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Abstract

Vaccines formulated with adjuvant have been effective against numerous infectious diseases, 

almost always due to induction of functional antibodies that recognizes the pathogen of interest. 

There is an unmet clinical need for vaccine adjuvants that induce T cells responses to potentially 

enhance protection against malignancies and intracellular pathogens, where a humoral response, 

alone, may not be adequate for protection. In this study, we demonstrate that a TLR2 ligand-based 

adjuvant, meningococcal PorB, has broad immunostimulatory activity with the ability to induce a 

robust and diverse vaccine antigen specific T cell response. We demonstrate that a vaccine 

formulated with PorB admixed with ovalbumin induces a wide variety of antigen specific antibody 

subclasses and effector molecules (MIG, MCP-1, IP-10, MIP-1α, KC & IL-2) with known roles 

for inducing T cell responses, along with elevated levels of Th1 and Th2 type cytokines upon 

antigen stimulation. We confirmed production of these cytokines by examining the antigen-

specific T cells induced by PorB in vivo. After two immunizations with vaccine formulated with 

PorB/OVA, antigen-specific CD4 and CD8 T cells were significantly increased in numbers and 

produced IL-4 or IFN-γ upon ex vivo antigen re-stimulation. Finally, in a Listeria mouse infection 

model, vaccine formulated with PorB significantly reduced the bacterial burden upon a low dose 

infection and increased survival upon a high dose infection with recombinant Listeria 
monocytogenes engineered to express OVA (rLmOVA), a pathogen that requires OVA-antigen 

specific cytotoxic CD8 T cells for clearance. In summary, PorB is able to induce antigen specific 

broad B and T cell responses, illustrating its potential as a potent and new vaccine adjuvant.
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Introduction

Adjuvants are required to enhance the efficacy of vaccines, either when added to their 

formulations or as an inherent property of the vaccine formulation itself as in attenuated or 

killed whole organism vaccines (1–3). The efficacy of most, if not all, adjuvanted vaccines is 

by inducing a protective humoral response (4), especially for those pathogens where 

neutralizing or bactericidal antibodies are known to be protective, e.g. diphtheria, tetanus, 

polio, Haemophilus influenza type B, hepatitis A and B, rabies, measles, mumps, rubella, 

varicella, pneumococcus and meningococcus (5–7). Interestingly, some of the most effective 

vaccines contained endogenous adjuvants as components of the live or attenuated forms of 

the targeted pathogens. The immune system responds well to these vaccines and often 

mounts robust protection. The major reason for this success is that our immune system has 

evolved to respond to Pathogen Associate Molecular Patterns (PAMPs), which stimulates the 

innate immune responses through Pattern Recognition Receptors (PRRs) (8). Effective 

vaccines exploit this property of the immune system to enhance responses to elicit immune 

protection, especially vaccines made from live attenuated or killed whole organism. (9).

The development of most vaccines and adjuvants have occurred with minimal understanding 

of immunological mechanisms of adjuvant activity and vaccine immunity. There have been 

many failures to develop vaccines against pandemics such as human immune deficiency 

virus (HIV) infection, Mycobacterium tuberculosis (TB), Hepatitis C and Respiratory 

Syncytial Virus (10). Traditional vaccines that mainly induce humoral responses alone have 

not been as successful towards many of these pathogens. One probable reason for this 

finding is that protection against such pathogens, which are mainly intracellular, may require 

a significantly diverse set of immune responses beyond just a humoral response, including a 

robust set of CD4 and CD8 T cell responses (11). Previous studies have demonstrated that T 

cell responses, including CD8 T cell responses, have a vital role in controlling and clearing 

intracellular infections (12–15). This demonstrates the unmet clinical need for new novel 

adjuvants that can induce a strong and diverse T cell response.

To date, immunizations with specific live attenuated pathogens (such as smallpox virus, 

yellow fever virus and others) have been shown to be one of the only ways to induce these 

diverse T cell responses via vaccination (16). There are many different types of PRRs that 

have important roles in a vaccine induced immune responses including those in live 

attenuated vaccines where the endogenous adjuvant (PAMPs) are being recognized by PRRs. 

TOLL-like receptor 2 (TLR2) is an important PRR used in this study. TLR2 is unique 

among all the mammalian TLRs, as it is able to recognize the most diverse repertoire of 

PAMPs, such as cell walls of Gram-positive bacteria, bacterial glycolipids, mycobacterial 

lipoprotein, etc. (17–20). TLR2’s ability to detect a wide repertoire of PAMPs is the result of 

its potential to heterodimerize with either TLR 1 or 6 in mice and TLR1, 6 and 10 in humans 

(17–20).

