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Introduction
In 2017, the World Health Organization identi-
fied depression as the leading cause of disability 
worldwide, affecting approximately 4.4% of the 
total global population and increasing annually in 
prevalence.1 Hitherto, no curative treatments 
have been identified or developed for the treat-
ment of depression. While available treatments 
have established symptom-mitigating efficacy in 

clinical populations, approximately one-third of 
patients fail to respond to conventional antide-
pressant therapies and continue to experience 
clinically significant, recurrent, and progressive 
deficits in psychosocial, cognitive, and general 
functioning.2 All pharmacological agents cur-
rently approved for depression by the US Food 
and Drug Administration (FDA) target monoam-
inergic systems, underscoring the need for novel 

Anti-cytokine agents for anhedonia: 
targeting inflammation and the immune 
system to treat dimensional disturbances in 
depression
Yena Lee, Mehala Subramaniapillai, Elisa Brietzke, Rodrigo B. Mansur, Roger C. Ho, 
Samantha J. Yim and Roger S. McIntyre

Abstract: The etiology of mood disorders is mechanistically heterogeneous, underscoring  
the need for a dimensional approach to identify and develop targeted treatments in  
psychiatry. Accumulating evidence implicates inflammation as an important contributor to  
the pathophysiology of depression and presents the immune system as a viable therapeutic  
target that may be more proximate to the pathogenic nexus of brain-based disorders in  
specific subpopulations. Anhedonia is a transdiagnostic (e.g. Parkinson’s disease, diabetes  
mellitus, rheumatic diseases), yet specific, and clinically relevant symptom dimension  
subserved by well-characterized neurobiological and neurophysiological substrates of the  
positive valence systems (PVS). Brain circuits, nodes, and networks, as well as cellular and  
molecular pathways (e.g. dopaminergic transmission; excitotoxicity; synaptic plasticity),  
subserving anhedonia are preferentially affected by inflammatory processes. To our  
knowledge, no published randomized, controlled clinical trial in populations with mood  
disorders has, to date, primarily sought to determine the effects of an anti-inflammatory  
agent on PVS functions or pathophysiology. Three ongoing clinical trials aim to investigate 
the effects of anti-TNF-alpha biologic infliximab on measures of anhedonia [ClinicalTrials.
gov identifier: NCT02363738], motivational behavior and circuitry [ClinicalTrials.gov identifier: 
NCT03006393], and glutamatergic changes in the basal ganglia [ClinicalTrials.gov identifier: 
NCT03004443] in clinical populations with unipolar or bipolar depression. Positive results 
would further instantiate the relevance of inflammatory processes and the immune system 
in the pathophysiology of mood disorders and provide the impetus to develop scalable 
treatments targeting inflammation and the immune system to mitigate transdiagnostic, 
dimensional disturbances in brain-based disorders.

Keywords: anhedonia; anti-inflammatory agents; inflammation; infliximab; Major Depressive 
Disorder; Bipolar Depression

Received: 7 September 2017; revised manuscript accepted: 11 July 2018.

Correspondence to: 
Roger S. McIntyre 
Mood Disorders 
Psychopharmacology Unit, 
University Health Network, 
399 Bathurst Street, MP 
9-325, Toronto, ON M5T 
2S8, Canada 
roger.mcintyre@uhn.ca

Yena Lee 
Mood Disorders 
Psychopharmacology Unit, 
University Health Network, 
Toronto, ON, Canada 
Brain and Cognition 
Discovery Foundation, 
Toronto, ON, Canada 
Institute of Medical 
Science, University of 
Toronto, Toronto, ON, 
Canada

Elisa Brietzke 
Department of Psychiatry, 
Universidade Federal de 
Sao Paulo, Sao Paulo, 
Brazil

Mehala Subramaniapillai 
Mood Disorders 
Psychopharmacology Unit, 
University Health Network, 
Toronto, ON, Canada 
Brain and Cognition 
Discovery Foundation, 
Toronto, ON, Canada

