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Abstract

Background and Aims: Recent meta-analysis of genome-wide association studies have identified 
over 241 inflammatory bowel disease susceptibility loci. However, the known variants only account 
for a fraction of inflammatory bowel disease heritability. To identify additional susceptibility loci, 
we performed a trans-ethnic meta-analysis as well as an Asian-specific meta-analysis, using all 
published Immunochip association results of inflammatory bowel disease.
Methods: An inverse-variance fixed-effects meta-analysis was carried out across Korean and East 
Asian Immunochip datasets of 4156 cases and 4904 controls [Asian ancestry]. A trans-ethnic meta-
analysis of inflammatory bowel disease was performed together with the European datasets of 
38 155 cases and 48 485 controls genotyped on the immunochip using a Bayesian approach, Meta-
Analysis of Trans-ethnic Association studies [MANTRA].
Results: We identified seven novel associations, including three novel susceptibility loci at MYO10-
BASP1, PPP2R3C/KIAA0391/PSMA6/NFKB1A and LRRK1 as well as four novel secondary associations 
within previously known loci at NCF4, TSPAN32, CIITA and VANGL2. The new loci further implicate 

Abbreviations: CD,  Crohn’s disease; CI, confidence interval; GWAS, genome-wide association study; IBD, inflammatory bowel disease; LD, 
linkage disequilibrium; MAF, minor-allele frequency; OR, odds ratio; SNP, single nucleotide polymorphism; UC, ulcerative colitis
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alterations in B cell biology in Crohn’s disease pathogenesis. The effects of five loci were universal 
across European and Asian ancestries, whereas the NCF4 and CIITA loci showed significant 
heterogeneity between European and East Asian populations. In addition, 103 previously known IBD 
loci showed supporting evidence of association with nominal significance [p < 0.05] in Asians.
Conclusions: Our findings of new loci not previously associated with IBD support the importance 
of studying inflammatory bowel disease genetics in diverse populations.

Key Words:  Inflammatory bowel disease; meta-analysis; trans-ethnic

1. Introduction

Inflammatory bowel disease [IBD] is a chronic inflammatory dis-
order of the gastrointestinal tract. Crohn’s disease [CD] and ulcera-
tive colitis [UC] are the two major subtypes of IBD. IBD is believed 
to develop due to dysregulated mucosal immune responses to gut 
flora in genetically susceptible individuals.1

Although the incidence of IBD is lower in Asian populations than 
in Western populations, the incidence of IBD is rapidly increasing 
throughout Asia due to environmental changes.2–5 Epidemiological 
and clinical studies indicate that the phenotype and clinical course 
of IBD differs between Asians and Europeans.2–7 First, there is a male 
predominance of CD in Asia, with male to female ratios ranging 
from 1.67:1 to 2.9:1. Second, ileocolonic disease is predominant in 
Asian cases, comprising about two-thirds of CD cases, while colonic 
disease is only noted in ~10% of cases. It is unclear whether these 
Asian-specific clinical characteristics of IBD are solely due to the dif-
ference in the environments between Asia and the West, which under-
scores the necessity of genetic studies of IBD in Asian populations.

Recent large-scale studies on populations of European ancestry 
have markedly advanced our understanding of IBD-related genet-
ics. A meta-analysis by the International IBD Genetics Consortium 
[IIBDGC] of genome-wide association studies [GWASs] and 
Immunochip data from 96 486 individuals with multiple ances-
tries [including Asian samples] identified >200 susceptibility loci for 
IBD, and reported an overlap in the directionality of the odds ratios 
[ORs] between the cohorts with European and Asian ancestry.8 
The latest genome-wide meta-analysis performed on populations 
with European ancestry reported 241 susceptibility loci for IBD.9 
However, it is clear that additional studies are needed to expand our 
understanding of the genetic architecture of IBD. Despite the differ-
ences in the clinical characteristics of IBD between different ethnici-
ties, the number of studies in non-European populations is limited. 
Several GWASs on CD or UC have been performed in Asian popula-
tions.10–15 These studies provided insights into the genetic architec-
ture of each disease, but not a broad view of the genetic basis of 
IBD in Asians. In the recent largest-to-date Asian-specific GWAS of 
IBD, we identified two new susceptibility loci to IBD and confirmed 
associations with 28 established IBD loci in Koreans.16 In the present 
study, we aimed to identify [i] novel genetic variants associated with 
IBD in Asians through a meta-analysis of Korean and East Asian 
studies and [ii] additional IBD susceptibility loci through a trans-
ethnic meta-analysis of Korean, East Asian, and European studies. 
Here we present the findings of the meta-analyses, including seven 
novel associations identified at the level of genome-wide significance.