Given the limitations of traditional vaccines, the success of PAMPs within live attenuated 

vaccines in inducing T cell responses, and the importance of TLR2, we investigated the 

ability of Neisseria meningitidis Porin B (PorB) protein, a TLR2 ligandbased adjuvant, to 

generate vaccine-induced T cell responses. PorB is the major outer membrane protein from 
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Neisseria meningitidis (21). Meningococcal PorB has been used as an immune adjuvant for 

vaccines with a wide range of antigens including bacterial capsular polysaccharides, 

bacterial oligosaccharides and proteins (22–24). PorB is also a component of the Outer 

Membrane Proteins from Meningococcus (OMPC), which has been used as a carrier protein 

for the Haemophilus influenza type B (Hib) human vaccine (22, 23). More recently, it was 

demonstrated that PorB requires intact in vivo MyD88 signaling in B cells, macrophages and 

dendritic cells (individually) for its adjuvant activity and also has the ability to induce a 

robust germinal center reaction (25). The purpose of this current study is to further 

characterize the adjuvant activity of PorB, especially in regards to the breadth of T cell 

response sit induces along with its ability to induce potentially protective responses related 

to CD8 T cells.

Materials and Methods

Animals and Immunizations

Wild Type (WT) C57BL6J mice were purchased from Jackson Laboratories. Mice were 

maintained in the Association for Assessment and Accreditation of Laboratory Animal Care 

International accredited facility at Boston University School of Medicine Laboratory Animal 

Science Center (LASC) and experiments were conducted under the approved IACUC 

protocol for the Wetzler Laboratory. WT mice between the ages of six to twelve weeks were 

immunized subcutaneously two or three times at two-week intervals. Mice were immunized 

with 10μg of Neisseria meningitidis Porin B (PorB) admixed with 10μg of Ovalbumin 

(OVA). Mice were immunized with either PBS or 10μg of OVA as controls. There were 3–4 

mice per group and each experiment was repeated to obtain a total of 6–8 mice per 

experimental condition. PorB was purified from N. meningitidis strain H44/76 Δ−1/4 (24) 

using protein extraction and column chromatography as previously described (26). Activity 

of PorB and endotoxin content were examined by stimulation of WT, MyD88−/−, TLR2−/− 

and TLR4−/− BMDM and analysis of supernatant for TNF-α, silver staining and LAL 

Assay (Pierce Endotoxin Kit from Life Technologies), no endotoxin was found in any 

preparations. The amount of adjuvant PorB and OVA antigen utilized were based on 

previously published studies and falls within the best range of their efficacy (27). Sera were 

collected via tail bleed for serum cytokine measurements, pre-immune sera as well as sera 

from 4 hours or 12 hours post immunization were collected. Sera for antibody screening 

were collected two weeks after the third immunizations. These time point were selected 

based on our examinations of other time points and another previously published study (28).

Measurement of Antigen Specific Antibodies

Sera were assayed for OVA-specific immunoglobulins by enzyme-linked immunosorbent 

assay (ELISA) as previously described (29, 30). Briefly, wells were coated with OVA (5 

μg/mL) in carbonate buffer and incubated overnight at 4°C. Sera were sequentially diluted 

starting at 1:50 and added to the previously coated wells, and incubated overnight at 4°C. 

Alkaline phosphatase-conjugated anti-mouse IgG1, 2b, 2c or 3 subclasses (Sigma Aldrich, 

St Louis, MO) were added. After washing, the ELISA was developed with onestep p-

nitrophenyl phosphate (Pierce, Rockford, IL) and the optical density (OD) at 405 nm was 

measured on a SpectraMax190 Microplate Reader (Molecular Devices, Sunnyvale, CA). 
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End point titers were determined for IgG subclasses by doing serial dilution and the last 

dilution with detectable level of OVA IgG subclasses were multiplied by the O.D and this is 

reported as end point titers.

Chemokine and Cytokine Screening

Cytokine levels were measured from sera obtained 4 or 12 hours after each immunization 

and compared to pre-immune sera. Sera from similar immunization groups were pooled 

(N=8 mice), used in duplicate and screened on a MAGPIX XMAP instrument (Luminex, 

Austin, TX) using Mouse 20-plex cytokines kits (Life Technologies). Individual standard 

curves were generated for each cytokine and analyzed using the Luminex Xponent software. 

Unknown sample concentration was extrapolated from standard curves for single analytes. 

All values outside of the standard curve limit were rejected.

Antigen Specific T cells

WT mice were immunized as described above and spleens harvested on day 11 after the 2nd 

immunization. There were 3 to 4 mice per group and experiments were repeated to with a 

total of 6 to 8 mice per group. Single cell suspensions were prepared. Red blood cells were 

lysed with Ammonium-Chloride-Potassium lysis buffer (ACK Lysis Buffer). Cells were 

counted using a hemocytometer. ELISPOT plates (Cat# MAIPS4510, Merck Millipore, 

Ireland) were coated for 3 hours at room temperature with anti-mouse IFN-γ (5μg/ml) 

(mAb AN18, Mabtech, Sweden) or anti-mouse IL-4 (7.5μg/ml) (mAb 11B11, Mabtech, 

Sweden) or PBS. Plates were washed with PBS. Cells were plated at a density of 500,000 

and 50,000 cells per well in 4 replicates per mouse per condition in RPMI 1640 media 

(Corning, Corning NY) supplemented with 8% Fetal Bovine Serum (Corning, Corning NY). 