Roger C. Ho 
Department of 
Psychological Medicine, 
National University of 
Singapore, Singapore

Rodrigo B. Mansur 
Mood Disorders 
Psychopharmacology Unit, 
University Health Network, 
Toronto, ON, Canada 
Brain and Cognition 
Discovery Foundation, 
Toronto, ON, Canada 
Department of Psychiatry, 
University of Toronto, 
Toronto, ON, Canada

Samantha J. Yim 
Mood Disorders 
Psychopharmacology Unit, 
University Health Network, 
Toronto, ON, Canada

Roger S. McIntyre 
Mood Disorders 
Psychopharmacology Unit, 
University Health Network, 
Toronto, ON, Canada  

791944 TPP0010.1177/2045125318791944Therapeutic Advances in PsychopharmacologyY Lee, E Brietzke
research-article2018

Review

https://journals.sagepub.com/home/tpp
https://uk.sagepub.com/en-gb/journals-permissions
https://uk.sagepub.com/en-gb/journals-permissions
mailto:roger.mcintyre@uhn.ca


Therapeutic Advances in Psychopharmacology 8(12)

338 journals.sagepub.com/home/tpp

conceptual frameworks that better characterize 
the mechanistically heterogeneous etiology of 
depression to develop targeted and disease-modi-
fying treatments in mood disorders. Herein, we 
outline accumulating data implicating distur-
bances in the immune system as an important 
contributor to the pathophysiology of depression 
and a possible target for treating domain-based 
pathologies in depression.

Inflammation and its relevance to 
the phenomenology, etiology, and 
pathophysiology of depression
In replicated preclinical and clinical studies, tran-
sient sickness behavior and depressive symptoms 
(or depressive-like behaviors) are observed with 
immune activation.3–7 For example, the adminis-
tration of bacterial lipopolysaccharide (LPS) in 
rodents induces the expression of pro-inflamma-
tory cytokines [e.g. tumor necrosis factor (TNF)-
alpha, interleukin (IL)-1beta] and transient 
behavioral changes (e.g. decreased locomotor 
activity and feeding, greater social withdrawal, 
and increased slow-wave sleep and pain sensitiv-
ity) that peak within 2–6 h of LPS administra-
tion.8,9 While transient sickness behaviors resolve 
gradually, depressive-like behaviors, such as 
anhedonia (e.g. reduced sucrose preference) and 
helplessness (e.g. greater immobility on the forced 
swim and tail suspension tests), peak 24 h after 
LPS administration after feeding and locomotor 
activity have normalized.8–10 Similarly, individu-
als receiving pro-inflammatory immunotherapy 
for malignant melanoma or hepatitis C exhibit 
acute flu-like neurovegetative and somatic symp-
toms (e.g. lethargy, loss of appetite, myalgia), 
which emerge within 6–8 h and typically resolve 
within 1–3 weeks; neuropsychiatric symptoms 
(e.g. cognitive impairment, irritability, apathy) 
develop after a few weeks of treatment.4,11–14 Up 
to half of patients receiving chronic interferon 
(IFN)-alpha therapy meet diagnostic criteria for 
major depressive disorder (MDD).14–17

Epidemiologically, chronic immune dysregulation 
is associated with higher depression incidence. For 
example, a recent population-based, case-control 
study (n = 103,307) reported a dose-dependent 
relationship between the frequency and severity of 
influenza infections and depression incidence.18 
Approximately 15–22% of individuals with chronic 
inflammatory conditions (e.g. rheumatoid arthri-
tis, systemic lupus erythematosus) present with 
clinically significant depressive symptoms.19,20 

