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Abstract

Background:  Older age and obesity are associated with metabolic dysregulation; the mechanism by which these factors impact metabolism 
across the lifespan is important, but relatively unknown. We evaluated a panel of amino acids (AAs) and acylcarnitines (ACs) to identify effects 
of age and adiposity (body mass index) on circulating small-molecule metabolites in a meta-analysis of six diverse study populations.
Methods:  Targeted metabolic profiling was performed in six independent studies, representing 739 subjects with a broad range of age, 
body mass index, health states, and ethnic origin. Principal components analysis was performed on log-normalized values for AAs and ACs 
separately, generating one AC factor and two AA factors for each study. A common AC factor consisted primarily of acetylcarnitine, medium-
chain AC, and several long-chain AC. AA Factor 1 consisted primarily of large neutral AAs. Glycine was its own factor.
Results:  Metabolic profiling and factor analysis identified clusters of related metabolites of lipid and AA metabolism that were consistently 
associated with age and body mass in a series of studies with a broad range of age, body mass index, and health status. An inverse association 
of glycine with body mass index and male gender supports its role as a marker of favorable metabolic health.
Conclusions:  An important focus of future investigations should be to determine whether these clusters of metabolic intermediates are possible 
early predictors of health outcomes associated with body mass; are involved with accelerated aging; are involved in the causative pathway of 
aging; and how modification of these metabolic pathways impact the biology of aging.
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Metabolic dysfunction is characterized by an imbalance in the syn-
thesis, concentration, and removal of small molecules of energy 
metabolism, including amino acids (AAs) and acylcarnitines (ACs). 
AAs are the agents of protein metabolism that can be derived from 
the diet (as in the essential branched-chain AAs [BCAA]) or syn-
thesized de novo. ACs are derived from mitochondrial oxidation 
of fatty acids, carbohydrates, and AAs; they are intermediaries in 
the mitochondrial transport of these oxidation substrates. ACs 
bear acyl side chains of various lengths: most abundant short acyl 

chains (less than seven carbons); less abundant medium acyl chains 
(8–14 carbons); and long acyl (15–22 and longer carbons) chains. 
Plasma concentrations of specific AAs and ACs integrate the status 
of numerous enzymatic pathways across all bodily organs; as such, 
they may serve as reporters of the metabolic mechanisms underly-
ing conditions such as obesity, diabetes, normal aging (1), and the 
interaction among them. Metabolic profiling (metabolomics) has 
revealed changes in metabolic regulation as a component of diseases 
such as coronary artery disease (2,3), diabetes (4,5), and the physical 
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functional decline seen with aging (6); they may be the harbinger of 
disease in as-yet asymptomatic individuals. The potential for meta-
bolic profiling to predict disease risk provides the opportunity for 
disease prevention and the benefits of clinical interventions (2,5).

Obesity, age, and metabolic dysfunction are key components of 
many of the most pervasive and costly challenges to public health. 
Throughout the lifespan, dysregulation of AAs and ACs is associated 
with adiposity (high body mass index [BMI]) and diabetes mellitus 
(4). Indeed, with advancing age, metabolic dysfunction accompanies 
the onset of disease and functional decline; this ultimately results in 
disability and mortality. Furthermore, excess adiposity and age are 
independent risk factors for metabolic dysfunction. Ongoing studies 
seem only to reveal new complexities in the effects of both age and 
BMI on metabolic health and disease.

The relationship between body mass and age across the lifespan 
continues to be debated, as the presence or lack of an inverse U-shaped 
relationship between the two and the effect of this relationship on 
health remains controversial (7,8). The issue of an obesity paradox 
with respect to age-related morbidity and mortality has fueled another 
debate: whether to alter the advice to lose weight for some patients in 
scenarios where higher BMI is actually associated with reduced risk 
of mortality (9,10). It is possible that metabolic factors might be bet-
ter indicators of health status than are body mass or adiposity; meta-
bolic factors may assist in identifying subsets of individuals that are 
at higher risk for the development of chronic diseases of aging. As an 
initial foray into this arena, we undertook the present study.

