = 0.83

MCC = 0.55

10 NH/NOH
ox I 20

−1.00 HBD + 0.0083 Impropers +
− 0.20 Lipole + 0.035 LogPMLP +

+ 0.015 Dipole + 0.14 Ionization_Potential

Precision = 0.70
Accuracy = 0.87

MCC = 0.61

11 Heart
data N/A 75

−1.00 Pain +
+ 0.063 maximum_heart_rate_achieved +

− 0.47 exercise_induced_angina +
− 2.07 oldpeak +

− 2.68 number_of_major_vessels +
− 1.54 thal

Precision = 0.86
Accuracy = 0.87

MCC = 0.71

N and I stand for substrates simulated in their neutral and ionized forms, respectively.

In detail, the better performances of neutral substrates can be interpreted by considering that
molecular charge affects some key stereo-electronic descriptors and hampers a precise evaluation of
molecular reactivity. Not to mention that simulating neutral substrates represents a straightforward
procedure which greatly simplify the calculations especially for molecules endowed with complex
ionization equilibria. Again, Table 2 emphasizes that the molecular properties of a given substrate can
account for the reactivity of the metabolites directly formed from it, while the RMs formation in the
subsequent generations is conceivably less easily predictable. As a result, the best performing model
(Mod. 1) will be used as a benchmark in extensive comparisons with the corresponding models as
generated by using well-known classification algorithms implemented in the Weka software

Regarding the included descriptors, all models feature a combination of physicochemical and
stereo-electronic descriptors. There are four common variables which are included in at least 3 out
of 4 models: (1) lipole, which is the only descriptor shared by all equations and which indirectly
encodes for both molecular polarity and lipophilicity distribution [14]; (2) piS_total, which is the
molecular self-polarizability and accounts for the reactivity of π electron systems as proposed by
Coulson and Longuet-Higgins [15]; (3) De_total, which is the molecular electrophilic delocalizability
according to Schüürmann [16], while (4) Electronic_energy is related to molecular reactivity. Moreover,
all models include descriptors variously related to H-bonding capacity which might encode for both
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the polarity and the presence of easily oxidizable moieties. In detail, the generated classifiers suggest
that the probability to give RMs increases with the reactivity of the aromatic moieties as well as with the
molecular electrophilicity and apolarity. This results are understandably by considering that (1) all RMs
are basically reactive electrophilic compounds and thus substrates which already possess a marked
reactivity (parameter #4) and electrophilicity (parameter #3) will be more prone to generate RMs;
(2) many RMs arise from the oxidation of aromatic rings to quinones and analogues thus justifying the
occurrence of a descriptor specifically related to the reactivity of π electron systems (parameter #2) (3)
parameters encoding apolarity and H-bonding capacity can be seen as a measure of the propensity of
a given molecule to undergo oxidative metabolic reactions (by which RMs are produced).

2.2.2. Classifiers for Specific Metabolic Reactions

Preliminary models were developed with a view to identifying the first-generation RMs generated
by specific metabolic reactions from among all considered substrates, but these initial analyses proved
unsuccessful (models not shown). Along with the above-mentioned problem of the unbalanced
datasets which here appears to be particularly exacerbated, such a failure can be explained by
considering that such models in fact involve two distinct predictions, namely which substrates yield
RMs and which substrates undergo a specific metabolic reaction. Reasonably, these two distinct
features can depend on different (and maybe contrasting) molecular properties thus justifying the
unsatisfactory results.

More homogeneous models should predict which substrates form RMs through a specific
metabolic reaction either from among all substrates undergoing the same specific reaction or from
among all substrates generating first-generation RMs. The first type of prediction still involves the
recognition of substrates yielding RMs, and thus resembles those already developed in the previous
sections even though focused on a specific subset of all simulated molecules. In contrast, the second
type of prediction appears conceptually different compared to the previous ones, since it predicts
the susceptibility of a given molecule to undergo a specific metabolic reaction. Hence, the following
analyses will be focused on the second prediction type both for its novelty and because its results can
be combined with the previous models offering a kind of predictive procedure by which one may first
predict which molecules can yield RMs and then through which reaction(s) they can be generated.

