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Abstract

Background: Biomarker candidates are often ranked using P-values. Standard P-value 

calculations use normal or logit-normal approximations, which may not be correct for small P-
values and small sample sizes common in discovery research.

Methods: We compared exact P-values, correct by definition, with logit-normal approximations 

in a simulated study of 40 cases and 160 controls. The key measure of biomarker performance was 

sensitivity at 90% specificity. Data for 3000 uninformative false markers and 30 informative true 

markers were generated randomly. We also analyzed real data for 2371 plasma protein markers 

measured in 121 breast cancer cases and 121 controls.

Results: In our simulation, using the same discovery criterion, exact P-values led to discovery of 

24 true and 82 false biomarkers, while logit-normal approximate P-values yielded 20 true and 106 

false biomarkers. The estimated true discovery rate was substantially off for approximate P-values: 

logit-normal estimated 42 but found 20. The exact method estimated 22, very close to 24, which 

was the actual number of true discoveries. Although these results are based on one specific 
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simulation, qualitatively similar results were obtained from 10 random repetitions. With real data, 

ranking candidate biomarkers by exact P-values, versus approximate P-values, resulted in a very 

different ordering of these markers.

Conclusions: Exact P-values, which correspond to permutation tests with non-parametric rank 

statistics such as empirical ROC statistics, are preferred over approximate P-values. Approximate 

P-values can lead to inappropriate biomarker selection rules and incorrect conclusions.

Impact: Exact P-values in place of approximate P-values in discovery research may improve the 

yield of biomarkers that validate clinically.
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Introduction

Biomarker discovery research has yielded few clinically useful biomarkers. Poor 

methodologies in the statistical design of studies and in the evaluation of studies may be 

contributing factors (1). With regard to design of discovery studies, guidelines have recently 

been discussed, including sources and numbers of biological samples for adequate power 

(2). In this article we address a common and underappreciated issue in the evaluation of 

biomarker discovery studies.

The classic discovery study entails measuring many biomarkers, perhaps using array-based 

or other such high-throughput technology, on a set of biological samples from cases and 

controls. For each biomarker, one calculates a statistic and its P-value using the case and 

control data pertaining to that biomarker. The biomarkers are then ranked according to one 

or more criteria, such as P-value, (average) fold change between cases and controls, 

sensitivity at a given specificity, area under the curve, biological relevance to the target 

disease, availability of antibodies for assay development, potential difficulties with targeted 

assays, and differential expression in publicly available databases. P-values are a commonly-

used criterion used for ranking biomarker candidates and determining the top set of markers 

considered for further development and validation. Thus statistical P-values can play a 

fundamental role in the evaluation of biomarker discovery studies.

As an example, consider the “Colocare” study to discover and validate markers to predict 

colon cancer recurrence in patients diagnosed with stage 1 colon cancer (3). Tissue and 

blood samples taken at diagnosis from 40 cases with colon cancer recurrence and 160 

controls without recurrence will be tested with approximately 3000 autoantibodies. As 

described in (2), the data analytic plan is to calculate the sensitivity corresponding to 90% 

specificity for each biomarker and to generate a corresponding standard P-value for no 

association between biomarker and case-control status. We simulated data for 3000 useless 

biomarkers not associated with case-control status and found that 69 (2.3%) had 

approximate P-values less than 0.01 (see third row of Table 1 in (2)). Since one would 

expect that approximately 30 markers (1% of markers) would attain P-values less than 0.01 

if all 3000 biomarkers were useless, i.e. the estimated number of ‘false discoveries’ is 30 
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(=0.01 × 3000), the data analysis suggests that 69−30 = 39 true biomarkers have been 

discovered. However this conclusion is incorrect since we generated the data in such a way 

that none of the 3000 markers are predictive of case-control status. The issue here is that 

standard P-value calculations that rely on asymptotic statistical theory are problematic and 

lead to an erroneous conclusion in this example.

In this paper we demonstrate this phenomenon in more detail and propose an alternative 

method for calculating P-values that is generally correct and robust to the vagaries of 

biomarker discovery data. This exact P-value approach is applicable regardless of the 

statistic used to rank biomarkers and it is computationally reasonable with modern 

computing capacities. Most importantly, we show in simulations studies that use of exact P-
values leads to more reliable conclusions from biomarker discovery data than does use of 

approximate P-values.