Similarly, individuals with mood disorders are 
more likely to have or develop metabolic and 
inflammatory comorbidities (e.g. diabetes melli-
tus, metabolic syndrome, central obesity, hyper-
tension, cardiovascular disease, autoimmune 
disorders) when compared with the general popu-
lation.21–25 Diabetes mellitus and mood disorders 
are bidirectionally associated with a synergy index 
of 2.2.26 Populations with an immune-mediated 
disease (e.g. inflammatory bowel disease, multiple 
sclerosis, rheumatoid arthritis) also have a higher 
incidence of major depressive, anxiety, and bipolar 
disorders.25 Chronic, aberrant activation of the 
immune system (e.g. increased natural killer cyto-
toxicity, pro-inflammatory cytokine expression) 
with psychological stressors has also been hypoth-
esized to subserve the elevated risk for coronary 
artery disease in populations with mood disor-
ders.27 Moreover, the recognition of mood disor-
ders as an independent risk factor for cardiovascular 
disease, commensurate with the level of risk con-
ferred by chronic inflammatory disease or human 
immunodeficiency virus infection, suggests a con-
vergence in the etiology of mood disorders and 
cardiovascular disease and implicates alterations in 
inflammatory pathways and networks.28

However, not all patients receiving chronic immu-
notherapy develop clinically significant depressive 
symptoms and progress to declare a psychiatric 
illness, underscoring the need to identify  
relevant risk factors and vulnerable subpopula-
tions. Among adults receiving IFN-alpha therapy 
for cancer or hepatitis C, treatment-related and 
clinical risk factors include: longer treatment 
duration and higher dose; greater baseline depres-
sive symptom severity; the presence of previous 
psychiatric diagnoses or sleep disorders; family 
history of a mood disorder; low social support; 
and older age.11,13,29,30 In addition, greater pitui-
tary–adrenal axis reactivity in response to IFN-
alpha, higher baseline cytokine levels [e.g. IL-6, 
soluble IL-6 receptor (IL-6R), IL-2R, IL-10, 
soluble TNF receptor (sTNFR) 1], lower base-
line anti-inflammatory polyunsaturated fatty acid 
levels, and functional polymorphism in immune 
[e.g. serotonin transporter (SERT), IL-6] and 
apolipoprotein E genes may contribute risk.29,30 
Peripheral changes in neopterin, kynurenine 
(KYN), and KYN-to-tryptophan (TRP) ratio, as 
well as brain-derived neurotrophic factor 
(BDNF), correlate with the severity of emergent 
depressive symptoms, implicating mechanisms of 
neuroplasticity, oxidative stress, and inflamma-
tory pathways.5,31
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The cellular and molecular biosignatures of indi-
viduals with depression exhibit the cardinal fea-
tures of an inflammatory response and implicate 
disturbances in the immune system and inflam-
matory pathways [e.g. nuclear factor (NF)-
kappaB, caspase-1, NLRP3 inflammasome] in 
the pathogenesis of mood disorders.32–35 Case-
control studies, as well as prospective and longi-
tudinal clinical staging studies of individuals with 
or at risk for mood disorders, have reported ele-
vated levels of pro-inflammatory cytokines and 
their associated receptors [e.g. TNF-alpha, 
IL-1beta, IL-6, C-reactive protein (CRP), 
sTNFR1, sTNFR2, soluble IL-2 receptors (sIL-
2R)] peripherally and in the cerebrospinal 
fluid.5,33,35–39 In addition, the dysregulation of 
cytokines, adiponectin, and leptin in visceral adi-
pose as part of central obesity has been implicated 
in the pathogenesis of the metabolic syndrome 
and associated with greater depressive symptom 
severity and unfavorable illness course in bipolar 
disorder, as well as depression-like behavior in 
animal models.40–42