Moreover, the second prediction type has the added benefit of involving clearly less unbalanced
datasets since here the positive compounds are 39, 23 and 24 out of the 138 first-generation RMs as
produced by oxidation reactions of Csp2 and Csp atoms, to quinones or analogues, and of NH or
NOH moieties, respectively. Based on the previous results and focusing on the randomly generated
training set, the cluster size is equal to 25 for the first reaction type (Mods. 5 and 8, Table 2) and 20 for
the other two cases (Mods. 6, 7, 9 and 10, Table 2), while the initial filtering of the variables based on
their enrichment factor on the Top 5% was rendered less stringent (the required EF value equal to 1.0
instead of 2.0) to avoid an excessive reduction in the number of descriptors considered.

Table 2 compiles the best classifiers as generated by considering either neutral or ionized
substrates. As a trend, the obtained models show truly satisfactory statistics as emphasized by the
corresponding MCC values always greater than 0.5. Conceivably, these remarkable results benefit from
using markedly smaller and less unbalanced learning sets compared to the previously used datasets
and these results suggest also the here proposed approach is influenced by the composition of the
learning sets even though additional tests involving very unbalanced datasets (as used, for example,
in virtual screening campaigns) should be required to precisely assess the performances and limitations
of the EFO method. More importantly, these notable models bear witness to the possibility of
successfully predicting the specific metabolic reaction(s) a given substrate may undergo, considering
only physicochemical and stereo-electronic descriptors. We note that such type of prediction could
find more general applications in predicting the metabolism of xenobiotics.

In more detail, the models compiled in Table 2 allow for some interesting observations. Apart from
the models obtained to recognize the substrates undergoing oxidative reactions at Csp2 and Csp atoms,
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the ionized substrates perform better than the neutral ones. This finding is in contrast to the results
so far reported and can be explained by considering that here the best performing ionization state
should correspond to that concretely involved in molecular recognition by the relevant metabolizing
enzymes, while the previous predictions mostly depend on the intrinsic reactivity of a molecule that is
less influenced by the simulated ionization state as evidenced in the previous sections. On these bases,
the obtained results suggest that the ionized forms play a role in quinone formation and more markedly
in NH/NOH oxidation where the ionization equilibria can directly affect the sites of metabolic attack
(compare Mods. 7 and 10).

Almost all obtained models include a proper combination of physicochemical and stereo-electronic
parameters even though the relevance of the latter is here clearly less pronounced than in the
previous classifiers, a result particularly evident for the descriptors featuring the HOMO/LUMO
energies. This finding can be explained by considering that HOMO/LUMO energies and their derived
parameters are particularly informative in predicting chemical reactivity, while here physicochemical
properties are more convenient in describing the recognition between substrates and enzyme. Clearly,
some stereo-electronic parameters are also included in these last models where they reasonably account
for the covalent phases of the enzymatic reactions as seen for electrophilicity indices when predicting
substrates undergoing NH/NOH oxidation (Mod. 8), as well as the LUMO energies for substrates
undergoing Csp2/Csp oxidation (Mod. 7).

2.2.3. Comparison of the Best Model with Weka Results

With a view to further evaluating the performances of the here proposed EFO classification
method, the best performing model (namely the prediction of neutral substrates yielding
first-generation RMs, Mod. 1) was compared with the corresponding models as generated by using
29 different classification algorithms implemented in the Weka suite of programs. Table 3 reports
the corresponding MCC values and clearly reveals that most tested algorithms provide models with
a predictive power significantly lower than Mod. 1 and only 6 out of 29 compared models show
an MCC value ≥ 0.30.

Table 3. Comparison of the predictive power (as encoded by MCC value) of Mod. 1 with the
corresponding models obtained by using 29 different algorithms as implemented in Weka software.