Building on our interest in small-molecule metabolites as bio-
markers and potential biological mediators of functional decline with 
age (6), we characterized the variation in small-molecule metabolites 
across an assembled study with a broad range of ages and body 
mass. We were guided by the hypothesis that such pathways could 
play a role in the physiologic changes seen in aging and age-related 
diseases. As part of our Claude Pepper Center, we purposefully 
assembled a set of clinical studies in which we could collect the same 
biological parameters relating to metabolic pathways. Including het-
erogeneous populations distributed across the BMI and age ranges, 
provided the opportunity to evaluate the effects of a broad range of 
ages and BMI on small molecule metabolites. We assembled a unique 
data set of 739 individuals combined from 6 diverse study studies 
to constitute an overall study population with a wide range of BMI, 
age, and ethnic origin. Applying a meta-analytic approach to this 
study set, we sought to evaluate the independent associations of BMI 
and age on circulating small-molecule metabolites. Ultimately such 
understanding will aid in the use of small-molecule metabolites for 
their ability to predict adverse health outcomes or guide therapeutic 
interventions to prevent or treat disease.

Methods

Contributing Studies
Six studies (summarized in Table 1 and Figure 1) contributed to this 
meta-analysis. They included one cross-sectional study; one longi-
tudinal observational study; and single baseline samples from four 
longitudinal intervention studies. The combined data set included 
431 women (58.3%); 441 members of ethnic or racial minorities 
(nonwhite, 59.7%); an overall mean age of 58.6 years; and a mean 
BMI of 30.7 kg/m2. The age of the subjects spanned 18–98 years and 
BMI 19–61 kg/m2 (Figure 1). Brief descriptions of the six contribut-
ing studies are provided below. The demographic and study charac-
teristics are displayed in Table 1 and described in the Supplementary 
Text and Supplementary Table A1. Ta
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Determination of Small-Molecule Metabolites
Plasma and serum samples were used for quantitative determina-
tion of targeted metabolite levels for 45 ACs species and 15 AAs by 
the Sarah W. Stedman Nutrition and Metabolism metabolomics core 
laboratory of the Duke Molecular Physiology Institute, as described 
previously (15). Briefly, proteins were first removed by precipita-
tion with methanol, and supernatants were separated into aliquots, 
dried, and esterified with hot, acidic methanol (ACs) or n-butanol 
(AAs). Analysis was performed using tandem mass spectroscopy 
with a Quattro Micro instrument (Waters Corporation, Milford, 
MA). All mass-spectrometric analyses employed stable-isotope dilu-
tion for quantification of metabolite concentration. Quantification 
of the “targeted” intermediary metabolites involved addition of 
mixtures of known quantities of stable-isotope internal standards 
to samples; stable isotopes were obtained from Isotec (St. Louis, 
MO), Cambridge Isotope Laboratories (Andover, MA); and CDN 
Isotopes (Pointe-Claire, Quebec, Canada). Leucine and isoleucine 
were reported as a single analyte; they are not resolved by this tan-
dem mass spectroscopy. The acidic conditions used to form butyl 
esters results in partial hydrolysis of glutamine to glutamic acid and 
of asparagine to aspartate; values reported as Glu/Gln or Asp/Asn 
are not meant to signify the molar sum of glutamate and glutamine, 
or of aspartate and asparagine, but rather measure the amount of 
glutamate or aspartate plus the contribution of the partial hydrolysis 
reactions of glutamine and asparagine.