2. Methods

2.1. Study population
The samples of the three Immunochip datasets are described in 
Supplementary Table  1. Samples in the Korean dataset were used 

in our previous published Immunochip studies of CD and UC,12,13 
respectively. The summary statistics of Korean IBD data can be 
downloaded from a webpage [https://drive.google.com/drive/
folders/1L1Zu4G0yzVuB0Ea11HkF-XQqr9pX15-0]. Their clinical 
characteristics are described in Supplementary Table  2. Previously 
published summary statistics of the East Asian and European IBD 
Immunochip datasets available at the IIBDGC [https://www.ibdge-
netics.org/downloads.html] were used. The East Asian study com-
prised 2054 cases from Japan, 453 cases from Korea, 317 cases from 
China, and 3719 controls. The European dataset comprised 38 155 
cases and 48 485 controls.

2.2. Quality control
The quality control [QC] procedures of the Korean, East Asian and 
European Immunochip datasets are described in previous publica-
tions.8,12,13 As Korean Immunochip studies were performed on CD 
and UC separately, standard QC procedures were applied using the 
PLINK v1.9 software [https://www.cog-genomics.org/plink2] as 
described previously for the Korean IBD dataset.12,13 Briefly, single 
nucleotide polymorphisms [SNPs] with missingness rates of >2%, 
a minor allele frequency [MAF] of <1%, or failing the Hardy–
Weinberg equilibrium [p  <  1  ×  10–5] test were excluded. Samples 
with a high proportion of missing genotypes [>4%] and identity by 
descent [PI_HAT >0.2] were removed. QC was conducted on each 
dataset separately and the combined set of samples using a com-
mon approach. To control for population stratification, genotypes 
that passed QC filters were merged with HapMap Phase III data 
[194 individuals] from three populations: European [CEU], Asian 
[CHB + JPT], and African [YRI]. A principal-components analysis 
was subsequently performed on the merged dataset, and population 
outliers were excluded [Supplementary Figure 1]. For the meta-anal-
ysis, 87 overlapping cases [79 CD and 8 UC cases that were present 
in both Korean and East Asian datasets] were excluded from the 
Korean dataset. Finally, the Korean dataset consisted of 1332 cases 
and 1185 controls, with 89 051 SNPs [Supplementary Table 3].

2.3. Statistical analysis
Association tests were performed on the Korean dataset of IBD, 
CD and UC using a logistic regression analysis in PLINK v1.9. 
A  quantile–quantile [Q–Q] plot was generated using R [3.2.0] 
[http://www.r-project.org/] to evaluate the overall significance of 
the genome-wide associations and the potential impact of popula-
tion stratification. The impact of population stratification was also 
evaluated by calculating the genomic control inflation factor [λGC] 
and the genomic inflation factor for 1000 cases and 1000 controls 
[λGC1000] using a set of 3120  “null” SNPs that are not associated 
with autoimmune diseases [Supplementary Table 1]. After QC, 2117 
SNPs were used as null markers to generate the Q–Q plot shown 
in Supplementary Figure  2 [λGC  =  0.98]. Both the Q–Q plots and 
genomic inflation factor [λGC] of Immunochip test statistics showed 
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that the three Immunochip association analyses had negligible infla-
tion due to population stratification. A Manhattan plot was gener-
ated with −log10 p by using R [3.2.0]. For regional plots of novel 
associations that were identified in the Asian meta-analysis, imput-
ation was performed using ImpG version 1.0 [https://github.com/
huwenboshi/ImpG]17 and the Asian reference data [JPT  +  CHB] 
from the 1000 Genomes Project [February 2012 release] [http://
www.1000genomes.org/]. To assess whether candidate novel signals 
were due to long-range linkage disequilibrium [LD] with variants 
in previously reported loci, a conditional analysis in the regions 
identified in trans-ethnic meta-analysis was performed. For all vari-
ants in candidate loci that were <3 Mb away from a known locus, 
conditional analysis was performed on each of the three datasets 
separately (East Asian/European dataset, GCTA [cnsgenomics.com/
software/gcta/]; Korean dataset, PLINK v1.9) followed by a meta-
analysis, or on the combined dataset. Secondary SNPs with condi-
tional p < 5 × 10–8 or Log10BF > 6 were assumed to be independent 
from the reported lead SNP in the region.