Algorithm MCC Algorithm MCC

Mod. 1 0.33 (21) IterativeClass 0.24
BayesNet 0.12 RandomSubspace 0.16

FLDA 0.25 DecisionTable 0.13
LDA 0.17 JRip 0.14

Logistic 0.11 PART 0.19
Multilayer 0.30 (7) DecisionStump 0.13

IBk 0.33 (14) J48 0.33 (17)
Kstar 0.27 LMT 0.17
LWL 0.13 RandomForest 0.37 (9)

AdaBoostM1 0.13 RandomTree 0.16
Bagging 0.21 REPTree 0.14

Regression 0.27 LogitBoost 0.18
FilteredClass 0.16 Randomcommitee 0.32 (13)

A1DE 0.14 NNge 0.30 (7)
CHIRP 0.23 ExtraTree 0.25

The methods affording an MCC value ≥ 0.30 are indicated in bold and for these best performing approaches,
the obtained number of true positives in the test set is reported between parentheses. Notice that the approaches
providing models with MCC < 0.1 are not reported for simplicity.

Notably, linear discriminant analysis (LDA) and the functional linear discriminant analysis
(FLDA) [17], which are very popular approaches to predict categorical features. using continuous
variables, perform markedly worse than the here proposed algorithm even though the model obtained
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with FLDA shows an MCC (2.6) close to the mentioned threshold of 0.3. Among the algorithms which
surpass this threshold, the k-NN classifiers (IBk) [18] and the randomizable classifiers [19] generate
models with performances very similar to those of Mod. 1 in terms of both the MCC value and the
number of true positives. Finally, tree algorithms offer the best performances among the methods
included in the Weka software: in detail, the classifier based on the pruned J48 algorithm [20] shows
a comparable MCC value and a higher number of true positives compared to Mod. 1, while the
Random Forest method [21] yields the highest MCC value but a lower number of true positives.

Taken together and although the compared Weka models were developed by adopting the
included default parameters (namely without optimization procedures), the comparison described
above reveals that the proposed method shows performances comparable to, or only slightly worse
than, the best available classification algorithms. Moreover, it should be noted that the tree algorithms
generated slightly better models by including all available descriptors, while Mod. 1 involves only six
descriptors, a difference that should avoid overfitting issues rendering Mod. 1 more robust and more
extensively applicable. Again, the proposed approach affords a score-based instead of a simple binary
prediction and this means that the better the score, the higher the probability that a given substrate
generates RMs.

For example, in the above reported analyses, the compounds classified in the top 10% are
considered as yielding RMs, and Mod. 1 places 48 true positives in this best cluster. This means that
Mod. 1 shows a sensitivity of 0.48, meaning that if a molecule falls in the top 10% it has a probability
of 48% to yield one or more RMs. Nevertheless, this probability is not constant but depends on the
computed score and indeed if a given molecule has a score that brings it in the top 2% the probability
of giving RMs raises to 63%. Similarly, if a substrate falls in the remaining 90% it is predicted as
non-reactive and Mod. 1 has a specificity equal to 0.9, meaning that this predicted probability is
equal to 90%. However, if a given molecule falls in the bottom 10% this probability increases to 97%.
In other words, the proposed method allows a score-based probability to be assigned to each prediction.
This can represent a crucial advantage compared to most available classification approaches.

2.3. General Applicability in Machine Learning Analyses

With these encouraging results in hand, the last part of the study applied the EFO approach
to UCI datasets which are routinely used to test new machine learning algorithms as collected in
http://archive.ics.uci.edu/ml/index.php. These analyses had two primary objectives since they were
planned to test the EFO performances when using (1) non-cheminformatics data and, more interestingly,
(2) roughly balanced datasets. Among the available datasets, attention was focused on two balanced
datasets chosen because they were recently used for benchmarking analyses in a study to validate a new
method for generating training and test sets and thus the here obtained results can be easily compared
to the published models [22]. Moreover, the two chosen datasets involve categorical predictions
based on categorical, integer and real attributes. In detail, the first dataset comprises various health
data for heart patients and the predicted attribute refers to the occurrence of heart disease in the
collected patients [23]. The second dataset involves sonar signals and the predicted attribute is the
discrimination between metals or rocks based on a pattern of 60 frequency-modulated signals in the
range 0.0 to 1.0 [24].