While the directionality of the relationship between 
inflammation and depression is unknown, periph-
eral immune activation drives inflammation in the 
central nervous system and alters brain func-
tions.33,43 Cytokines can cross the blood–brain bar-
rier (BBB) via the circumventricular organs or 
saturable transporters in the BBB, as well as mod-
ulate peripheral afferent nerve fibers (e.g. vagus 
nerve) with catecholaminergic efferents, resulting 
in microglial activation.16,33,44 Activated microglia 
and astrocytes also drive CC-chemokine ligand 
(CCL)-2-mediated cellular trafficking of activated 
immune cells (e.g. monocytes) into the brain.33,45,46 
Neuroimaging studies have noted microglial acti-
vation in the prefrontal cortex, anterior cingulate 
cortex (ACC), and insula among individuals with 
depression.47 Moreover, microglial activation can 
be experimentally induced in nondepressed healthy 
controls with peripheral administration of inflam-
matory stimuli (e.g. endotoxin, lipopolysaccha-
ride).6,48 In addition, microglial activation is 
associated with self-reported depressive symptoms 
and elevated peripheral pro-inflammatory cytokine 
levels in the foregoing experimental paradigms.6,48

Functional allelic variants and single nucleotide 
polymorphisms in immune and inflammatory 
genes [e.g. TNF-alpha, IL-1beta, cyclooxygenase 
(COX)-2, phospholipase A2] contribute to 
depression susceptibility in probands and indi-
viduals without family history of mood disorders, 

correlate with depressive symptom severity in 
clinical populations with mood disorders, and 
predict antidepressant response.17,49–51 Immune 
reactivity, as proxied by change in serum IL-1beta 
levels in an experimental paradigm of social stress, 
has also been reported to correlate with depres-
sive symptoms in a population of postmenopausal 
women.52 Aberrant gene expression profiles in 
the monocytes of individuals with mood disorders 
have also implicated cellular signaling, trafficking, 
and survival genes involved in stress-related 
inflammatory pathways and glucocorticoid resist-
ance [e.g. TNF, IL-1beta, CCL2, mitogen-acti-
vated protein kinase (MAPK)-6].53–55 Genetic 
polymorphisms subserving immune complex 
clearance pathways (e.g. gamma Fc region recep-
tor, integrin alpha M) are also associated with 
depressive and other neuropsychiatric symptoms 
in populations with chronic inflammatory condi-
tions.56 Taken together, the foregoing observa-
tions not only implicate inflammation and 
dysregulation of the immune system in the phe-
nomenology, etiology, and pathophysiology of 
depression, but also present the immune system 
as a possible mechanistic target for developing 
disease-modifying treatments in mood disorders.

Dimensional disturbances in depression: 
targeting the positive valence systems
The role of inflammation in the pathophysiology 
of depression can be further atomized into spe-
cific symptom dimensions that are aligned with 
the Research Domain Criteria (RDoC) and 
observed across multiple diagnostic categories 
(e.g. anxiety disorders, schizophrenia). The 
RDoC matrix was proposed by the National 
Institute of Mental Health as a novel conceptual 
framework for brain-based disorders that inte-
grates findings from the biological, behavioral, 
and cognitive sciences with clinically observed 
symptoms.57,58 Within the RDoC framework, 
transdiagnostic clinical phenomena are opera-
tionalized as domains of the negative valence sys-
tems, positive valence systems (PVS), cognitive 
systems, systems of social processes, and arousal 
and regulatory systems. The RDoC matrix fur-
ther disentangles mechanistically heterogeneous, 
symptom-based categories of illness into discrete, 
validated constructs of neurobiological and 
quantitative measures of pathology (i.e. ‘units of 
analysis’) that subserve the foregoing domains, 
providing targets that are more proximate to the 
etiology and underlying pathophysiology of 
brain-based disorders.59
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Anhedonia is a diagnostic feature of a major 
depressive episode (MDE) and defined as the 
diminished ability to experience pleasure or enjoy  
previously pleasurable activities.60 Notwithstanding 
its conceptualization as a cardinal depressive 
symptom, anhedonia is a prevalent and pervasive 
clinical phenomenon, observed transdiagnosti-
cally among individuals with or without current, 
or history of, psychiatric disorders (e.g. schizo-
phrenia, bipolar disorder, substance use disor-
ders).61–65 In addition, anhedonia is an important 
determinant of prognosis and quality of life in psy-
chiatric and nonpsychiatric clinical populations 
(e.g. schizophrenia, Parkinson’s disease, diabetes 
mellitus, cardiovascular disease).62,66–72 Anhedonia 
is also a replicated predictor of antidepressant 
nonresponse, as observed in the Genome-Based 
Therapeutic Drugs for Depression (GENDEP) 
and the Sequenced Treatment Alternatives to 
Relieve Depression (STAR*D).73,74