Materials and Methods

In case control studies, the P-value associated with a statistic is defined as P-value = 
Probability(statistic >= observed data statistic | cases same as controls). Standard P-value 

calculations often employ approximations based on an asymptotic normal distribution for a 

Z-score standardized version of the statistic. Our study was designed to investigate if such 

standard P-value calculations, as commonly performed in case-control studies, are 

potentially incorrect in practice and if incorrect P-value calculations can substantially affect 

the soundness of conclusions drawn from biomarker discovery studies. To address these 

questions we simulated biomarker discovery data where the capacities of biomarkers to 

predict outcome were specified, allowing us to compare conclusions based on data analysis 

with the specified truth.

Our proposal is to calculate P-values exactly without approximation, using this simulated 

data. This is in fact an old concept for rank statistics such as the Wilcoxon rank sum statistic 

where published tables have long been available for use with data from studies involving 

very small sample sizes (7). Modern computing power now makes the approach feasible for 

studies with larger sample sizes and for any statistic. The idea is to enumerate all the 

possible values of the statistic for the setting where cases have biomarker values with the 

same distribution as controls and to evaluate how extreme the observed biomarker data 

statistic is to calculate its exact P-value.

To demonstrate that the method used to calculate P-values in real data analysis can have a 

substantial effect on conclusions drawn, we also reanalyzed data from an ER/PR positive 

breast cancer biomarker discovery study reported in (8). A detailed description of our 

simulation studies, analytic approach, and the ER/PR positive breast cancer discovery study 

is included in the Methods section of the Supplementary Data file.
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Results

Reference Distribution for Calculating Exact P-values

Table 1 shows the reference distribution for estimated sensitivity corresponding to 90% 

specificity, also known as the empirical estimate of ROC(0.1) (ROCemp), based on 40 cases 

and 160 controls when a biomarker is not informative about case-control status (a false 

biomarker). This table will be used to calculate exact P-values when biomarker data are 

available from the simulated Colocare study, in which the biomarker positivity threshold is 

set to the 90th percentile of control values so as to guarantee the marker has 90% specificity 

(Supplementary Data). Possible values for the ROCemp are 0/40, 1/40, 2/40, 3/40, etc. 

because there are 40 cases and the estimated ROC is the fraction of those 40 cases whose 

biomarker values exceed the 90th percentile of control values (i.e. exceed the 16th largest 

control value). We see that among the 40,000 simulated studies of uninformative markers, in 

only 1 study did the estimated ROC reach a value of 0.40. Therefore the exact P-value 

corresponding to an ROCemp of 0.40 is 1/40,000 = 0.000025. Correspondingly, in 5 

simulations the estimated ROC reached a value of 0.375 or more, so the P-value 

corresponding to 0.375 is 5/40,000 = 0.000125.

Approximate P-values based on normal distribution with logit transformation can be 
incorrect

Table 2 demonstrates that P-values calculated with the logit-normal approximation method 

described in Supplemental Methods can be substantially different from the correct exact P-
values. The data were simulated for a single biomarker discovery study that included 30 true 

biomarkers and 3000 false biomarkers with all 3030 biomarkers evaluated on 40 case and 

160 control samples. Table 2 shows P-values only for the 30 true markers in the simulation 

study. Although P-values calculated with the different methods are often of similar 

magnitudes that would lead to the same decisions about efforts to validate or not, there are 

multiple instances where the differences could lead to different decisions with use of logit-

normal versus exact P-values (see highlighted biomarkers 3, 14 and 27).

Impact of Approximate P-Values in the Simulated Colocare Study

Differences in P-value calculations had a substantial effect on the numbers of biomarkers 

discovered in the simulated study. The top panel of Table 3 shows the numbers of 

biomarkers that passed the discovery criterion: P-value <=0.0277. We chose this odd 

threshold since among the finite set of attainable P-values that are possible (Table 1) it is 

closest to 0.02, which was the preferred threshold in the Colocare study, to reduce the 

number of anticipated false discoveries. If we had chosen say the threshold 0.02, the actual 

threshold for the exact P-value would have been 0.0121 and the comparison between P-value 

methods would have been flawed. Observe from Table 3 that use of different P-value 

algorithms leads to substantially different numbers of markers discovered: 106 for exact, and 

126 for logit-normal. Since we simulated the data we know the true and false biomarkers. 