As already observed when predicting specific metabolic reactions, the preliminary filter based on
the EF value of each attribute should be carefully tuned when analyzing less unbalanced dataset based
on the calculation of the maximum EF reachable. For example, the maximum EF value for a perfectly
balanced dataset is equal to 2.0 and this suggests that the above defined default threshold value is
unsuitable, and the filter should be either removed or markedly smoothed. In detail, the predictions of
these last datasets were performed adopting cut-off values equal to 1.5, 1.0 and 0.0 (i.e., no filter).

Table 4 reports the major characteristics of the used datasets and compares the performances
(in terms of Accuracy values) of three well-known classification algorithms (i.e., C4.5, NB, k-NN as
taken from) with those obtained using the EFO approach. The obtained results emphasize that the

http://archive.ics.uci.edu/ml/index.php


Molecules 2018, 23, 2955 10 of 15

EFO method compares with the other approaches and afford encouraging results for both datasets.
The tested threshold values suggest that the initial filter can be conveniently removed when analyzing
balanced datasets including a reduced number of variables (as done for the heart dataset). Nevertheless,
less stringent filters can still be suitable when the high number of considered variables could excessively
slow down the calculations (as done for the sonar dataset).

Table 4. Comparison of the here obtained performances (in terms of accuracy) with those published in
ref. 28 (i.e., C4.5, NB and k-NN) for the two used UCI datasets.

Dataset Attributes Instances
Accuracy

C4.5 NB K-NN EFO (0.0) EFO (1.0) EFO (1.5)

Sonar 60 208 0.68 0.71 0.84 - 0.76 0.69
Heart 13 270 0.74 0.86 0.59 0.87 0.73 0.73

Remarkably, the EFO method affords truly interesting results for the heart dataset performing
slightly better than the other three algorithms. An extended comparison of the here obtained statistics
with those reported in literature revealed that very few algorithms can provide better models (e.g.,
see ref. [25]). For example, a very recent study reported that the approaches based on neural network
can generate models with accuracy values > 0.9 [26].

Table 2 reports the best performing model (Mod. 11). Apart from the maximum heart rate
achieved, all included variables increase the probability of heart disease. Specifically, and in the used
test set, 36 out of 42 instances with a Score < −4.0 and all 25 instances with Score < −12.0 were heart
patients thus suggesting that these values can represent easily computable thresholds by which the
occurrence of heart diseases can be successfully predicted.

3. Methods

3.1. Dataset Set-Up

As mentioned in the Introduction, the study involved 977 compounds, the 3D structure of
which was either generated manually using the VEGA software or, when available, automatically
retrieved from PubChem. The molecules were simulated both in their neutral form and in their
preferred ionization state as existing at physiological pH. Their conformation and atomic charges
were optimized and refined by PM7 semi-empirical methods as implemented in MOPAC 2016 [27]
which also allowed the calculation of a relevant set of stereo-electronic descriptors including,
among others, the HOMO/LUMO-based reactivity indices and the delocalizability descriptors.
The minimized conformations were then used by VEGA to calculate an extended set of geometrical
and physicochemical descriptors by discarding highly correlated variables. In this way, a set of 28
descriptors was collected and used in the development of the predictive models as described below.
The computed descriptors were directly used in the study without scaling, weighting, or normalization
procedures. The dataset used in the predictive analyses for neutral substrates is collected in Table S1.