Cells from each mouse for each immunization group were stimulated with OVA323–339 

CD4 peptide (ISQAVHAAHAEINEAGR), OVA 257–264 CD8 peptide (SIINFEKL), or 

OVA257–254 scrambled peptide (FILKSINE) as a negative control, all supplied by 

ANASPEC, Fremont, CA and used at 5μg/ml. Cells from each mouse were also plated with 

media alone or with purified α-CD3/CD28 (1.5μg/ml) (Affymetrix bioscience, San Diego, 

CA) as a positive control. All stimulations were performed overnight at 37°C. Plates were 

then washed with PBS containing 0.1% Tween (PBST) then incubated with secondary 

antibodies (mAb R4–6A2 Biotin IFN-γ at 1μg/ml or mAb BVD6–24G2-Biotin IL-4 at 2 

μg/ml) (Mabtech, Sweden) for 1.5 hours at room temperature. Plates were then washed and 

incubated with Alkaline Phosphataseconjugate streptavidin (Jackson Immuno Research Lab, 

West Grove, PA) (1:1000) for 30 minutes. Plates were washed and developed with Vector 

Blue Substrate Kit (Vector Lab, Burlingame, CA) until spots are clearly visible. Plates were 

read on an ImmunoSpot CTL Reader instrument and using the ImmunoSpot software (CTL 

Worldwide, Shaker Heights, OH) where the spots were quantitated for each well and were 

put through a quality control check, data analyzed and graphed using GraphPad Prism.

Listeria Murine Infection Model

WT mice were immunized as described above and infected with recombinant Listeria 
monocytogenes expressing OVA with resistance to erythromycin (rLmOVA) via retroorbital 

injection two weeks after the 3rd immunization. rLmOVA was a generous gift from Hao 

Shen (University of Pennsylvania) (31). rLmOVA was cultured overnight in Brain Heart 
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Infusion (BHI) broth with erythromycin at 50μg/ml. Subculture was performed and 

infectious doses were prepared during bacterial log phase and used to infect mice. Colony 

forming units (CFU) of each injectable dose was determined by plating injectable doses of 

bacteria before and after injection in mice to get an accurate CFU per mouse. Mice received 

either a low dose of 1–5 ×105 bacteria per mouse for bacterial burden experiments or a high 

dose of 1×106 bacteria per mouse for survival experiments. Day 3 after a low dose infection, 

mice were euthanized, organs perfused with PBS and spleen and liver harvested. Single cell 

suspension was prepared from the spleen and the total number of cells was quantitated using 

a hemocytometer. The weight of each liver was recorded. The organs were permeabilized 

using 0.5% TritonX-100 (MP Biomedicals, France) and diluted for plating on BHI Agar 

(prepared in house with Erythromycin). Un-diluted, 1:10, 1:1 000, 1:10 000 and 1:100 000 

diluted samples were plated in triplicate and incubated overnight at 37°C. CFU were 

calculated and normalized to the weight of the livers or number of cells in spleen. Mice 

receiving a high dose infection were monitored multiple times through the 24-hour period 

until they succumbed to the infection.

Statistics

Statistics were calculated using with GraphPad Prism. When comparing more than two 

immunization groups at time, One Way ANOVA with Tukey test were used. For comparing 

OVA/PorB with OVA alone for bacterial burden, the non-parametric MannWhitney U test 

was used. The Mantel-Cox Test was used to compare the survival distributions of OVA/PorB 

and OVA alone immunization group.

Results

Neisserial PorB induces antigen specific Th1/Th2 type antibody response s and effector 
molecules important for cellular responses in vivo.

Mice were immunized three times at two-week intervals and sera were obtained either 4 

hours or 12 hours after the third immunization to measure chemokines/cytokines and two 

weeks after the third immunization to measure antigen specific antibody subclasses. 

Vaccines adjuvanted with PorB induced high level of OVA specific IgG1 (Th2 type antibody 

response) (Figure 1A) similar to responses seen with Alum. However, PorB adjuvant activity 

also induced high levels of Th1 type antigen specific antibodies, IgG2b, 2c and 3 (Figure 

1B-D).