2.3.1. Asian-specific meta-analysis
For the Asian-specific meta-analyses, Korean and East Asian asso-
ciation results were combined using the inverse-variance method 
under the assumption of a fixed effect as implemented in METAL.18 
Between-study heterogeneity was quantified using the I2 hetero-
geneity score, and statistical significance was assessed using the Q 
test statistic. For the fixed-effects model, significance was defined as 
pmeta < 5 × 10–8.

2.3.2. Trans-ethnic meta-analysis
For the trans-ethnic meta-analyses, the three independent data-
sets were combined using two approaches. First, a meta-analysis 
was performed using the METAL software assuming fixed effects 
across studies and using inverse-variance weighting. Second, the 
ethnic-specific Immunochip summary statistics were combine using 
the MANTRA [Meta-Analysis of Trans-ethnic Association Studies] 
package, a meta-analysis software tool allowing for heterogeneity 
in allelic effects caused by differences in LD structure in diverse 
populations.19 MANTRA results are reported as Log10 Bayes’ fac-
tors [Log10BF]. A Log10BF > 6 was considered to be a genome-wide 
significant threshold value, and SNPs with posterior probability 
of heterogeneity [phet]  > 0.5 were interpreted as having significant 
heterogeneity. Both fixed effects results and MANTRA results are 
reported.

2.4. eQTL and bioinformatics analysis
To gain more insight into the potential functional roles of the novel 
IBD loci, a cis-eQTL analysis was performed by searching publicly 
available expression data generated from eQTL Blood Browser,20 the 
Genotype-Tissue Expression [GTEx] database21 and Geuvadis/1000 
Genomes resources.22 Whole blood, small intestine, transverse colon, 
and sigmoid colon were selected in the GTEx browser because they 
are the most important tissues in mucosal immunity. To explore epi-
genetic profiles of genomic locations associated with IBD, ENCODE 
histone modification data, HaploReg and Regulome DB were used 
to examine whether any of the SNPs or their proxies [r2 ≥ 0.8 in the 
1000 genomes of JPT  +  CHB reference panel] were annotated as 
transcription factor binding or enhancer elements. Evidence of prior 
association signals with autoimmune diseases or other immune-
related phenotypes was searched for in the Ensembl, UCSC Genome 
Bioinformatics, and GeneCards databases. When the SNP was not 
directly typed, a proxy SNP was used [r2 ≥ 0.8].

3. Results

3.1. Asian-specific meta-analysis
To identify additional IBD risk loci in Asians, we first performed 
a meta-analysis using the Korean IBD Immunochip dataset and 
the summary statistics from the East Asian Immunochip data-
set.8,12,13 The combined dataset consisted of 4156 IBD cases and 
4904 controls, with 1332 cases and 1185 controls from the Korean 
population and 2824 cases and 3719 controls from the East Asian 
population. Association analysis of the Korean dataset  alone 
did not show any novel IBD loci with genome-wide significance 
[Supplementary Figure  3]. In a meta-analysis of the combined 
dataset, 12 of the previously reported regions exceeded statistical 
significance [pmeta  <  5  ×  10–8], including two novel associations 
in Asians at rs2072711 in NCF4-CSF2RB at 22q13 [OR = 1.21; 
95% confidence interval [CI], 1.13 – 1.29; pAsian-meta = 5.07 × 10–9]  
and at rs12928665 in CIITA at 16p13 [OR  =  1.19; 95% CI, 
1.13  – 1.25; pAsian-meta  =  3.93  ×  10–9] [Supplementary Table  4, 
Supplementary Figure  4]. We also examined the 245 previously 
established European IBD-associated loci [276 independent SNPs] 
in the Asian meta-analysis.8,9 Of 193 SNPs in 174 loci [including 
36 proxy SNPs with r2 ≥ 0.8] available, 111 SNPs from 102 loci 
were replicated at nominal p < 0.05 in association analyses for IBD, 
CD or UC [excluding rs864745 and rs10995235 with effects in 
opposite directions; Supplementary Table 5]. An additional locus 
[JAK2], not in LD with the European SNP, reached a genome-wide 
significant association in the Asian meta-analysis [Supplementary 
Table 4], resulting 112 SNPs being replicated at 103 loci in Asians.