Data Handling and Statistical Analysis
Principal components analysis (PCA) was used to create multicom-
ponent factors of log-transformed values for AA and ACs separately. 
Using PCA relieves the burden of multiple comparisons by identifying 
the correlation structures of the individual analytes and reducing the 
dimensionality of the analysis from, in this case, 60 metabolites, to 
3 factors. We have successfully used this strategy in dozens of previ-
ous studies from our group (2–4,16,17). Separately, for each indi-
vidual study, normalized metabolite factors were constructed, and 
the results were aggregated and compared across sites. Consistency 
of factor elements and loadings was compared across the six study 
studies using the Cronbach’s alpha statistic (unweighted). We were 
encouraged by the fact that the metabolite factors assembled from 
each of the cohorts have very similar structures. The summary fac-
tor score was computed by aggregation of the factor loadings for 
the individual study, i, using meta-analytic techniques for correlations 
(18). First, the individual factors loadings in the individual studies 
were transformed using the Fisher’s Z-transform. Second, the average 
weighted (weight = Ni − 3) transformed score was computed across 
the studies, and, finally, this average score was used to calculate the 
average factor score by back transformation of Fisher’s formula. The 
score for the aggregated population factor scores for the individual 
analytes was used to derive total factor scores across the studies going 
forward in the analytic strategy. Multivariable models evaluated the 
association of the two derived metabolic factors with the following 
independent variables: study, age, BMI, interaction of BMI and age, 
gender, and race (white vs nonwhite). Associations were considered 
significant at p < .05. Analyses presented here were exploratory and 
involved only three factors; no corrections for multiple comparisons 
were made. PCA creates normalized factors (with a mean of 0 and 
standard deviation [SD] of 1 across the study population); therefore, 
regression coefficients for relationships between variables and the 
PCA components can be directly used and compared to determine 
the direction and strength of the effect in units of the SD of the meas-
ure. Each derived PCA factor contains the common information of 
the elements (metabolites, e.g., 45 ACs or 15 AAs) that were input to 
create it. That is, each element has a coefficient based on its contribu-
tion or “loading” on the factor; when elements (metabolite concen-
trations) are multiplied by these coefficients and then combined in a 
linear or additive fashion, an individual PCA factor score is created. 
It is customary, however, to characterize a PCA factor with respect 
to the component elements that have an absolute normalized coef-
ficient (ranges from −1 to +1) greater than 0.7; 0.7 as a normalized 
coefficient can be interpreted to mean that 50% of the variance in the 
variable is explained by the factor.

Interaction Between Age and BMI in the Study 
Populations
Some have reported an inverse U-shaped relationship of BMI with 
age and with BMI and disease/death. We thought it to be important 
to investigate this in our study population. Analysis of the relation-
ship of age to BMI across our meta-population revealed a mono-
tonic linear relationship between age and BMI with the factors both 
within and between studies; most notable was the lack of an inverted 
U-shaped relationship between BMI and age as well as the relation-
ship of these two demographics with the outcome. Given that there 
were no curvilinear effects for age and BMI with the factors, we 
retained linear versions. Given that we did not observe an age-by-
BMI interaction, we did not retain or report any interactions of age 
and BMI in further analyses.

A

B

Figure 1.  Value (median and interquartile range) for age (A) and body mass 
index (BMI; B) in six independent studies. Study (1) CALERIE, (2) STRRIDE, (3) 
POP, (4) POP Pilot, (5) LIFE, and (6) CARRIAGE. Median and SD are indicated.
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Results

Factor Structure of Metabolic Intermediates Among 
Studies
PCA was performed separately for ACs and AAs, and gener-
ated one major factor for ACs and two major factors for AAs. 
Supplementary Table A2 show the factor loadings for each inde-
pendent study, for Acylcarnitine Factor 1 (Supplementary Table 
A2a), Amino Acid Factor 1 (Supplementary Table A2b), and 
Amino Acid Factor 2 (Supplementary Table A2c). Acylcarnitine 
Factor 1 consisted primarily of acetyl carnitine (2-carbon acyl side 
chain), medium-chain ACs, and several ACs containing 16 and 18 
carbons (C16, C18) and is referred to hereafter as the AC Factor. 
Amino Acid Factor 1 consisted primarily of the large neutral AAs 
(LNAA) that include the essential BCAA isoleucine, leucine, and 
valine; the sulfur-containing AA methionine; the aromatic AAs 
phenylalanine and tyrosine. It is referred to hereafter as the LNAA 
Factor. Amino Acid Factor 2 was loaded consistently heavily for 
glycine across all studies; therefore, glycine alone, as its own fac-
tor, was studied going forward. Cronbach’s alpha was 0.926 for 
AC and 0.908 for LNAA indicating high consistency of the factor 
structure across all six contributing studies for these two factors. 
Because AA Factor 2 was a single variable, no Cronbach’s alpha 
was calculated.