Sera were also analyzed for IL-4, IL-5, IL-13, IFN-γ and TNF-α cytokines, which are 

known to be produced by Th1 and Th2 cells (32–38). Mice immunized with PBS (Control) 

had no detectable levels of IL-4, IL-5, IL-13, IFN-γ and TNF-α cytokines in the sera 4 

hours and 12 hours after immunization. Mice immunized with OVA alone had very low 

concentrations of IL-5 and IL-13 (Figure 2B & C) 4 hours after the 3rd immunization but 

higher levels of IL-5, IL-13 and very small amounts of TNF-α (Figure 2E) were seen 12 

hours after the third immunization. IL-4 and IFN-γ levels were below the detection limits at 

both time points (Figure 2A & D). In contrast, mice immunized with PorB admixed with 

OVA induced higher levels of these cytokines as compared to PBS or OVA alone-immunized 

mice; OVA/PorB induced very high amounts of IL-4, IL-5, IL-13 and TNF-α at the earliest 
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time point (4 hours) after the 3rd immunization as compared to mice immunized with OVA 

alone (Figure 2A-C & E). However, IFN-γ was below the detection limit at 4 hours after the 

3rd immunization but peaked at 12 hours after the 3rd immunization with OVA/PorB (Figure 

2D) and it was only induced when the vaccine contained the adjuvant. Th2 type cytokine 

IL-4 was noticeably lower at 12 hours compared to 4 hours after the 3rd immunization with 

OVA/PorB. There were small increases in the level of IL-5, IL-13 and TNF-α 12 hours after 

the 3rd immunization with PorB/OVA as compared to OVA alone (76). These time points (4 

and 12 hours after the third immunization) were used based on observations from previous 

studies, as well as our own investigations, where it was demonstrated that serum T cell 

cytokines peak during these periods in mice upon immunization (28, 39).

MIG, MCP-1, IP-10, MIP-1α and KC were measured 4 hours after each immunization. 

These effector molecules are known to peak early after each immunization and have been 

shown to play important roles in generating cellular responses in vivo, including T cell 

responses (39). PorB/OVA immunization induced higher levels of MIG (CXCL9), MCP-1 

(CCL2), IP-10 (CXCL10), MIP-1α (CCL3) and KC (CXCL1) chemokines 4 hours after 

each of the three immunizations as compared to mice immunized with OVA alone or mock-

immunized with PBS (Figure 3A-E). MIG and MIP-1α were highly induced 4 hours after 

the 1st immunization with PorB/OVA, whereas levels were decreased after the 2nd and 3rd 

immunizations (Figure 3A & D). MCP-1 was detected at its highest level after the 2nd 

immunization with the adjuvanted vaccine (Figure 3B). IP-10 and KC levels varied subtly 

after each immunization, with KC being induced and remaining high (~500pg/ml) in 

comparison to all other chemokines after each of the three immunizations (Figure 3C & E). 

Vaccine formulations containing PorB also increased IL-2, 4 hours after the 2nd and 3rd 

immunizations; there were no detectable IL-2 after the 1st immunization (Figure 3F). 

Control mice immunized with PBS had no detectable levels of MIG, MCP-1, IP-10, 

MIP-1α, KC and IL-2 in the sera (76). These chemokines levels were very low or 

undetectable for most analytes 12 hours after immunization.

Vaccine formulated with PorB induces robust antigen specific CD4 and CD8 T cell 
responses in vivo.

PorB has been shown to increase antigen uptake and recruitment of DC to draining lymph 

nodes (40). PorB’s ability to induce T cell modulating cytokines and chemokines indicates 

that its adjuvant activity will help initiate and improve antigen specific T cell responses. 

Antigen specific T cell responses were examined to corroborate this hypothesis in mice 

immunized with PorB/OVA, OVA alone, or PBS, (as control), twice, at two-week intervals. 

Eleven days after the 2nd immunization the number of splenic antigen specific CD4 T cells 

producing either IFN-γ or IL-4 were quantified. Single cell suspensions were prepared from 

the spleen and stimulated overnight with a CD4 OVA specific peptide, scrambled OVA 

peptide or anti-CD3/CD28 as a positive control, in an ELISPOT assay. The MHC Class II 

restricted OVA peptides were used to determine the relative number of OVA specific CD4 T 

cells induced by immunization with PorB. This assay is highly sensitive, specific and 

reproducible, allowing not just the quantitation but also the secretory activity of the cells 

being screened (41). Vaccine formulated with PorB induced a robust antigen specific CD4 T 

cells to OVA (Figure 4A,B). The number of OVA specific CD4 T cells was significantly 
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greater as compared to mice immunized with OVA alone (Figure 4B). CD4 T cells from 

PorB/OVA immunized mice produced significantly more IFN-γ (OVA Th1 Cells) upon 

stimulation with OVA specific CD4 peptide as compared to mice that received OVA alone. 

The use of scrambled peptide as a control did not induce any T cell responses, highlighting 

the specificity of the measured responses while the positive control. The use of PorB also 

induced significantly more OVA specific CD4 T cells producing IL-4 (OVA Th2 Cells) 

compared to mice immunized with OVA alone (Figure 4C-D). OVA Th2 cells were at a 

lower frequency as compared to OVA Th1 cells (76).