Use of the exact P-value led to discovery of 24 true biomarkers and 82 false biomarkers, 

while use of logit-normal P-values led to 20 true biomarker discoveries and 106 false 

discoveries.
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We next examined if the incorrect logit-normal P-value calculations impacted the 

conclusions drawn from the discovery study. Discovery data analyses typically report 

estimates of the true and false discovery rates, that is, the proportion of discovered 

biomarkers that are likely to be true biomarkers and the proportion that are likely to be false. 

We illustrate a simple way to estimate these numbers with reference to the logit-normal P-

value column in the top panel of Table 3 : By definition of P-value, we expect that 2.77% of 

false biomarkers will meet the discovery criterion (P-value<0.0277). Therefore, assuming 

that the vast majority of the 3030 biomarkers evaluated are in fact uninformative, we expect 

that 0.0277×3030=84 false biomarkers are discovered in this study. That implies that of the 

126 biomarkers discovered using the logit-normal P-value criterion, we estimate that 84 are 

false and therefore the remaining 42 are likely to be true biomarkers.

Comparing the estimated number of false discoveries with the actual numbers of false 

discoveries, numbers we know because we designed the simulation, in Table 3 we see that 

the estimate is very close for P-exact (84 versus 82), but a substantial under estimate (84 

versus 106) for the logit-normal P-value. With logit-normal we estimate that 126−84 = 42 

(33%) of the 126 discoveries are true discoveries. However, only 20 (16%) of the discoveries 

are in fact true biomarkers. Therefore, with logit-normal P-values we believe we are doing 

much better than we actually are. In contrast, the exact P-value method discovers 24 true 

biomarkers (23% of total discoveries) and this is in line with the estimated number of true 

discoveries, namely 106−84 = 22 (21%). In summary, estimates of numbers of true and false 

discoveries made are much closer to the actual numbers of true and false discoveries when 

the exact P-values are used. In this sense, conclusions drawn from the study are more sound 

for the exact P-value method than for the logit-normal approximation P-values.

Results with use of a more stringent P-value threshold criterion, namely 0.0121, shown in 

the lower panel of Table 3 are similar. We repeated the simulation study 10 times to 

determine if the observations made from the single study shown in Table 3 were found in 

general. We see from Tables S.1 and S.2 in Supplementary Data that there is a consistent 

tendency for the logit-normal approximation P-values to provide poor estimates of the 

numbers of true and false discoveries made and that the exact P-value method leads to more 

reliable conclusions. In nine of the 11 total simulation studies conducted, use of exact P-

values (versus logit-normal P-values) led to a smaller number of ‘misclassified’ discoveries. 

Across all 11 simulations, the number of such misclassifications when using exact P-values 

(n=69) was three-fold lower than when using logit-normal P-values (n=217).

When the numbers of cases and controls available are small, investigators often resort to use 

of more global measures of biomarker performance such as AUC, although pitfalls of using 

such clinically irrelevant measures are well documented (9, 10). Table 4 investigates 

performance of exact and logit-normal P-values for the AUC statistic when 20 cases and 20 

controls are included in the discovery study. Here, logit-normal P-values tend to be too large. 

Interestingly, this is opposite to results for ROCemp. The direction in which approximate P-

values depart from exact P-values is likely to depend on the shape of the ROC curve and on 

the specific performance measure underlying the test. Most importantly, however, we see 

again that estimates of true and false discoveries are much closer to the actual numbers of 

true and false discoveries when using exact rather than logit-normal approximation P-values.
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Application to Real Data for Receptor Positive Breast Cancer Biomarker Candidates

ROC statistics and P-values were calculated with antibody array data from the ER-PR 

positive Women’s Health Initiative breast cancer study (8). The top panel of Table 5 shows 

the top 40 candidates ranked according to exact P-value and the bottom panel shows the top 

40 candidates ranked according to logit-normal P-value. One gets very different impressions 

of the results depending on which P-value method is used. For exact P-value, the number of 

true biomarkers in the top 40 is estimated to be 15.7 and the estimated false discovery rate is 

63%. In contrast, the logit-normal P-value method estimates 33.8 true markers in the top 40 

and a false discovery rate of only 15%. Given the previous simulation results, we believe 

that the estimates based on the exact P-values are more reliable. Note that we estimated the 

false discovery rate here using the Benjamini-Hochberg method (13) implemented with the 

qqvalue command and Simes option in the Stata software package (14, 15). The simple 

intuitive calculation method noted in previous tables gave very similar results (data not 

shown) but that method does not restrict the FDR to increase with increasing P-value as does 

the Benjamini-Hochberg method.

