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Abstract

Background: Elevated body mass index (BMI) is associated with increased risk of postmenopausal breast cancer. The
underlying mechanisms, however, remain elusive.
Methods: In a nested case–control study of 621 postmenopausal breast cancer case participants and 621 matched control par-
ticipants, we measured 617 metabolites in prediagnostic serum. We calculated partial Pearson correlations between metabo-
lites and BMI, and then evaluated BMI-associated metabolites (Bonferroni-corrected a level for 617 statistical tests ¼ P <
8.10�10-5) in relation to invasive breast cancer. Odds ratios (ORs) of breast cancer comparing the 90th vs 10th percentile
(modeled on a continuous basis) were estimated using conditional logistic regression while controlling for breast cancer risk
factors, including BMI. Metabolites with the lowest P values (false discovery rate < 0.2) were mutually adjusted for one an-
other to determine those independently associated with breast cancer risk.
Results: Of 67 BMI-associated metabolites, two were independently associated with invasive breast cancer risk: 16a-hydroxy-
DHEA-3-sulfate (OR¼1.65, 95% confidence interval [CI] ¼ 1.22 to 2.22) and 3-methylglutarylcarnitine (OR¼1.67, 95% CI¼1.21
to 2.30). Four metabolites were independently associated with estrogen receptor–positive (ERþ) breast cancer risk: 16a-
hydroxy-DHEA-3-sulfate (OR¼1.84, 95% CI¼1.27 to 2.67), 3-methylglutarylcarnitine (OR¼1.91, 95% CI¼1.23 to 2.96), allo-
isoleucine (OR¼1.76, 95% CI¼1.23 to 2.51), and 2-methylbutyrylcarnitine (OR¼1.89, 95% CI¼1.22 to 2.91). In a model without
metabolites, each 5 kg/m2 increase in BMI was associated with a 14% higher risk of breast cancer (OR¼1.14, 95% CI¼1.01 to
1.28), but adding 16a-hydroxy-DHEA-3-sulfate and 3-methylglutarylcarnitine weakened this association (OR¼1.06, 95%
CI¼0.93 to 1.20), with the logOR attenuating by 57.6% (95% CI¼21.8% to 100.0þ%).
Conclusion: These four metabolites may signal metabolic pathways that contribute to breast carcinogenesis and that
underlie the association of BMI with increased postmenopausal breast cancer risk. These findings warrant further replication
efforts.

Obesity affects 640 million adults worldwide (1), increases the
risk of 13 or more types of cancer (2), and is estimated to con-
tribute to 9% of cancers in North America, Europe, and the
Middle East (3). The biological basis by which obesity increases
cancer risk, however, remains incompletely understood.
Decades of research on steroid hormones, insulin resistance,
and inflammation indicate that these factors explain some, but
not all, of obesity’s effect on cancer risk (4,5). Other potentially

relevant metabolic factors—such as dysregulated metabolism
of carbohydrates, amino acids, and lipids—have received less
attention, though intriguing evidence indicates that such dysre-
gulations are important features of obesity (6–11) and possibly
cancer (12,13). In recent years, technological advances in metab-
olomics have made it possible to quantify hundreds to thou-
sands of metabolites in blood simultaneously, enabling more
thorough explorations of metabolism.
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In the current study, we applied metabolomics to prediag-
nostic serum from postmenopausal women to identify BMI-
associated metabolites that were also associated with breast
cancer risk. We proceeded as follows: 1) we identified metabo-
lites associated with BMI; 2) we identified which of these were
also associated with breast cancer risk; 3) of these, we further
identified which were most statistically significantly and inde-
pendently associated with risk; 4) we quantified the degree to
which metabolites mediated the BMI—breast cancer associa-
tion; and finally, 5) we explored whether associations were dis-
tinct from those of biomarkers previously postulated to explain
the BMI–breast cancer association. Our aim is to identify metab-
olites that explain the association of BMI with breast cancer
risk. To our knowledge, no prospective studies have used
metabolomics to evaluate mechanisms that underlie obesity
and breast cancer associations.

Methods

Study Population

The Prostate, Lung, Colorectal, and Ovarian Cancer Screening
Trial (PLCO) is a population-based multicenter randomized
screening trial of people age 55 to 74 years at baseline with no
history of prostate, lung, colorectal, or ovarian cancer
(NCT00339495) (14,15). This study was approved by institutional
review boards at the US National Cancer Institute and the 10
centers.