We examined PorB’s ability to induce antigen specific CD8 T cell response in vivo, similar 

to analysis of antigen specific CD4 T cells described above. We used an OVA specific CD8 

MHC Class I restricted peptide to determine the level of the antigen specific CD8 T cells 

induced by OVA/PorB immunization. The vaccine formulated with adjuvant PorB induced a 

significantly larger number of antigen specific IFN-γ producing CD8 T cells as compared to 

mice immunized with OVA alone (Figure 5A-B). Minimal production of IFN-γ was seen 

when the OVA CD8 scrambled peptide was used. This demonstrates that the IFN-γ positive 

spots from the ex vivo assay produced by the cells from immunized mice after stimulation 

with OVA specific CD8 epitopes were being produced by OVA specific CD8 T cells induced 

by the vaccine.

Vaccines prepared with PorB admixed with OVA induced a small but significant population 

of OVA specific CD8 T cells producing IL-4 (Tc2 cells) in vivo 11 days after the 2nd 

immunization compared to mice vaccinated with OVA alone (Figure 5C-D). Nonspecific 

signal was ruled out using a scrambled OVA peptide (as a negative control) to stimulate the 

cells (Figure 5D) as well as cells stimulated without any peptide.

OVA CD8 T cells secreting IFN-γ (OVA Tc1 cells) (Figure 5B) were the largest population, 

quantified per 106 splenocytes, when compared to the OVA Tc2 (Figure 5D), OVA Th1 

(Figure 4B) and OVA Th2 cells (Figure 4D).

PorB as an adjuvant enhances protection of mice towards Listeria monocytogenes 
infection.

Adjuvant PorB induced a robust antigen specific CD8 T cell responses as demonstrated 

above. The functionality of these OVA specific CD8 T cells induced by PorB and their 

ability to mitigate a bacterial infection in vivo was investigated. Mice were immunized 

similarly to above experiments and were challenged with either low doses (~1–5 ×105 

bacteria per mouse) or a high dose (~1×106 bacteria per mouse) of rLmOVA two weeks after 

the third immunization in order to assess bacterial burden and survival respectively. Upon 

infection with rLmOVA, mice vaccinated with PorB/OVA had less CFUs in the liver or 

spleen as compared to OVA-immunized mice. When quantitated, it was clear that the PorB 

adjuvanted vaccine caused a non-significant decrease in the bacterial load from the liver 

(Figure 6A) and a significant decrease in the bacterial load from the spleen (Figure 6B), 

three days after infection with 5×105 rLmOVA. Mice immunized with OVA alone (or PBS) 

had very high numbers of bacteria in both the liver and spleen. Similar results were seen 

when mice were infected with 1×105 CFU of rLmOVA per mouse (Figures 6C and D)
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Listeria monocytogenes infection in mice is known to cause a decrease in the number of 

cells in the spleen (42). Two weeks after the 3rd immunization the change in the total 

number of cells in the spleen of non-infected mice remained unchanged (Figure 7). 

However, when these mice were challenged with low dose CFUs of rLmOVA two weeks 

after the 3rd immunization, there was a significant decrease in the number of cells in the 

spleen of mice immunized with OVA alone or PBS three days after the infection (Figure 7). 

However, mice immunized with PorB/OVA did not have a decrease in the number cells in 

the spleen, as compared to infected OVA or PBS immunized mice or uninfected OVA/PorB 

immunized mice. (Figure 7).

Next, survival of immunized mice infected with a high dose of rLmOVA was examined. All 

of these mice perished within three days after the high dose infection, many within the first 

24 hours (Figure 8A). Some of the mice immunized with OVA alone and challenged with a 

high dose of rLmOVA succumbed to the infection after 24 hours. About 60% of these mice 

died within three days of the infection. However, mice immunized PorB/OVA survived 

longer, the first mouse died 4 days after infection and approximately 70% of the mice were 

still alive five days after the high dose infection. The last mouse died 7 days post infection. 

Survival of mice immunized with vaccine formulated with PorB were significantly greater as 

compared to mice immunized with OVA alone as determine by Mantel-Cox test with 95% 

confidence interval (Figure 8A).

Discussion

Adjuvants enhance vaccines to induce protective immune responses, mainly through the 

induction of pathogen specific antibody responses (43). Many of the current adjuvanted 

vaccines contain Alum, which is very good at inducing a Th2 associated IgG1 type response 

(44). However, many diseases such as TB, HIV, malaria and cancer require a broader 

antibody response (Th1 type antibody responses) and, likely, a concomitant CD8 T cell 

responses (43) emphasizing the unmet clinical need for new novel adjuvants. Previous 

studies have demonstrated the potential for PAMPs to be used as adjuvants in vaccine 

formulation. In our previous work, we have shown that the TLR2-ligand Neisseria 
meningitidis PorB has potent adjuvant abilities, increasing the antibody response to a wide 

range of antigens, including polysaccharides, proteins, and LPS (22–24). This adjuvant 

activity was dependent on PorB’s signaling through TLR2/1 heterodimers (27), and MyD88 

adaptor protein (45, 46). In addition, PorB has been shown to enhance antigen uptake in vivo 
and induce robust germinal center formation and diverse types of antigen specific antibody 

subclasses (25, 40).