Another interesting observation in Table 5 is that the ROC values (shown as “Estimated 

Sensitivity”) align pretty well with the P-values when using the exact method, i.e. the 

highest ROC estimates are at the top of the list corresponding to the smallest P-values (see 

also Figure S.1 in Supplementary Data). In contrast, the logit-normal P-value method does 

not align ROC estimates with P-values very well. For example, the highest ROC estimate, 

0.339, is way down the list at rank 38 according to the logit-normal P-value, just above a 

biomarker with estimated ROC = 0.198.

Considering the biomarker selection criterion ‘p<0.05’ for which 0.05 × 2371 = 118.5 false 

biomarkers are expected to be identified, the estimated numbers of true biomarkers selected 

is 11.5 based on exact P-values (130 markers selected in total) and 75.5 with logit-normal P-
values (194 markers selected in total). These are very different estimates. The biomarker 

selection criterion p<0.02, for which 47.4 false biomarkers are expected to be identified, 

yields estimated numbers of true biomarkers selected of 11.6 with exact P-values (59 

markers selected in total) and 73.6 with logit-normal P-values (121 in total). Again, given 

the simulation results above, we have more trust in the estimated numbers of true and false 

biomarkers based on exact P-values than in those based on logit-normal P-values.

Discussion

Exact P-values, calculated according to the definition of P-value, provide the true probability 

of observing a statistic as extreme as that observed in the study when case biomarker values 

are derived from the same distribution as controls. For convenience, approximation P-values 

are typically used in practice. Our results using one classic simulation scenario show that 

approximations can be substantially off, leading to less reliable conclusions. Additional 

simulations (Table S.3) show qualitatively similar conclusions when true biomarkers were 

more diverse than in our classic simulation scenario.

Exact P-values can be calculated for any two sample test statistic. Our analyses used 

nonparametric rank statistics, in particular the empirical sensitivity at fixed 90% specificity 
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and the area under the ROC curve. The issues concerning exact versus approximate P-values 

also apply to parametric non-rank based statistics, including the t-test for example. However, 

the null hypothesis reference distribution that is needed to calculate exact P-values requires 

estimating the control biomarker distribution and repeatedly generating random case and 

control simulated study data from it. This can be a complicated exercise for parametric non-

rank based statistics particularly in the context of discovery research where automated 

procedures are needed to deal with diverse data on large numbers of biomarkers. We cannot 

assess parametric assumptions for each biomarker. Moreover, outliers and non-standard 

distributions are common in discovery research. Therefore, we prefer rank based non-

parametric statistics, and those were the focus of our study. We note that for rank-based 

nonparametric statistics, p-values from permutation tests are the same as exact P-values. 

Therefore another interpretation of our results is that when one is using rank-based statistics, 

permutation test P-values are preferred over normal approximations. We note, however, that 

permutation test P-values do not correspond with exact P-values for parametric non-rank 

based statistics.

We found two additional advantages from use of exact P-values. First, biomarker 

performance measures align well with exact P-values, in that markers with the best 

estimated performances have the smallest P-values. This inverse relationship holds by 

definition when the same numbers of case and control data points are available for each 

biomarker. In addition we found the inverse relationship was mostly true in the analysis of 

the breast cancer data set where data were sporadically missing. However, the analysis that 

used approximate logit-normal P-values led to some major inconsistencies between 

estimated performance and P-value. A second and unexpected advantage to use of exact P-
values concerns computational effort. When there is no missing biomarker data, the number 

of case and control data points is the same for each biomarker, and only one reference 

distribution must be calculated for the entire analysis. For example, exact P-values were 

calculated for each of the 3030 biomarkers in our simulated study using only Table 1. The 

computation involved to calculate exact P-values is therefore very fast once the reference 

table is created. In contrast, the logit-normal approximation P-values required calculation of 

standard errors for each biomarker separately, a process that was time consuming with use of 

bootstrap resampling.