Within the RDoC framework, anhedonia can be 
conceptualized as a disturbance in the PVS, 
which comprises constructs related to, and neu-
robiological substrates subserving, reward- and 
motivation-related behaviors. The cellular and 
molecular substrates subserving PVS phenome-
nology and function are well characterized and 
include monoaminergic (e.g. dopamine, seroto-
nin) and glutamatergic circuits, nodes, and net-
works, primarily in the ventral tegmental area, 
basal ganglia, prefrontal cortex, and ACC.75–77

Pro-inflammatory cytokines affect cellular and 
molecular substrates that influence brain struc-
tures and circuits that subserve PVS pathophysi-
ology. For example, TNF-alpha, IL-1beta, and 
IFNs can decrease monoaminergic transmission 
by increasing dopamine, serotonin, and norepi-
nephrine transporter activity and expression via 
activation of p38 MAPK pathways; decreasing 
vesicular monoamine transporter-2 expression 
and function; decreasing enzymatic cofactor tet-
rahydrobiopterin availability via production of 
reactive oxygen and nitrogen species; and deplet-
ing serotonin precursor tryptophan via activation 
of indoleamine 2,3-dioxygenase (IDO), which 
metabolizes TRP to KYN.32,33,78 Serum levels of 
KYN and neopterin, as well as KYN-to-TRP 
ratios, correlate with depressive symptom sever-
ity.31 Moreover, IDO activation appears to peak 
synchronously with depressive-like behavior with 
LPS administration in murine models.9 In addi-
tion, TNF-alpha promotes insulin resistance, via 
its effects on insulin receptor substrate, which is 

associated with increased monoamine turnover 
(e.g. dopamine) and alterations in brain circuits, 
nodes, and networks subserving general cogni-
tion, as well as reward- and motivation-related 
behaviors.79–82

The activation of IDO by pro-inflammatory 
cytokines also modulates glutamatergic trans-
mission. Activated microglia and infiltrating 
monocytes and macrophages convert KYN in 
the brain into neurotoxin quinolinic acid, which 
activates presynaptic N-methyl-D-aspartate 
(NMDA) receptors to release glutamate and 
blocks astrocytic reuptake of synaptic gluta-
mate, decreasing BDNF expression and con-
tributing to excitotoxicity and decreased 
neurogenesis.29,83 Increased glutamate levels 
have been noted in the basal ganglia and dorsal 
ACC of depressed patients with serum CRP lev-
els of 3 mg/l or greater, relative to those with 
CRP < 3 mg/l, and correlate with anhedonia.84 
Oxidative stress also activates astrocytes and 
stimulates excess glutamate release.29,83 Pro-
inflammatory cytokines also reduce neurogene-
sis in the dentate gyrus, synaptic plasticity, and 
dendritic sprouting, ultimately affecting brain 
structures and functions.33,85 Physical and psy-
chological stressors also promote glucocorticoid 
resistance via danger-associated molecular pat-
tern signaling pathways and its effects on the 
NLRP3 inflammasome.34,54