3.2. Classification Algorithm

Given the well-known limitations of the common classification algorithms in providing
satisfactory results when, as in this study, the learning set is markedly unbalanced, a classifier
method based on logistic regressions as driven by an enrichment factor optimization (EFO) has been
developed and included in VEGA ZZ package as the Automatic model builder.c script. Such a method
predicts a categorical dependent variable (the RMs generation) by developing linear combinations of
continuous independent variables (the molecular descriptors). Since the developed equations produce
continuous output values and not the expected binary outputs, during the learning phase the n best
score compounds are considered as positives and the remaining (t − n) compounds are considered
as negatives (where n is the number of positive compounds included in the training set and t is
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the total number of instances). For example, the prediction of substrates generating first-generation
RMs assumed the 138 compounds with the best scores as yielding RMs, while the remaining 839
molecules are considered as non-reactive substrates. The resulting classifiers were thus evaluated
by considering their capacity to place the RM-yielding molecules within the 138 top positions in
the ranking. Accordingly, the score computed for the 138th compound, namely the last compound
considered as positive, represents a threshold value, which will allow the discrimination between
positives and negatives in the validation phase and, more in general, when applying the obtained
model to external compounds.

As schematized in Figure 1, the algorithm proposed here is composed of several logical units
starting from a preliminary data filtering which allows the selection of the most informative descriptors.
In such an initial process, each descriptor is filtered based on its capability to place the RM-yielding
substrates in the top of the ranking by simple EF analysis. Only descriptors with an EF value as
computed for the top 5% greater than a user-defined threshold (by default equal to 2.0) were selected
for the model generation.

Hence, the selected descriptors were systematically combined to generate classification models
according to the user-defined number of independent variables. The coefficients of the resulting
equations are calculated by applying the Hooke-Jeeves optimizer for non-continuous functions,
the goal being to optimize the ranking position of the substrates yielding RMs. Moreover, a random
sampling algorithm is applied to evade local minima thus better optimizing the resulting classifiers.
The performances of each resulting model are evaluated by a purposely defined quality function.Molecules 2018, 23, x 12 of 15 
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Figure 1. Main logical units into which the proposed classification algorithm can be subdivided.
The yellow box indicates the input, the green box comprises the initial variable filtering; the blue
boxes define the main tasks performed by the algorithm; the red box displays the obtained results.
The brown boxes include the computational approaches by which each generated classifier is optimized
by maximizing the corresponding quality function.
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Similarly to virtual screening metrics, the ability of a classifier to correctly recognize the relevant
compounds can be described by two kinds of parameters: firstly, enrichment factors account for
the capacity to focus the correct compounds on the top of the ranking without considering what
happens in the remaining part of the ranking; secondly and in contrast, the metrics variously based on
receiver operating characteristic (ROC) curves evaluate the reliability of the entire ranking but fail to
parameterize how many substrates are correctly classified in the first (best) positions (the so-called
early recognition problem).

As proposed in a previous study [28], cluster analysis can afford a graphically intuitive way to
evaluate the overall reliability of a classifier by monitoring how many RM-yielding compounds are
included in each cluster. A suitable model should be able to place most of the RM-yielding substrates
in the first cluster, with their proportion progressively decreasing in the following clusters. In contrast,
models which randomly distribute the RM-yielding substrates in all clusters should be considered
unsatisfactory regardless of how many correct molecules are placed in the best clusters.

Besides offering a graphical evaluation, the distribution of substrates which yield reactive
metabolites can be used to derive a quantitative parameter based on the asymmetry index (AI),
a measure of deviation of the cluster distribution from a normal curve which can be computed based
on the Pearson’s moment coefficient of skewness [29]. Thus, the greater the AI value (namely the
more right-skewed the distribution) the better the model. Moreover, and to also optimize the early
recognition, the quality function optimized in the model generation is calculated as the product of
the asymmetry index and the percentage of RM-yielding substrates included in the first (best) cluster
(RM1). This is reported in Equation (1) where n is the number of clusters, RMi is the abundance of
substrates yielding RM in the i cluster and RMm is the RM average.