Multivariable Models to Distinguish Age, BMI, 
Gender, and Race Effects
In a multivariable model containing study, race, gender, BMI, and 
age (Table 2), the AC Factor was independently associated with age 
(p < .0001) and BMI (p = .014). The regression coefficients indicated 
that every 10-year increase in age was associated with a 0.208 unit 
increase in the normalized AC factor score, and every unit (kg/m2) 
increase in BMI was associated with a 0.015 (SD) unit increase in the 
normalized AC factor score. Men had significantly higher AC factor 
scores than women (regression coefficient 0.277; p = .0004). Age and 
BMI associations were similar in both racial groups.

In a multivariable model containing study, race, gender, BMI, and 
age (Table 3), the LNAA factor was independently associated with 
age (regression coefficient per 10 years of age 0.094; p = .0008) and 
BMI (regression coefficient 0.012; p = .038). Men had significantly 
higher LNAA factor scores (regression coefficient 0.412; p < .0001). 
These relationships were observed in both racial groups. There were 
significant differences between the studies (omnibus p =  .0010) in 
these relationships: Compared with the STRRIDE study as reference, 
all of the other studies had a greater LNAA factor score—from 0.52 
to 1.36 SDs greater—in the following order: LIFE, POP Pilot, POP, 
CARRIAGE, and CALERIE.

In a multivariable model containing study, race, gender, BMI, 
and age (Table  4), glycine was independently and inversely asso-
ciated with BMI (regression coefficient −0.012; p < .0001). Also, 
men had significantly lower levels of glycine (regression coefficient 
−0.061; p = .0026). There was no difference between the two racial 
groups or with age. There were significant differences between 
the studies (omnibus p =  .0001) in glycine plasma concentration: 
Compared with the STRRIDE study as reference, the other stud-
ies had a glycine concentrations that differed—from 0.10 µM less 
to 0.30 µM greater—in the following order: LIFE, POP, STRRIDE, 
CARRIAGE, POP Pilot, and CALERIE. There were significant dif-
ferences among the studies (omnibus p < .0001) in these relation-
ships. There were no interaction effects between age and BMI on 
metabolic factors.

Discussion

The combination of targeted metabolic profiling with PCA is a pow-
erful strategy that allows a large number of related molecules to 
be scrutinized simultaneously—taking into account BMI, age, and 
race—in order to discern and characterize metabolic pathways and 
their modulation across significant demographic and study (disease) 
strata. In this study, a comprehensive set of 15 AAs and 45 ACs were 
measured across 6 studies in a single laboratory according to the 
same standardized procedures. Despite the significant differences 
in age and BMI, there was high consistency of the AC Factor and 
the LNAA Factor across all six individual studies, demonstrated by 
high values for the Cronbach’s alpha in these analyses; this consist-
ency also indicates that there were minimal influences of fed versus 
fasted state or other unmeasured covariate effects on the metabolite 
associations observed across these studies. We have observed high 

Table 2.  Prediction of the AC Factor in a Multivariable Model Con-
taining Study, Age, BMI, Race, and Gender

Item Study Name Estimate SE p

Omnibus .0580
CALERIE −0.26008 0.17704 .1423
STRRIDEa 0.00000 — —
CARRIAGE 0.07528 0.15359 .6242
POP −0.17100 0.13921 .2197
POP Pilot 0.25770 0.18716 .1690
LIFE 0.07528 0.15359 .9674