Convergent evidence indicates that innate 
immune activation and inflammatory processes, 
via their effects on monoaminergic and gluta-
matergic transmission and metabolism (e.g. via 
the KYN pathway) preferentially affect dopa-
minergic circuits and networks subserving PVS 
phenomenology.86–88 For example, among 50 
unmedicated adults with MDD or bipolar dis-
order, higher serum CRP levels predicted 
greater glutamate levels in the basal ganglia.89 
Glutamate levels in the basal ganglia were asso-
ciated with measures of anhedonia and psycho-
motor processing, supporting the notion that 
inflammatory processes preferentially affect 
reward circuits and dopaminergic neurons 
involved in reward- and motivation-, as well as 
motor activity-related behaviors.86–89 Peripheral 
inflammatory challenges have also been associ-
ated with decreased responsiveness to monetary 
reward in the ventral striatum and deficits in 
reward-related behaviors, as well as psychomo-
tor slowing, in nondepressed subjects, consist-
ent with clinical observations of anhedonia and 
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psychomotor slowing as predominant depres-
sive symptoms in populations with acute  
infections or receiving chronic IFN-alpha ther-
apy.86,90,91 In addition, a proof-of-concept study 
inclusive of 16 healthy, nondepressed partici-
pants reported that typhoid vaccinations 
induced peripheral IL-6 levels, activated the 
subgenual ACC, and decreased subgenual 
ACC-ventral striatum functional connectivity; 
in addition, IL-6 levels moderated the forego-
ing decrease in reward circuit connectivity.92 
Similarly, in a resting-state neuroimaging study 
of 48 unmedicated, depressed subjects, higher 
serum CRP levels were associated with func-
tional dysconnectivity in corticostriatal reward 
circuitry and predicted greater anhedonic and 
psychomotor slowing symptoms.87

Observed brain correlates of anhedonia have been 
reported as part of a connectome-wide association 
analysis in 172 adults with a mood disorder, schiz-
ophrenia, or psychosis risk and 53 adults without 
any psychiatric conditions.93 Dissociable patterns 
of hyperconnectivity within the default mode net-
work (DMN), diminished DMN connectivity 
with the nucleus accumbens and cingulo-opercu-
lar network, and increased connectivity between 
the nucleus accumbens and the cingulo-opercular 
network were noted, instantiating the transdiag-
nostic relevance of anhedonia and a convergence 
in the neurobiological substrates subserving PVS 
pathophysiology.93 In addition, the antisuicide 
effects of ketamine have been postulated to be 
subserved by glutamatergic modulation of brain 
circuits and networks involved in general cognitive 
and PVS.94

Moreover, a recent multisite study using 
machine learning capabilities aimed to identify 
clinically relevant neurophysiological subtypes 
informed by symptom profiles and resting-state 
functional neuroimaging data from 333 sub-
jects with MDD and a current MDE and  
378 age- and sex-matched subjects without  
any psychiatric history.95 Clinically relevant 
patterns of functional dysconnectivity in  
limbic and frontostriatal networks accurately 
classified 80–93% of  subjects’ diagnostic labels 
in an independent, out-of-sample replication 
dataset (n = 125 MDD, n = 352 controls).95  
Of note, hyperconnectivity in thalamic and 
frontostriatal networks, which correlated with 
increased anhedonia and psychomotor retarda-
tion, emerged as the most robust subtype, 
implicating anhedonia as a transdiagnostic 

clinical phenotype with discrete, yet conver-
gent, neurophysiological correlates.