Quality =
∑n

i=1
1
n (RMi − RMm)3

(∑n
i=1

1
n (RMi − RMm)2)

3
2

× RM1 (1)

In the following analyses, the size of the cluster will be defined as roughly equal to the number
of RM-yielding substrates so that RM1 encodes the capacity of the model to discriminate between
substrates yielding or not reactive metabolites. Although maximizing the distance between “active”
and “inactive” instances is the primary objective of the classification algorithm, the quality function
also includes the asymmetry index to assure that the frequency of RM-yielding substrates decreases
when moving towards the bottom of the ranking. In this way, the entire resulting ranking encode
for a sort of probability score, which can be associated with each binary prediction and can become
particularly insightful for the doubt cases.

The graphical interface of this tool allows the selection of: (i) input and output files; (ii) the
dependent variable (here the Boolean RM value) with a cut-off above which a RM-yielding compound
should be considered as active (in the case of Boolean properties, a cut-off value equal to 0.5 can be
set); (iii) the independent variables which can be selected from the specified input file; (iv) the number
of variables to be included in the model; (v) the size of the clusters into which the ranking should
be subdivided when calculating the quality function. Moreover, the user can define the number of
cycles of random sampling performed to generate each starting model (by default 12 for each included
variable) as well as the characteristics of the optimization algorithm (iterations = 5000, RMS = 0.001).

At the end of calculations, the resulting output files comprise: (i) a file containing the results for
the selected best models, (ii) a log file including the details of the performed calculation, (iii) a file
compiling the computed scores for each molecule and for each model and (iv) a reduced input file
including only the best performing descriptors. This last file can be used as input to speed up the
calculations in which models including several variables are generated and for which an exhaustive
model generation could become too time-consuming. The pseudo-code of the entire algorithm is
included in the Supporting Information (Scheme S1).
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4. Conclusions

The study proposes a novel classification algorithm based on linear combinations of descriptors,
which are generated through enrichment factor optimization (EFO). Even though this approach could
find many insightful applications in virtual screening campaigns, it is here presented by considering
its potential as a general classification approach in predicting substrates yielding RMs. The study takes
advantage from a previously collected and reported metabolic database and reveals that even though
most hitherto published predictive models are based on the occurrence of well-defined structural alerts,
the capacity of a given substrates to form RMs (at least in the first-generation metabolism) can also
be predicted by using physicochemical and stereo-electronic descriptors with the latter playing a key
role in parameterizing the intrinsic reactivity of a molecule and its metabolites. As an aside, the study
also comprises classifiers able to recognize the kind of metabolic reaction a molecule can undergo,
and these preliminary results open the door to the use of this approach in metabolism predictions.
More generally, the predictive models developed here emphasize the potential of using highly curated
metabolic datasets and suggest that the exploited database can provide reliable learning sets for
developing various metabolic predictive models. Moreover, and for simplicity, the here proposed
models were developed focusing on the lowest energy conformation even though one may argue that
monitoring more than one representative geometry might improve the models especially for very
flexible molecules.

The comparison of the generated best performing model with the classifiers developed by using
different classification algorithms implemented in the Weka software reveals that the proposed
approach compares with the best available approaches and shows two crucial advantages since
it involves a limited number of descriptors and provides a score-based probability which allows
a critical evaluation of the obtained prediction.

Finally, the last analyses focused on non-cheminformatics data emphasize the general applicability
of the EFO method which provide satisfactory results even when using balanced datasets regardless
of the type of included variables. Specifically, the EFO application on the heart dataset afforded
a highly performing model, which allows a very easy and successful prediction of the occurrence of
heart disease.

Supplementary Materials: The following are available online. Scheme S1: pseudocode for here proposed EFO
algorithm; Table S1: metabolic data and molecular descriptors used as learning set to develop the predictive
models; Table S2: computed scores for each substrate and for the four best classifiers as reported in Table 4.
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