Age — 0.02076 0.00287 <.0001
BMI — 0.01456 0.00589 .0136
Raceb — −0.19102 0.12018 .1124
Genderc — −0.27746 0.07815 .0004

Note: AC = acylcarnitine; BMI = body mass index; SD = standard deviation. 
In this analysis, STRRIDE represents the reference group. Estimates are ex-
pressed as SD units of the factor score and SE is the standard error of these es-
timates; the AC factor is the log of the component elements. aReference study. 
bWhite is reference. cMale is reference.

Table  3.  Prediction of the LNAA Factor in a Multivariable Model 
Containing Study, Age, BMI, Race, and Gender

Item Study Name Estimate SE p

Omnibus .0010
CALERIE 1.35968 0.17249 <.0001
STRRIDEa 0.00000 — —
CARRIAGE 1.31931 0.14964 <.0001
POP 1.24037 0.13563 <.0001
POP Pilot 0.75964 1.18235 <.0001
LIFE 0.52265 0.16800 .0019

Age — 0.00943 0.00280 .0008
BMI — 0.01193 0.00574 .0380
Raceb — 0.11709 0.11709 .1279
Genderc — −0.41215 0.07614 <.0001

Note: BMI  =  body mass index; LNAA  =  large neutral amino acids; 
SD = standard deviation. In this analysis, STRRIDE represents the compara-
tive group. Estimates are expressed as SD units of the factor score and SE is 
the standard error of these estimates; the LNAA factor is composed from the 
log of the component elements. aReference study. bWhite is reference. cMale 
is reference.
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heritability for many of these analytes (4), indicating that a genetic 
component is a substantial determinant of their circulating levels. 
Despite this, we detected significant effects of both age and BMI on 
these factors in this meta-analysis study.

The metabolite composition of the factors generated in this anal-
ysis is consistent with those identified in other independent human 
studies associated with metabolic dysregulation. In an assessment 
of the differential metabolic impact of gastric bypass surgery ver-
sus dietary intervention in obese diabetic subjects (19), the same 
panel of metabolites (15 AAs and 45 ACs) subjected to unbiased 
PCA (pooling AC and AA) yielded an AC Factor composed primar-
ily of AC, and an AA factor (loaded heavily by BCAA) as the two 
largest contributors to metabolite variance. Shah and coworkers (4) 
examined the heritability of metabolic profiles in families with high 
prevalence of coronary artery disease and identified numerous fac-
tors from unsupervised PCA, including two factors that loaded heav-
ily for medium- and long-chain AC and BCAA and LNAA. Other 
studies have reported generation of similar factors of metabolites 
(2–4,6,11,20). The analysis described here overtly separated ACs 
from AAs before factoring, an analytic decision supported by the 
separate clustering of these two classes of molecules in unbiased fac-
tor analysis.

Creation of these three factors allowed natural clusters of metab-
olites to be considered in the aggregate when analyzing the effects of 
age, BMI, gender, and race within the studies and in a meta-analytic 
approach. Independent of BMI, gender, and race, age was signifi-
cantly associated with both the AC factor and the LNAA factor; but 
not with glycine. Independent of age, gender, and race, BMI was 
significantly associated with all three factors. In contrast, there was 
no significant association of race (white vs nonwhite) with any of 
the factors. Independent of age, BMI, and race, gender showed sig-
nificant associations with all three factors. Notably, when compared 
with women, men had significantly greater scores for the AC and 
LNAA factors, but lower concentrations of glycine. We observed a 
study-specific effect only on LNAA, the source of which is unclear 
but may be related to sampling environment or a study-specific fac-
tor not modeled in this analysis. Importantly, we failed to observe 
any age-by-BMI interaction effects on metabolite factors. The 

observation that LNAA were associated with age and BMI in our 
cohort but that glycine was only associated with BMI, emphasizes 
the relative specificity of the LNAA association with age and begs 
for further investigation.