3.2. Trans-ethnic meta-analysis
We performed a trans-ethnic meta-analysis of IBD using three inde-
pendent Immunochip datasets. The combined dataset consisted of 
42 311 IBD cases and 53 389 controls, with 1332 cases and 1185 
controls from Korean population, 2824 cases and 3719 controls 
from East Asian population, and 38 155 cases and 48 485 con-
trols from the European population. After applying stringent qual-
ity controls, we tested 89 051, 106 681, 126 098 and 80 291 SNPs 
for association in the Korean, East Asian, European and combined 
cohort, respectively [Supplementary Table 1]. We performed a meta-
analysis using [i] inverse-variance based meta-analysis in METAL 
software and [ii] the MANTRA package [Supplementary Figure 5]. 
Following meta-analyses, the SNPs within 241 known loci9 in the 
MHC region [25−34 Mb, hg19] and known genes were removed.9,23 
Twenty-two loci showed significant associations with IBD in the 
MANTRA analyses [Log10BF > 6], of which 19 loci also showed sig-
nificant associations in the fixed-effects trans-ethnic METAL analy-
ses [p < 5 × 10–8, Supplementary Table 6]. As these loci were <3 Mb 
away from known loci except for rs2624435 near MYO10-BASP1, 
we performed a conditional analysis for 21 variants [Supplementary 
Table  7]. Only three loci [CIITA, TSPAN32 and NCF4] showed 
genome-wide significant associations following conditional analy-
ses on the reported European lead SNPs, suggesting the presence 
of three novel secondary associations within previously reported 
loci [Table  1]. The MANTRA analyses of CD showed eight loci 
with Log10BF > 6 [Supplementary Table 6]. Only two of these loci, 
rs57275892 [PSMA6-NFKBIA] and rs7170683 [LRRK1], were 
novel [Table 1]. Of the three loci with Log10BF > 6 in the MANTRA 
analyses of UC [Supplementary Table  6], rs17371986 [VANGL2] 
showed an independent association within a previously known 
locus following conditional analysis [Supplementary Table  7]. Of 
seven novel associations, only rs12928665 [CIITA] and rs2072711 
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[NCF4] showed evidence of heterogeneity between Asian and 
European populations [phet ≥ 0.91; Table 1, Supplementary Table 6].

3.3. Novel loci
All three newly discovered SNPs are non-coding variants, rs2624435 
in MYO10-BASP1 at 5p15 for IBD, rs57275892 in PPP2R3C/
KIAA0391/PSMA6/NFKB1A at 14q13, and rs7170683 in LRRK1 