The immune system as a viable therapeutic 
target in depression
Accumulating evidence indicates that anti-
inflammatory agents may be effective for the 
treatment of depression, at least for a significant 
proportion of patients presenting with baseline 
inflammatory activation.96 However, available 
data are limited by heterogeneity in study design, 
such as the use of different anti-inflammatory 
agents with various off-target effects [e.g. non-
steroidal anti-inflammatories (NSAIDs) also 
modulate prostaglandin production, which may 
be pro-inflammatory in chronic disease states]; 
the measurement of depressive symptom sever-
ity broadly rather than dimensionally, with symp-
tom-specific outcomes (e.g. anhedonia); and 
the inclusion of patients solely on the basis of 
clinical diagnoses without study population 
enrichment for relevant neurobiological or neu-
rophysiological substrates, or evidence of target 
engagement.97–100 In contrast, preliminary evi-
dence suggests that biologics (e.g. monoclonal 
antibodies) that specifically target individual 
cytokines (e.g. TNF-alpha) are effective in 
reducing depressive symptoms without off-tar-
get effects. For example, a recent meta-analysis 
(n = 2370) of seven randomized, controlled tri-
als of anticytokine agents (e.g. adalimumab, 
etanercept, tocilizumab, infliximab) in chronic 
inflammatory conditions (e.g. rheumatoid 
arthritis) reported significant antidepressant effi-
cacy of moderate effect size [standardized mean 
difference (SMD) = 0.40, 95% confidence 
interval (CI) = 0.22, 0.59].100

Greater baseline inflammatory activation has 
been observed among patients exhibiting poorer 
response to conventional antidepressant ther-
apy.101–103 The foregoing observation highlights 
the opportunity to use immune system substrates 
as biomarkers to identify patients who are likely 
to be treatment resistant and may benefit from 
novel therapeutic strategies.96 For example, base-
line plasma adipokine abnormalities predict anti-
depressant response to ketamine in unipolar or 
bipolar depression and are postulated to contrib-
ute to the antidepressant effects of ketamine.104 
In addition, baseline measures and changes in 
composite inflammatory biomarkers [i.e. body 
mass index ⩾ 30 k/m2, IL-6, IL-8, high sensitiv-
ity (hs)-CRP, TNF-alpha, and leptin] predicted 
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and correlated with antidepressant response to 
L-methylfolate calcium in MDD.105 Similarly, 
composite markers of baseline inflammatory acti-
vation predicted greater depressive symptom 
improvement with eicosapentaenoic acid (EPA), 
and reduced responsiveness to placebo, when 
compared to subjects with low baseline inflam-
matory activation.106 A corollary of the stratifica-
tion of treatment response by inflammatory 
biomarkers is the presence of a U-shaped rela-
tionship between inflammation and depres-
sion.107 Only a subpopulation of individuals  
with depression with baseline inflammatory acti-
vation may benefit from anti-inflammatory  
treatment, underscoring the importance of iden-
tifying, screening for, and targeting specific sub-
populations that are most likely to benefit from 
an intervention, as well as highlighting the 
opportunity to use immune substrates as bio-
markers to personalize care and improve out-
comes in psychiatry.107

To our knowledge, the antidepressant efficacy of 
only one anticytokine agent–infliximab–has been 
investigated as part of a randomized, controlled 
clinical trial and published as a primary outcome 
among adults with mood disorders; etanercept 
has also been investigated as part of an open-label 
clinical trial.107,108 Infliximab is a chimeric mono-
clonal antibody that targets TNF-alpha, is admin-
istered intravenously, and is approved by the 
FDA and Health Canada for the treatment of sev-
eral rheumatic disorders (e.g. rheumatoid arthri-
tis, Crohn’s disease, ankylosing spondylitis, 
psoriatic arthritis, and ulcerative colitis).109 In a 
randomized, double-blinded, placebo-controlled 
trial of infliximab in depressed subjects meeting 
diagnostic criteria for a current MDE as part of 
treatment-resistant MDD (n = 51) or bipolar dis-
order (n = 9), Raison and colleagues reported 
that infliximab significantly improved depressive 
symptoms in subjects with baseline inflammatory 
activation (i.e. hs-CRP levels of >5 mg/l), but not 
in subjects without baseline inflammatory activa-
tion (i.e. hs-CRP ⩽ 5 mg/l); in fact, subjects with-
out baseline inflammatory activation were more 
likely to benefit from placebo than active treat-
ment.107 A case report of antidepressant efficacy 
of TNF-alpha inhibitor etanercept in two geriat-
ric patients with treatment resistant depression 
reported mixed findings, but did not assay base-
line inflammation.108