The association of the metabolic factors with age and BMI con-
firmed the occurrence of metabolic dysregulation with aging and 
greater body mass. Based on these data, we speculate that older 
persons and persons with greater adiposity exhibit more systemic 
fatty acid oxidation by-products. This is based on our observation 
that even-chain ACs (loaded most heavily on the AC Factor) and 
the acetylcarnitine (C2) in Factor 1 are by-products of fatty acid 
catabolism and completion of fatty acid oxidation, respectively. 
These results might reflect either higher rates of fatty acid oxidation 
or fatty acid supply and oxidation that is outpacing energy need and 
downstream metabolic processes (TCA cycle and electron transport 
chain). Additional investigations would be necessary to differenti-
ate these possibilities. The elevated AC scores with age and BMI are 
consistent with an increased cardiometabolic risk with increased age 
and body mass.

Elevations in circulating even-chain ACs have been associ-
ated with a number of metabolic states associated with both 
aging and increased BMI, including obesity (21); insulin resist-
ance (3); type 2 diabetes (22); anemia (23); inflammation (22); 
and cardiovascular events and mortality (2). Although the age 
and BMI associations with elevated ACs might simply denote the 
presence of health problems, the extent to which the dysregula-
tion of these metabolites mediates biological aging and its associ-
ated functional decline is currently the focus of growing interest. 
Lum and coworkers, in a separate analysis of the Veteran’s LIFE 
study, reported that an AC factor associated inversely with several 
measures of physical performance in elderly community-dwelling 
men (6). Numerous objective measures of physical performance 
(including the Short Physical Performance Battery [SPPB], SPPB 
gait speed, SPPB chair stands, usual gait speed, and actual gait 
speed) correlated inversely and significantly with a factor com-
posed of all 45 ACs, loaded most heavily on medium-chain ACs 
and acetylcarnitine.

Greater LNAA factor scores are associated with insulin resist-
ance (3) independent of age, gender, and waist circumference, a 
marker of body composition similar to BMI. In a population of 
individuals undergoing cardiac catheterization, both LNAA and 
AC factors, similar to the one identified here, were associated with 
cardiac events and mortality in longitudinal analyses (2). In these 
articles and other epidemiologic studies, particularly those from 
the Framingham Heart Study (5) elevation of LNAA, specifically 
the BCAA, are associated with insulin resistance and risk for type 2 
diabetes mellitus. The greater LNAA scores with age and BMI are 
consistent with an increased cardiometabolic risk with increased 
age and body mass.

Glycine was the dominant component of AA factor 2. Analyzed 
as a single metabolite, glycine demonstrated a significant inverse 
association with BMI. Furthermore, glycine was lower in men but 
showed no significant relation with age or race. The observation 
that men and individuals with greater BMI had lower glycine con-
centrations is of particular interest. From accumulating data, these 
findings would imply that adult men are at a higher metabolic risk 
than women of similar age. There is a developing literature about 
glycine and metabolic regulation. Almanza-Perez and coworkers 
correction have observed that glycine administration in animal 
models is anti-inflammatory—specifically reducing circulating 

Table  4.  Associations of Glycine (µM) in a Multivariable Model 
Containing Study, Age, BMI, Race and Gender

Item Study Name Estimate SE p

Omnibus <.0001
CALERIE 0.30010 0.04593 <.0001
STRRIDEa 0.00000 — —
CARRIAGE 0.05412 0.03985 .1749
POP −0.00349 0.03612 .9230
POP Pilot 0.12821 0.04856 .0085
LIFE −0.10210 0.04474 .0228

Age — 0.00054 0.00074 .4686
BMI — −0.01224 0.00153 <.0001
Raceb — −0.01274 0.03118 .6829
Genderc — 0.06140 0.02028 .0026