at 15q26 for CD. The SNP densities across the MYO10-BASP1 and 
LRRK1 loci were sparse [Figure 1A, 1B]; however, upon examining 
the eQTL database, rs2624435 showed an association with BASP1 
expression levels in blood, and rs7170683 showed an association 
with both LRRK1 and ALDH1A3 expression levels in lymphoblas-
toid cell lines of European ancestry [Supplementary Table 8]. A novel 
IBD susceptibility locus at rs2624435 is located between MYO10  
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Figure 1. Signal plots for the three novel IBD loci: [A] rs2624435 at 5p15, [B] rs7170683 at 15q26 and [C] rs57275892 at 14q13. The left panels represent signal plots 
from the fixed-effects meta-analyses of Korean and East Asian–ancestry individuals. SNPs are plotted according to their chromosomal positions [NCBI Build 37] 
with –log10 p values from the Asian meta-analysis in the region flanking 750 kb on either side of the marker SNP. The circles indicate the genotyped SNPs, and 
the squares indicate the imputed SNPs. The most strongly associated SNP in the discovery stage is shown as a small purple circle. Linkage disequilibrium [LD; 
r2 values] between the lead SNP and the other SNPs are indicated using colours. The relative location of the annotated genes and the direction of transcription 
are shown in the lower portion of the figure. The estimated recombination rates of the Asian samples from the 1000 Genomes Project [Nov 2014] are plotted to 
reflect the local LD structure. Plots are generated using LocusZoom. The right panel presents signal plots for the MANTRA association signal after trans-ethnic 
meta-analysis of Korean, East-Asian, and European Immunochip data. Each point represents an SNP that passed the QC in the MANTRA analysis, plotted with 
their BF [on a log10 scale] as a function of genomic position [NCBI Build 37]. Plots were generated using R.
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and BASP1. The biological function of the Brain Acid Soluble 
Protein 1 [BASP1] gene is not well known, except for its involve-
ment in nephrogenesis as a transcriptional co-suppressor,24 whereas 
an unconventional myosin, Myosin X [MYO10], is implicated in 
phagocytosis via its role in filopodia induction. Macrophages lack-
ing Myo10 showed markedly reduced filopodia formation.25 A novel 
CD susceptibility locus at rs7170683 is located in the Leucine-rich 
repeat kinase 1 [LRRK1]. LRRK1 belongs to a member of the 
ROCO family of proteins with multiple functional domains including 
ankyrin-like repeats, leucine-rich repeats [LRRs], a Ras-like GTPase 
domain [ROC] and an adjacent C-terminal domain [COR], and a 
serine–threonine kinase domain. Its homolog LRRK2 was shown 
to be associated with CD23 and Parkinson’s disease.26 LRRK1 is 
involved in a variety of functions including autophagy and osteo-
clast differentiation. A  recent knock-out mice study reported that 
LRRK1 plays a critical role in B cell development and antibody pro-
duction by regulating NF-kB signaling.27 The other novel CD suscep-
tibility SNP [rs57275892] at 14q13 is located ~500 bp upstream of 
PSMA6 [Figure 1C] in a LD region of 645 kb [35.212−35.857 Mb] 
that includes BAZ1A, SRP54, FAM177A1, PPP2R3C, KIAA0391, 
PSMA6 and NFKB1A. Although rs57275892 is located ~500  bp 
upstream of PSMA6, eQTL analyses showed that it was associated 
most significantly with the expression of a nearby gene, protein phos-
phatase 2 regulatory subunit B″ gamma [PPP2R3C] [p = 2.00 × 10–

22] in whole blood [Supplementary Table 8]. PPP2R3C is a regulatory 
subunit of a serine/threonine phosphatase, protein phosphatase 
2.  Knock-out and transgenic mice studies show that PPP2R3C is 
involved in both the survival of germinal center B cells and the differ-
entiation of peritoneal B cells into autoantibody-producing plasma 
cells, suggesting possible roles in inflammatory diseases.28

3.4. Novel secondary associations within previously 
known loci
The association signal [rs2074023] at chromosome 11p15 is located 
within intron 1 of Tetraspanin32 [TSPAN32, Log10BF  =  7.49, 
pmeta  =  1.05  ×  10–9] in a LD region of 117.8  kb that includes 