Three randomized, double-blinded, placebo-con-
trolled clinical trials investigating the efficacy of 

infliximab on a measure of anhedonia are currently 
ongoing (Table 1). One 12-week trial in adults (n 
= 60) with bipolar I/II depression exhibiting base-
line inflammatory activation includes an assess-
ment of the Snaith-Hamilton Pleasure Scale 
(SHAPS) with three infusions of inflixmab or pla-
cebo and is expected to complete in April 2018 
[ClinicalTrials.gov identifier: NCT02363738]. 
Two 2-week trials include adults currently experi-
encing clinically significant depressive symptoms 
as part of bipolar or MDD with baseline CRP > 3 
mg/l and a single infusion of infliximab or placebo 
and are expected to complete in March 2021.  
One study (n = 80) primarily aims to assess the  
effects of infliximab on motivational circuits and 
behavior as assessed using an functional magnetic- 
resonance-imaging-adapted Behavioral Effort-
Expenditure for Rewards Task (behEEfRT) 
[ClinicalTrials.gov identifier: NCT03006393]. A 
separate study (n = 60) primarily aims to investi-
gate the effects of infliximab on glutamate levels in 
the basal ganglia as measured by magnetic reso-
nance spectroscopy and additionally includes cer-
ebrospinal fluid biomarkers [ClinicalTrials.gov 
identifier: NCT03004443]. All three clinical trials 
include measures of cognition, overall depressive 
symptom severity, and peripheral biomarkers, 
among others (Table 1).

Conclusion
Taken together, the etiology of mood disorders is 
mechanistically heterogeneous, underscoring the 
need for a dimensional approach to identify and 
develop disease-modifying and potentially cura-
tive treatments in psychiatry. Accumulating evi-
dence implicates inflammation as an important 
contributor to the pathophysiology of depression 
and presents the immune system as a viable thera-
peutic target that may be more proximate to the 
pathogenic nexus of brain-based disorders in spe-
cific subpopulations. Cellular and molecular 
inflammatory and innate immune substrates are 
valuable biomarkers that can be used in conjunc-
tion with specific symptom dimensions to dem-
onstrate target engagement with novel or 
repurposed therapeutic agents and to differenti-
ate patient populations who are most likely bene-
fit from these treatments.

Anhedonia is a transdiagnostic, yet specific, and 
clinically relevant symptom dimension subserved 
by well-characterized neurobiological and neuro-
physiological substrates that are preferentially 
affected by inflammatory processes and their 
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effects on cellular and molecular pathways (e.g. 
dopaminergic transmission; excitotoxicity; synap-
tic plasticity), as well as brain circuits, nodes, and 
networks that subserve PVS phenomenology. To 
our knowledge, no published randomized, con-
trolled clinical trial in populations with mood dis-
orders has hitherto primarily sought to determine 
the effects of an anti-inflammatory agent on PVS 
functions and pathophysiology. Notwithstanding, 
three ongoing clinical trials aim to investigate the 
effects of anti-TNF-alpha biologic infliximab on 
measures of anhedonia [ClinicalTrials.gov identi-
fier: NCT02363738], motivational behavior 
and circuitry [ClinicalTrials.gov identifier: 
NCT03006393], and glutamatergic changes in 
the basal ganglia [ClinicalTrials.gov identifier: 
NCT03004443] in clinical populations with uni-
polar or bipolar depression. Positive results would 
further instantiate the relevance of inflammatory 
processes and the immune system in the phenom-
enology and etiology of mood disorders and pro-
vide the impetus to develop scalable treatments 
targeting inflammation and the immune system 
to mitigate transdiagnostic, dimensional distur-
bances in brain-based disorders.
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