We demonstrated that the TLR2-ligand based adjuvant PorB induced a number of T cell 

modulating cytokines including high levels of Th1 type (IFN-γ), Th2 type (IL-4, IL-5 and 

IL-13) and TNF-α T cell cytokines 4 or 12 hours after the 3rd immunization. The induction 

of Th2 and Th1 type cytokines are consistent with the induction by PorB antigen specific 

IgG1 (Th2 type) and IgG2b, 2c and 3 (Th1 type) responses. Interestingly, CD8 T cells have 

been shown to produce TNF-α within 5 hours of TCR engagement and this promotes DC 

maturation, CD8 T cell differentiation and proliferation (35–37, 47) and mediate the 
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clearance of this infection in vivo (48, 49) which in our study may be promoted by the use of 

PorB as an adjuvant.

In addition, vaccines formulated with PorB induced an increase in effector molecules (MIG, 

MCP-1, IP-10, MIP-1α, KC and IL-2) that are also vital for the induction of T cell 

responses. PorB increases the level of these chemokines early (4 hours) after each of the 

three immunizations. MIG and IP-10 chemokines have been shown to act directly on CD8 T 

cells, which express high level of CXCR3, the receptor for these chemokines (50). Other 

studies have shown that cells producing IFN-γ, including CD4 T cells, have an important 

role in controlling the level of MIG and IP-10 and subsequent in vivo recruitment of CD8 T 

cells (39, 51). IP-10 is also known to promote the retention of T cells in the draining lymph 

nodes to enhance APC-T cell interactions and clonal expansion (52). Induction of these 

chemokines in vivo suggest that they may be playing a role in generating PorB’s vaccine-

induced T cell responses. MIP-1α, has been shown to be able to increase the number of 

antigen specific CD8 T cells (53) and to induce macrophages and NK cell migration, which 

can lead to enhanced T cell-DC interactions (54). MIP-1α signaling on CD8 T cells induces 

these cells to migrate towards CD4/APC clusters, enhancing contact of CD8 T cells with 

CD4 T helper cells-licensed DCs (55) which could promote the increase in number and 

quality of memory CD8 T cells (56). Vaccines formulated with PorB induced MIP-1α after 

each of the three immunizations, further fueling our interest in characterizing these antigen 

specific T cells induced by PorB. Other investigators have shown that biglycan ligands 

(TLR2 and 4 agonists) can increase the level of KC (CXCL1), which in turns increase cells 

recruitment including T cells to the site of inflammation in mice (57). MCP-1 (CCL2) 

signals through CCR2 which is expressed on monocyte, macrophages and Th1 type cells, 

enhancing Th1 type adaptive immunity (54). PorB induction of these chemokines likely 

ensures recruitment of specific cells enhancing cross-presentation and APC-T cell intera 

ctions. PorB’s ability to induce these specific chemokines and T cell cytokines in vivo 
suggest that it’s adjuvant activity also involves direct enhancement of T cell responses, in 

addition to increased germinal center formation (46).

We further identified the source of some of these Th2 and Th1 types cytokines. PorB 

induced significantly more OVA specific CD4 T cells producing IL4 or IFN-γ as compared 

to OVA alone. Previous studies showed that the presence of CD4 T cells (Th1 type cells) 

producing IFN-γ enhance the differentiation of CD8 T cells into Tc1 type cells (58). This 

type of cellular response is crucial to prevent and delay the progression of infectious 

diseases (especially intracellular pathogens) as well as other pathologies, including cancer 

(59). The increase in the level of IFN-γ, IL-2 and the various chemokines upon 

immunization with PorB, likely generated an environment conducive for the robust 

induction of OVA specific CD8 T cells producing IFN-γ by this adjuvant. We investigated 

all the different types of T cell responses induced by PorB and demonstrated that PorB 

induced antigen specific CD8 T cells producing IL-4 (Tc2 type response).

The number of OVA specific Tc2 cells (IL-4 producing cells) induced by PorB/OVA was 

much smaller as compared to the other type of T cell responses measured. However, it was 

still significantly higher than mock-immunized or OVA-alone immunized mice. These types 

of antigen specific Tc2 cells have been shown to be able to provide B cell help (60). In mice, 
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they are able to be cytotoxic via the perforin pathway, however they are less cytotoxic than 

Tc1 type cells (58, 61, 62). In humans, Tc2 type cells have been shown to counteract the 

overproduction of pro-inflammatory cytokines in old age and are important for induction of 

humoral response upon immunization (63). Older adults who fail to mount a protective 

humoral response upon immunization lack these Tc2 cell subset (63). The elderly population 

has an increased risk in acquiring infections with an increase in severity, which has been 

shown to be due to immune senescence (63, 64). Using an adjuvant like PorB in vaccine 

formulations could enhance the vaccine-induced immune responses in the elderly, including 

an increase in the number of antigen specific Tc2 cells producing IL-4, which will in turn 

aid in inducing a robust humoral response. These types of responses induced by PorB-

adjuvanted vaccine would be very beneficial to the growing aging population in today’s 

world.

