Skip to main content
. 2018 Sep 13;9(46):8682–8691. doi: 10.1039/c8sc02868k

Table 1. Comparison of structural characterization and electrochemical performance of the recent reports on the high performance anode materials for LIBs.

Morphology Composite Current (A g–1) Voltage range (V) Mass loading (g cm–1) Reversible capacity after n cycles Ref. (volume and page numbers)
Hollow spheres Ni(HCO3)2 1 0.01–3 1.5 ± 0.2 1055 mA h g–1 (n = 80) 50, ACS Energy Lett., 2, 111–116
Nanostructured porous MnCO3 spheres 5 0.01–3 510 mA h g–1 (n = 2000) 49, Nanoscale, 7, 10146–10151
Nanoparticles MnCO3/graphene 2 0.01–3 1050 mA h g–1 (n = 1100) 57, Adv. Mater., 27, 806–812
MnxCo1–xCO3/rGO Mn0.7Co0.3CO3/rGO 2 0.01–3 901 mA h g–1 (n = 1500) 52, Adv. Funct. Mater., 28, 1705817
Micro-spheric MnxNiyZnzCO3 1 0.01–3 760 mA h g–1 (n = 1000) 53, Small, 14, 1702574
Nanosheets MoS2/graphene 1 0.01–3 ∼1 1250 mA h g–1 (n = 150) 75, Adv. Energy Mater., 8, 1702254
Hollow ball-in-ball nanostructure NiO/Ni/graphene 2 0.01–3 962 mA h g–1 (n = 1000) 76, ACS nano, 10, 377–386
Hollow nanotubes Si–Cu alloy 3.4 0.01–1.1 0.18–0.21(Si) 1005 mA h g–1 (n = 1000) 77, Adv. Funct. Mater., 26, 524–531
Layer-by-layer Co3O4/graphene 0.16 0.01–3 1502 mA h g–1 (n = 300) 78, Angew. Chem. Int. Ed., 56, 1869–1872
Liquid metal Sn–Ga alloy 4 0.005–3 400 mA h g–1 (n = 4000) 5, Energy Environ. Sci. (10, 1854–1861)
3D nanoporous SiGe 1 0.1–1 1158 mA h g–1 (n = 150) 79, ACS nano, 12, 2900–2908
Hollow nanoparticles CoO@BNG nanotubes 1.75 0.01–3 0.54–0.65 400 mA h g–1 (n = 480) 80, Adv. Mater., 30, 1705441
Nanoparticles MgH2/graphene 2 0.001–3 395 mA h g–1 (n = 1000) 81, ACS nano, 12, 3816–3824
Yolk–double shell spheres NiCo2V2O8 1 0.01–1.5 0.8–1 1228 mA h g–1 (n = 500) 32, Angew. Chem. Int. Ed., 57, 2899–2903
3D layered nanocubes Ni(HCO3)2/rGO 5 0.01–3 1–1.3 1535 mA h g–1 (n = 1000) This work
10 803 mA h g–1 (n = 2000)