We considered two different types of statistical criteria for selecting biomarkers. One 

approach demonstrated in Tables 3 and 4 was of the form “P-value < threshold”. Another 

approach demonstrated in Table 5 was to select the “top K markers” where K was set to 40 

in Table 5, similar to the number of biomarkers selected in previous analyses of the same 

data (8). Yet another criterion is to select markers for which the false discovery rate among 

markers ranked at or above is below a specified threshold (13). One can see from the breast 

cancer results in Table 5 that the different P-value calculations would lead to very different 

biomarker selections based on a false discovery rate criterion. For example “false discovery 

rate<10%” would lead to two markers selected with exact P-values but 30 markers selected 

with the logit-normal P-values. Since false discovery rates are functions of P-values, it is 

important to use correct P-value calculations when calculating false discovery rates.
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We showed that exact P-values can provide more reliable conclusions than standard 

approximate P-values. Specifically, they provide better estimates of true and false discovery 

rates, key parameters reported in discovery research. Calculation of exact P-values instead of 

approximate P-values allows for better conclusions in discovery research where interest is 

often focused on small P-values, sample sizes are often small, and the numbers of 

biomarkers tested may preclude evaluating data for distributional assumptions. Given that 

exact P-values are correct regardless of sample sizes and biomarker distributions, and can be 

obtained through minimally burdensome computation, we recommend use of exact P-value 

calculations instead of approximate P-value calculations in the analysis of biomarker 

discovery data. We caution against the assumption that approximate P-values are acceptable 

once a minimum sample size is reached, as results depend on the ROC shape, which will 

vary across applications. While the focus of this analysis was biomarker discovery, and we 

did not examine whether exact P values are preferable in all possible applications or 

scenarios, further studies are warranted to investigate whether it may also be prudent to use 

exact rather than approximate calculations in biomarker validation research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Normal and logit-normal approximate P-values are frequently used in 

biomarker studies.

• Approximate P-values can lead to inappropriate biomarker selection rules.

• Use of exact P-values may improve the yield of biomarkers that validate 

clinically.

Buas et al. Page 10

Cancer Epidemiol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Buas et al. Page 11

Table 1:

Reference distribution for the sensitivity corresponding to 90% specificity estimated with the empirical ROC 

when calculated with data for 40 cases and 160 controls
a
. The reference distribution is used to determine exact 

P-values and was generated by 40,000 randomly chosen enumerations
b
 of ranks for 200 subjects with the first 

40 labelled as cases.

r Probability that the estimated sensitivity ≥ r

0.000 1.000000

0.025 0.976575

0.050 0.892075

0.075 0.739125

0.100 0.549825

0.125 0.367025

0.150 0.218200

0.175 0.119050

0.200 0.059175

0.225 0.027675

0.250 0.012025

0.275 0.004850

0.300 0.001750

0.325 0.000550

0.350 0.000225

0.375 0.000125

0.400 0.000025

a
Smallest increment for realized values of the estimated sensitivity is 0.025 = 1/40 where 40 is the number of cases.

b
Smallest increment for probability is 0.000025 = 1/40000 where 40000 is the number of random rank enumerations.
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Table 2:

P-values calculated for the 30 true biomarkers in the simulated biomarker study of 40 cases and 160 controls. 

Calculations use standard logit-normal approximations to the distributions of the estimated sensitivity at 90% 

specificity or use exact methods. For at least 3 markers, P-values are substantially different.

Biomarker Exact P-value Logit-Normal P-value

1 0.001750 0.0002190

2 0.012025 0.0016413

3 0.059175 0.0986310

4 0.004850 0.0017292

5 0.000550 0.0000414

6 0.000225 0.0001591

7 0.027675 0.0190249

8 0.000550 0.0028095

9 0.027675 0.0235189

10 0.059175 0.0520333

11 0.000025 0.0000594

12 0.012025 0.0073081

13 0.027675 0.0373784

14 0.012025 0.0563044

15 0.027675 0.0331860

16 0.218200 0.1790015

17 0.000125 0.0005066

18 0.000550 0.0001466

19 0.119050 0.1098244

20 0.004850 0.0094405

21 0.218200 0.1999186

22 0.001750 0.0006482

23 0.000550 0.0000243

24 0.004850 0.0011685

25 0.367025 0.3618602

26 0.027675 0.0151371

27 0.027675 0.0689888

28 0.004850 0.0005487

29 0.004850 0.0014270

30 0.001750 0.0011660
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Table 3:

Markers discovered in the simulated study by the selection criterion: biomarker P-value < threshold from a 

dataset with 3,000 uninformative (false) biomarkers and 30 true biomarkers when P-values are based on exact 

calculation or on logit-normal approximation. The test statistic is the sensitivity at 90% specificity estimated 

with the empirical ROC
a
. Number of study subjects: 40 cases and 160 controls.