Note: BMI = body mass index; SD = standard deviation; SE = standard er-
ror. In this analysis, STRRIDE represents the comparative group. Estimates are 
in SD units of the factor score and are calculates as log of the glycine concen-
tration. aComparative study. bWhite is reference. cMale is reference.
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concentrations of tumor necrosis factor-alpha and interleukin-6—
and protecting against metabolic syndrome in an animal model of 
diet-induced obesity (24). Deletion of the l-arginine:glycine ami-
dinotransferase (AGAT) gene in animal models results in greater 
circulating glycine levels; it protects from diet-induced obesity and 
is associated with fewer adverse cardiovascular outcomes (25,26). 
Greater circulating glycine is associated with a more favorable 
body composition, greater lean mass, and more favorable insulin 
action in elderly adults (27).

It is notable, furthermore, that serine also loaded highly with 
glycine in three of the studies and in the average of the entire subject 
set. This could be expected, given that serine serves as a precursor 
in glycine synthesis, either via glycine synthase or serine hydroxym-
ethyl transferase. Glycine catabolism occurs primarily on the inner 
mitochondrial membrane. Given the plurality of roles of glycine 
beyond its contribution to cellular proteins, including its require-
ment in the synthesis of purines, creatine, bile salts, porphyrins, and 
glutathione, it would be difficult to discern a singular reason for 
the association with body weight reported here. However, based 
on the paradigm of carnitine, one area of considerable interest is 
whether glycine might also covalently modify acyl groups destined 
for clearance. One might then expect an inverse relation between 
circulating ACs and glycine; for instance, conditions of high plasma 
ACs, such as mitochondrial dysfunction due to obesity, would be 
associated with lower free glycine concentrations due to glycine 
sequestration. This was observed in our study. The condensation 
reaction of arginine and glycine in the first step of creatine synthesis 
is also of interest.

In work from our group, we observed that plasma glycine 
concentrations were directly related to insulin sensitivity (3); 
furthermore, with exercise training, increased glycine concen-
trations corresponded to improved insulin sensitivity (28). We 
recently completed a study comparing BCAA turnover in lean 
and obese adults; its correlation with insulin sensitivity and its 
modulation with exercise training. We observed that circulating 
glycine levels were higher in the lean and obese training group; 
further urinary metabolic profiling suggested that exercise 
induces more efficient elimination of excess acyl groups derived 
from BCAA and aromatic AA metabolism via formation of uri-
nary glycine adducts (29). In a very recent finding, reduced gly-
cine concentrations are associated with subsequent myocardial 
infarction in individuals with suspected coronary ischemia (30). 
Although we failed to observe an association with age in our 
contributing studies here, further investigation is indicated for 
understanding the importance of the association of circulating 
glycine levels with obesity and metabolic dysregulation in aging 
populations.

As a strength of our study, we combined numerous diverse study 
studies to investigate the association of targeted metabolic inter-
mediates with age and BMI. This approach necessitated including 
studies that differed on whether individuals were sampled in fed 
or fasted state, sampled in serum or plasma, or other differences. 
Fed-fasted state is a significant contributor to some metabolite 
levels (31). However, we are confident that the associations were 
not influenced by study-specific differences, including fed-fasted 
state. The composition of the principal component factors were 
consistent across studies; in multivariate analyses, group assign-
ment (study membership) was never a significant contributor to 
the associations.

The findings we observed suggest that age and BMI should be 
considered in future studies of the association of small-molecule 

metabolites with disease. In particular, the effects of age and BMI 
on AC and LNAA, and additionally the effects of BMI on glycine, 
should be controlled. Most intriguingly, the study also revealed that 
there are effects of age on metabolic health that are independent 
of the tendency toward overweight with aging. Investigating the 
biomolecular mechanisms underlying these associations will be an 
important emphasis for future work.

Supplementary Material

Please visit the article online at http://gerontologist.oxfordjournals.
org/ to view supplementary material.
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