Previous studies demonstrated that the induction of CD8 T cells upon immunization or 

infection might be important for the control and clearance of various pathogens such as HIV, 

malaria, or tuberculosis (1). A vaccine that induces antigen specific CD8 T cells could aid in 

inducing protective immunity against intracellular pathogens. Here, we demonstrated that 

our adjuvant PorB induced robust antigen specific CD8 T cell responses. We showed that 

these OVA specific CD8 T cells are not just increased in numbers upon immunization with 

vaccine formulated with PorB but they are highly functional producing IFN-γ in an ex vivo 
ELISPOT assay upon engagement of its TCR with OVA CD8 (MHC Class I restricted) 

peptide presented by antigen presenting cells.

Using a bacterial infection model (recombinant Listeria monocytogenes expressing OVA, 

rLmOVA), we demonstrated that the antigen specific CD8 T cells induced by vaccine 

formulated with PorB are functional in vivo as well. Infection with the rLmOVA is a well-

established model to study CD8 T cell responses in mice because of the bacterium’s unique 

in vivo life cycle (65). Pathogen specific (in this case, OVA, since these bacteria have been 

engineered to express OVA) CD8 T cell responses (and not CD4 T cells or antibody 

responses) have been shown to be required for clearance of this bacterium (31, 42, 65–68). 

Once inside the cell, rLmOVA replicates in the cytosol and spreads from cell to cell via actin 

polymerization, without having to expose itself to the outside of the cell (69, 70). OVA 

expression by the bacteria is under the control of the listeriolysin promoter in the bacteria 

and bacterial proteins from the cytosol are presented on MHC I & II (67). Upon infection 

with rLmOVA, it is known that the infection can cause lymphopenia by three days post 

infection (42) due to pore-forming toxin listeriolysin O production and induction of 

apoptosis (71, 72). In this infection model, we observed a decrease in the number of cells 

from the spleen of mock-immunized or OVAalone immunized mice but not in PorB/OVA 

immunized mice, likely due to the effect of antigen specific CD8 T cells controlling the 

rLmOVA infection, decreasing apoptosis of the splenocytes. Most importantly, the induction 

of antigen (OVA) specific CD8 T cells in vivo induced by PorB/OVA immunization was 

associated a decrease in bacterial load from the spleen and liver in mice infected with a low 

dose of rLmOVA and increased survival of mice infected with a high dose of rLmOVA and 

is the likely protective mechanism of this survival.
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In summary, TLR2 ligand based adjuvant Neisseria meningitidis PorB has broad adjuvant 

activity with a wide range of antigens (22–24), can induce strong humoral responses (30) 

and robust germinal center formation and activates B cells, dendritic cells and macrophages, 

in vivo, for its adjuvant activity (25). In this study, we now demonstrate that PorB can induce 

a robust and diverse T cell response, that promotes antibody formation as well as strong 

antigen specific CD8 cytotoxic T cell response that can increase survival of mice infected 

with Listeria, which depends on antigen specific CD8 T cells. This data supports the premise 

that PorB will be useful in future vaccine development alone or in combination with other 

adjuvants to induce responses that’s needed for protection.
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Figure 1. Adjuvant PorB induces antigen specific antibody subclasses associated with Th2/Th1 
type responses.
(A) OVA-IgG1 (Th2 type associated responses) and (BD) OVA-IgG2b, OVA-IgG2c and 

OVA-IgG3 respectively (Th1 type associated responses) endpoint titers were measured by 

ELISA from sera of WT immunized three times at two-week intervals. The results shown 

are from samples collected two weeks after the third immunization and representative of two 

experiments with a total N = 8 mice per immunization group represented as standard error of 

the mean. One-way ANOVA with Tukey test were used (ns P>0.05, *P<0.05, **P<0.01, 

***P<0.001 and ****P<0.0001). Symbol (–) indicates that the antibody levels were below 

detectable level.
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Figure 2. Adjuvant PorB induces cytokines produced by T cells in vivo.
(A-C) IL-4, IL-5, and IL-13 (Th2 type cytokines), (D) IFN-γ (Th1 type cytokine) and (E) 
TNF-α cytokine levels in pooled sera from WT mice immunized three times at two-week 

intervals. Sera were collected 4 hours (black border) or 12 hours (grey border) after the 3rd 

immunization with PBS, OVA or OVA/PorB. These cytokines were measured by Luminex 

magnetic bead-based multiplex assay. The results shown are representative of two 

experiments with a total of 8 mice per immunization group. Sera from 8 mice were pooled 

and plated in duplicate. Symbol (–) indicates that effector molecules levels were below 