Number of Markers

Threshold for Sensitivity P-value Exact P-value Logit-Normal P-value

0.0277 Total Discoveries 106 126

False Discoveries

 estimated
b

84 84

 actual 82 106

True Discoveries

 estimated
d
 (tdr

c
) 22 (21%) 42 (33%)

 actual(tdr) 24 (23%) 20(16%)

0.0121 Total Discoveries 47 75

False Discoveries

 estimated 37 37

 actual 29 58

True Discoveries

 estimated(tdr) 10 (21%) 38 (51%)

 actual(tdr) 18 (38%) 17 (23%)

a
equivalent to hypothesis testing with the positive predictive value

b
estimated false discoveries = threshold-p × number of biomarkers

c
tdr: True discovery rate = number of true discoveries/ number of discoveries

d
estimated true discoveries = total discoveries – estimated false discoveries
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Table 4:

Markers discovered by the selection criterion: biomarker P-value < threshold from a dataset with 3,000 

uninformative (false) biomarkers and 30 true biomarkers when P-values are based on exact calculation or on 

logit-normal approximation. The test statistic is the empirical area under the ROC curve (AUC). True 

biomarkers have AUC = 0.758 (PPV = 0.30) while false (uninformative) biomarkers have AUC=0.50 (PPV = 

0.10). Number of study subjects: 20 cases and 20 controls

Number of Markers

Threshold for AUC P-value Exact P-value Logit-Normal P-value
1,2

0.0216 Total Discoveries 94 82

False Discoveries

 estimated
3

65 65

 actual 68 56

True Discoveries

 estimated 29 17

 actual 26 26

0.01016 Total Discoveries 59 47

False Discoveries

 estimated
4

31 31

 actual 37 26

True Discoveries

 estimated 28 16

 actual 22 21

1
standard error calculated using 500 bootstrapped samples of the data

2
similar results found with standard errors calculated using a large sample theory expression (11, 12)

3
estimated false discoveries = 3030 × 0.0216 = 65.45

4
estimated false discoveries = 3030 × 0.01016 = 30.78
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Table 5.

Candidate biomarkers for ER positive PR positive ductal breast cancer measured on preclinical plasma 

samples from 121 cases and 121 controls in the WHI observation study. The top 40 biomarkers ranked 

according to P-values for sensitivity at 90% specificity are shown. Rankings are with respect to exact P-values 

(top panel) and logit-normal P-values (bottom panel).

Rank by 
exact P-
value Marker Estimated Sensitivity P-value False Leads Expected Estimated True Markers