C11orf21, TSPAN32, CD81 and TSSC4 [Table 1, Supplementary 
Figure  6]. rs2074023 is located ~452  kb away from the previ-
ously reported rs9076118,9 [r2 < 0.2]; however, conditional logis-
tic regression analysis on rs907611 supported the independent 
effects of the two SNPs [Supplementary Table  7]. Examination 
of the eQTL database for rs2074023 showed that it is associ-
ated with the expression levels of both C11orf21 and TSPAN32 
in lymphoblastoid cell lines and small intestine, whereas previ-
ously reported rs907611 is associated with the expression levels 
of CTSD in blood [Supplementary Table 8], supporting their inde-
pendent effects. A search of HaploReg v4 for rs2074023 showed a 
Regulome DB score 1b, indicating that it is likely to affect binding 
and to be linked to expression of a gene target [Supplementary 
Table  9]. TSPAN32 is a member of the tetraspanins of integral 
membrane proteins with functional roles in cell motility, mem-
brane fusion, proliferation and immunity. Tetraspanins, of which 
over 30 have been identified in humans, can associate with one 
another and with other molecules such as integrins or proteins of 
the immunoglobulin superfamily to form a network on the sur-
faces of many different cell types.29 Knock-out mice experiments 
have shown that TSPAN32 may play a role in the negative regula-
tion of peripheral T-lymphocyte proliferation,30 suggesting that it 
may have roles in inflammatory diseases. The biological function 
of the other gene, C11orf21, is unknown; however, rs7944004, 
located in 5.7 kb 3' of C11orf21 [14.4 kb away from rs2074023 
with r2  =  0.75], is associated with chronic lymphocytic leuke-
mia.31 The association signal [rs17371986] at chromosome 1q23 
is located at 3.8 kb from the 3' end of VANGL planar cell polar-
ity protein 2 gene [VANGL2] in a LD region of 110.7  kb that 
includes NCSTN, NHLH1 and VANGL2 [Table 1, Supplementary 
Figure 6]. The previously reported rs4656958 [~2 kb 5' of ITLN1] 
is located ~454  kb away from rs17371986 [r2  <  0.2]; however, 
conditional logistic regression analysis of rs4656958 supported 
the independent effects of the two SNPs [Supplementary Table 7]. 
Examination of the eQTL database for rs17371986 showed that it 
is associated with VANGL2 expression levels in the sigmoid colon 
in the GTEx database [Supplementary Table  8]. As VANGL2 is 
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involved in the regulation of planar cell polarity, its involvement 
in UC susceptibility is not obvious.

3.5. Loci showing heterogeneity between Asian and 
European populations
Of the two novel IBD associations that showed significant hetero-
geneity between Asian and European populations, association effects 
of NCF4 were mapped to two independent SNPs in two populations 
[phet = 1.0, Supplementary Table 6 and Supplementary Figure 6]. The 
top SNP rs2072711 identified in the Asian-specific meta-analyses 
showed much stronger association with CD than with UC, whereas 
the recently reported European top SNP rs4821544 [10  kb away 
from rs2072711, r2  <  0.2 in ASN] showed a significant associ-
ation with CD [OR = 1.07, p = 6.75 × 10–8] only [Supplementary 
Table 10]. rs2072711 showed weak associations with CD and UC in 
the European dataset with different effect directions, but rs4821544 
failed to show associations with IBD in the Asian samples. The con-
ditional analysis on rs4821544 did not abolish the association at 
rs2072711 in East Asian [p = 6.55 × 10–7, pcondition = 6.15 × 10–7] and 
Korean samples [p  =  2.16  ×  10–3, pcondition  =  1.95  ×  10–3], suggest-
ing two independent associations in the NCF4 locus. rs2072711 is 
located on chromosome 22q12 in a LD region of ~60.3 kb, which 
includes two genes, NCF4 [neutrophil cytosolic factor  4] and 
CSF2RB [colony stimulating factor 2 receptor beta common sub-
unit]. Examination of eQTL databases for rs2072711 showed that it 
had a much stronger association with the mRNA expression levels of 
NCF4 [p = 6.20 × 10–15 in lymphoblastoid, p = 4.35 × 10–55 in blood] 
than with those of CSF2RB [p  =  1.10  ×  10–5 in lymphoblastoid] 
[Supplementary Table  8].20,32,33 NCF4 encodes a cytosolic regula-
tory component of superoxide-producing phagocyte NADPH oxi-
dase, a multicomponent enzyme system important for host defense. 
The risk alleles for both rs4821544 and rs2072711 were associated 
with decreased expression of NCF4 in the blood eQTL database, 
p = 3.24 × 10–28 and p = 4.35 × 10–55, respectively.20