detectable level.
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Figure 3. TLR2 ligand-based adjuvant PorB induced effector molecules important for cellular 
responses in vivo.
(A-E) MIG, MCP-1, IP-10, MIP-1α, and KC chemokines and (F) IL-2 cytokine level in 

pooled sera from WT mice immunized three times at two weeks interval and sera collected 4 

hours after each immunization with PBS, OVA or OVA/PorB measured by Luminex 

magnetic bead-based multiplex assay. X-axis labeling of 1st, 2nd and 3rd represent sera 

collected 4 hours after each of the three different immunizations. The results shown are 

representative of two experiments with a total of 8 mice per immunization group. Sera from 
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8 mice were pooled and plated in duplicate. Symbol (–) indicates that effector molecules 

levels were below detectable level.
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Figure 4. Vaccine formulated with adjuvant PorB induced robust antigen specific CD4 T cell 
responses in vivo.
WT mice were immunized two times at two-week intervals. Eleven days after the 2nd 

immunization single cell suspensions were prepared from the spleen and stimulated 

overnight with an OVA CD4 peptide, OVA scrambled peptide or anti-CD3/CD28 (αCD3/

CD28) as a positive control. An ELISPOT assay, as described in Methods above, was used to 

quantitate the number of antigen specific CD4 T cells producing either A) IFN-γ positive 

spots and B) quantitation of CD4 T cells producing IFN-γ or C) IL-4 positive spots and D) 
quantitation of CD4 T cells producing IL-4 from the spleens of immunized mice. The results 

shown are representative of two experiments with a total N = 5 mice per immunization 

group represented as standard error of the mean. CD8 responses in the same mice were 

analyzed in Figure 5. One-way ANOVA with Tukey test were used (ns P>0.05, *P<0.05, 

**P<0.01, ***P<0.001 and ****P<0.0001).
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Figure 5. Vaccine formulated with adjuvant PorB induced a robust antigen specific CD8 T cell 
response in vivo.
WT mice were immunized two times at two weeks interval and 11 days after the 2nd 

immunization single cell suspensions were prepared from the spleen and stimulated 

overnight with an OVA CD8 peptide, OVA scrambled peptide or anti-CD3/CD28 as positive 

control. An ELISPOT assay, as described in Methods, was used to quantitate the number of 

antigen specific CD4 T cells producing either A) IFN-γ positive spots and B) quantitation of 

CD8 T cells producing IFN-γ or C) IL-4+ spots and D) quantitation of CD8 T cells 

producing IL-4 from the spleens of immunized mice. The results shown are representative of 

two experiments with a total N = 5 mice per immunization group represented as standard 

error of the mean. CD4 responses in the same mice were analyzed in Figure 4. One-way 

ANOVA with Tukey test were used (ns P>0.05, *P<0.05, **P<0.01, ***P<0.001 and 

****P<0.0001).
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Figure 6. TLR2-ligand based adjuvant PorB decreases bacterial burden in mice infected with 
Listeria monocytogenes.
WT mice were immunized three times at two weeks interval with PBS, OVA or OVA/PorB. 

Two weeks after the last immunization, the mice were challenged with 5.4×105 CFU of 

rLMOVA per mouse and bacterial burden in A) Liver and B) Spleen were measured 3 days 

after the infection. Bacterial burden from mice challenged with 1×105 CFU of rLMOVA per 

mouse were measured in the C) Liver and D) Spleen. The results shown are representative of 

two experiments with an N = 4 mice per immunization group per experiment represented as 

standard error of the mean. Total N = 8 mice. Mann Whitney U test were used (ns P>0.05 

and *P<0.05) to compare OVA/PorB with OVA alone.
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Figure 7. Infection with Listeria monocytogenes did not affect the total number of cells in the 
spleen of mice immunized with PorB adjuvanted vaccine.
WT mice were immunized three times at two weeks interval with PBS, OVA or OVA/PorB. 

Two weeks after the last immunization, the mice were challenged with 1×105 CFU of 

rLMOVA per mouse. Cell numbers in spleen were quantitated 3 days after the infection 

represented as standard error of the mean. The results shown are representative of two 

experiments with an N = 4 to 6 mice per immunization group. One-way ANOVA with Tukey 

test were used (ns P>0.05, *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001).
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Figure 8. Vaccine formulation containing PorB increases mice survival upon a high dose 
infection with Listeria monocytogenes.
WT mice were immunized three times at two weeks interval with PBS, OVA or OVA/PorB. 

Two weeks after the last immunization, the mice were challenged with high dose (1×106 

CFU) of rLMOVA per mouse. A) Survival of infected mice was monitored multiple times a 

day until the mice succumbed to the infection. The results shown are representative of two 

experiments with a total N = 8 mice per immunization group. The Mantel-Cox Test was used 

to compare the survival distributions of OVA/PorB and OVA alone immunization group (*** 

P = 0.0001).
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