Estimated
a
 False 

Discovery Rate

1 v2621 0.305 0.000050 0.12 0.88 8.9%

2 v689 0.339 0.000075 0.18 1.82 8.9%

3 v1830 0.281 0.000150 0.36 2.64 11.9%

4 V1619 0.287 0.000250 0.59 3.41 14.8%

5 V2261 0.264 0.000325 0.77 4.23 15.4%

6 V1954 0.261 0.000825 1.96 4.04 29.6%

7 V2407 0.248 0.000875 2.07 4.93 29.6%

8 V1873 0.259 0.001050 2.49 5.51 30.3%

9 V2542 0.264 0.001150 2.73 6.27 30.3%

10 V1851 0.246 0.001300 3.08 6.92 30.8%

11 V2512 0.248 0.001875 4.45 6.55 40.4%

12 V2193 0.237 0.002225 5.28 6.72 40.4%

13 V2706 0.244 0.002250 5.33 7.67 40.4%

14 V2765 0.242 0.002475 5.87 8.13 40.4%

15 V2622 0.244 0.002650 6.23 8.72 40.4%

16 V1693 0.239 0.002725 6.46 9.54 40.4%

17 V1969 0.239 0.003550 8.41 8.58 47.4%

18 V1745 0.239 0.003600 8.54 9.46 47.4%

19 V2424 0.225 0.003925 9.31 9.69 48.6%

20 V2123 0.235 0.004100 9.72 10.28 48.6%

21 V2302 0.236 0.004700 11.14 9.86 50.3%

22 V2321 0.233 0.004850 11.50 10.50 50.3%

23 V2548 0.233 0.005225 12.39 10.61 50.3%

24 V845 0.223 0.005500 13.04 10.96 50.3%

25 V1518 0.235 0.005700 13.51 11.49 50.3%

26 V2322 0.215 0.005725 13.57 13.43 50.3%

27 V2718 0.215 0.005725 13.57 12.43 50.3%

28 V2327 0.215 0.006450 15.29 12.71 51.9%

29 V2848 0.224 0.006550 15.53 13.47 51.9%

30 V2090 0.223 0.006875 16.30 14.70 51.9%

31 V2416 0.231 0.006875 16.30 13.70 51.9%

32 V2500 0.219 0.007000 16.60 15.40 51.9%

33 V2309 0.227 0.008400 19.92 13.08 59.8%
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34 V2820 0.217 0.008700 20.63 13.37 59.8%

35 V2140 0.208 0.009075 21.52 14.48 59.8%

36 V2892 0.208 0.009075 21.52 13.48 59.8%

37 V2396 0.220 0.009325 22.11 14.89 59.8%

38 V2305 0.214 0.010700 25.37 12.63 62.5%

39 V1669 0.217 0.010800 25.61 13.39 62.5%

40 V1649 0.215 0.011075 26.26 15.74 62.5%

Rank by 
logit P-
value Marker Estimated Sensitivity P-value False Leads Expected Estimated True Markers

Estimated
a
 False 

Discovery Rate

1 v1619 0.287 <.000001 <0.01 1.00 <0.1%

2 v1830 0.281 <.000001 <0.01 2.00 <0.1%

3 v1518 0.235 0.000009 0.02 2.98 0.7%

4 v2512 0.248 0.000045 0.11 3.89 2.7%

5 V2416 0.231 0.000087 0.21 4.79 4.1%

6 V2765 0.242 0.000104 0.25 5.75 4.1%

7 V2309 0.227 0.000195 0.46 6.54 6.4%

8 V2622 0.244 0.000255 0.60 7.40 6.4%

9 V1873 0.259 0.000263 0.62 8.38 6.4%

10 V2090 0.223 0.000285 0.68 9.32 6.4%

11 V1704 0.208 0.000298 0.71 10.29 6.4%

12 V1954 0.261 0.000324 0.77 11.23 6.4%

13 V2621 0.305 0.000454 1.08 11.92 7.6%

14 V2123 0.235 0.000496 1.18 12.82 7.6%

15 V2407 0.248 0.000505 1.20 13.80 7.6%

16 V1914 0.214 0.000529 1.25 14.75 7.6%

17 V2436 0.202 0.000543 1.29 15.71 7.6%

18 V2302 0.236 0.000617 1.46 16.54 7.8%

19 V1847 0.203 0.000643 1.52 17.48 7.8%

20 V1648 0.215 0.000686 1.63 18.37 7.8%

21 V1669 0.217 0.000701 1.66 19.34 7.8%

22 V2321 0.233 0.000725 1.72 20.28 7.8%

23 V2548 0.233 0.000756 1.79 21.21 7.8%

24 V1740 0.198 0.000851 2.02 21.98 8.4%

25 V2828 0.200 0.000899 2.13 22.87 8.5%

26 V2706 0.244 0.000994 2.36 23.64 8.6%

27 V2193 0.237 0.000996 2.36 24.64 8.6%

28 V2426 0.202 0.001012 2.40 25.60 8.6%

29 V291 0.198 0.001066 2.53 26.47 8.7%

30 V2892 0.208 0.001176 2.79 27.21 9.3%

31 V1969 0.239 0.001363 3.23 27.77 10.2%
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32 V1851 0.246 0.001373 3.25 28.75 10.2%

33 V2417 0.198 0.001592 3.77 29.22 11.4%

34 V826 0.209 0.001655 3.92 30.08 11.5%

35 V2322 0.215 0.001777 4.21 30.79 12.0%

36 V2908 0.220 0.001991 4.72 31.28 12.9%

37 V2542 0.264 0.002021 4.79 32.21 12.9%

38 V689 0.339 0.002248 5.33 32.67 14.0%

39 V2814 0.198 0.002405 5.70 33.30 14.6%

40 V720 0.198 0.002612 6.19 33.81 14.9%

a
Benjamini-Hochberg estimates (13)
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