rs12928665 in intron 1 of the MHC class II transactivator gene 
[CIITA] at chromosome 16p13 showed significant heterogeneity 
between Asian and European populations [Log10BF = 7.76, phet = 1.00; 
ptrans-ethnic meta = 1.23 × 10–13 pQ = 2.14 × 10–3] [Supplementary Table 6 
and Supplementary Figure 6]. Of note is the significant difference 
in frequency of rs12928665 between Asian and European popula-
tions [Supplementary Table 11]. Previous studies have reported two 
independent association signals, rs529866 in the SOCS1 locus8.9 
[401.8 kb away from rs12928665] for CD and rs11641184 in the 
LITAF locus8 [733.1 kb from rs12928665] for IBD. The conditional 
analysis on rs529866, rs11641184 and both did not abolish the 
association at rs12928665, suggesting three independent associa-
tions in the CIITA-SOCS1-LITAF locus [Supplementary Table 11]. 
Previously, rs4781011 of CIITA [intron 2, 3838  bp away from 
rs12928665] was reported to be associated with UC in Europeans, 
but not to be present at 200 IBD susceptibility loci or present at the 
level of genome-wide significance.34 LD between rs12928665 and 
rs4781011 in Asians [JPT + CHB] was low [r2  <  0.2], whereas it 
was almost complete in Europeans [r2 = 0.95]. Indeed, association 
of rs12928665 with IBD [p = 1.29 × 10–8] was stronger than that 
of rs4781011 in the European dataset [p  =  4.21  ×  10–8], suggest-
ing that the association previously reported might have been due 
to an indirect association caused by the LD between the two SNPs. 
Examination of the eQTL database for the three SNPs showed that 
they were associated with the expression levels of different genes in 
blood, indicating that their effects are independent [Supplementary 
Table 8]. CIITA is an important transcription factor for the expres-
sion of HLA class II molecules and is involved in the expression of 
HLA class I molecules.35,36

4. Discussion

Here we present the largest Immunochip meta-analysis of IBD, using 
all published Immunochip association results of IBD. Despite the 
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limitation of using only 80 291 common SNPs for the analyses, we 
identified seven novel associations, including three novel susceptibil-
ity loci at MYO10-BASP1 for IBD, PPP2R3C/KIAA0391/PSMA6/ 
NFKB1A and LRRK1 for CD, and four novel secondary associa-
tions within previously known loci at NCF4, TSPAN32, CIITA and 
VANGL2. In addition, we were able to replicate 103 loci of known 
IBD susceptibility loci in Asian samples [Supplementary Table  5]. 
The comparison of the effect sizes for all 193 SNPs from known 
loci and seven novel associations identified in the present study 
between Asians and Europeans revealed a positive correlation in the 
direction of effects for both CD and UC [Figure 2] [r2 = 0.40 and 
p = 1.54 × 10–23 for CD; r2 = 0.57 and p = 1.84 × 10–37 for UC]. 
This observation is consistent with a previous large-scale study that 
reported substantial genetic overlap between Europeans and Asians.8

Of the two novel IBD associations showing significant heterogen-
eity between Asian and European populations, the association effects of 
NCF4 were mapped to two independent SNPs in two populations. The 
fact that the risk alleles for both SNPs were associated with decreased 
expression of NCF4 in blood eQTL database suggests that the hetero-
geneity of the most significant signals might be due to the LD difference 
between Asians and Europeans [Supplementary Figure 7]. The NCF4-
CSF2RB region showed genome-wide significant associations with both 
IBD and CD in Asians, but with CD only in Europeans. Previous studies 
have shown association of rs4821544 with ileal CD in Europeans37–39 
and its effects on reactive oxygen species production following stimu-
lation with GM-CSF.40 Stronger association of NCF4 in Asians could 
be due to the fact that ileocolonic disease is the most common type of 
CD in Asian populations, whereas ileal, colonic and ileocolonic disease 
occur in equal proportions in the CD of western populations.

In this study, we conducted the largest Immunochip trans-eth-
nic meta-analysis of IBD and discovered seven novel associations, 
including three novel susceptibility loci and four novel independ-
ent associations within previously known loci. The new loci suggest 
that additional factors are involved in the T cell biology and B cell 
immunity of IBD. In conclusion, this trans-ethnic study advances 
our understanding of the genetic architecture of IBD susceptibility 
by discovering novel associations and revealing allelic heterogeneity 
between Asian and European populations.
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