Our nested case–control study included 621 incident inva-
sive primary breast cancer cases (ICD-9 174.0-174.9) who were
not using hormone therapy at PLCO year 1 or who had an estro-
gen receptor (ER)– and/or progesterone receptor (PR)–negative
status (Supplementary Methods, available online). Using inci-
dence density sampling, we matched 621 controls based on age
at random assignment to the study arm (þ/-2 years), date of
blood collection (þ/-3 months), and menopausal hormone ther-
apy use (current, former, never) at year 1. All controls were alive
and had no history of cancer as of the date of diagnosis for the
matched case.

Body Weight and Other Characteristics

At PLCO baseline, participants completed a self-administered
questionnaire that inquired about current height and weight.
BMI was calculated as weight in kilograms divided by height in
meters squared. The questionnaire also ascertained family his-
tory of breast cancer, demographics, and other health-related
factors (eg, smoking status).

Metabolite Assessment, Normalization, and Reliability

Serum samples were collected at the first follow-up visit, ap-
proximately one year postbaseline, and predated breast cancer
diagnosis by a median 6.7 years. Metabolon Inc. (16) quantified
levels of 1057 serum metabolites, of which 617 were identified
and met our threshold for the percent of values above the limit
of detection (Supplementary Methods, available online). Over
the 617 metabolites, the median proportion of below-limit-of-
detection values was 0% (Supplementary Table 1, available
online). Metabolite peak intensities were run-day-normalized
and log-transformed for analysis. Metabolite measurements were
highly reliable in masked replicates. Over the 617 metabolites,

the median intraclass correlation coefficient (ICC) was 0.94
(Supplementary Methods), similar to prior studies (17).

Statistical Analysis

We estimated correlations between the 617 identified metabo-
lites and BMI using partial Pearson correlation, adjusted for age
at blood draw, case–control status, and smoking history.
Heterogeneity of associations by case status (multiplicative
scale) was evaluated using the Wald test. We carried forward to
breast cancer analyses the metabolites with P values of 8.10�10-5

or less (Bonferroni-corrected a level for 617 statistical tests) and
correlations with a BMI of at least moderate magnitude (absolute
value of r � 0.15).

For BMI-associated metabolites, we estimated odds ratios
(ORs) and 95% confidence intervals (CIs) of breast cancer risk us-
ing conditional logistic regression. Odds ratios represent risk at
the 90th percentile as compared with the 10th percentile of log
metabolite intensity (OR¼ eb(X90-X10) where b is the coefficient
for the metabolite modeled continuously and X90 and X10 are
metabolite values at the 90th and 10th percentiles).
Associations were evaluated separately for ERþ and ER- can-
cers, as BMI associations have varied by ER subtype (18,19). We
did not evaluate associations by PR status.

Multivariable models included well-established breast can-
cer risk factors, demographic factors, history of diabetes, weekly
hours of vigorous physical activity, and BMI. We adjusted for
BMI because our aim was to identify mechanistic mediators,
which, by definition, requires metabolites to be associated with
breast cancer even after adjusting for BMI (20). We set a false
discovery rate (21,22) of less than 0.2 as the threshold for statis-
tical significance, calculated separately for overall and ERþ
breast cancers.

To determine the BMI-associated metabolites that were in-
dependently related to breast cancer risk, we used forward se-
lection. That is, we modeled each BMI-associated metabolite in
relation to breast cancer, retained the metabolite with the low-
est P value in the model, modeled the remaining metabolites,
again retained the one with the lowest P value, and repeated
until reaching the false discovery threshold.

To assess mediation, we decomposed the “total effect” of BMI
into an “indirect effect” (ie, through metabolites) and a “direct
effect” (ie, through other mechanisms) (20). We report the total
effect and direct effect as the estimated odds ratios for BMI in
breast cancer models, respectively, without and with metabo-
lites included as covariates. Under standard assumptions (20),
we report the indirect effect as the ORtotal effect/ORdirect effect.
Attenuation was defined as [logORtotal effect-logORdirect effect]/
logORtotal effect. The 95% confidence intervals for the indirect effect
and attenuation were estimated by bootstrap. The association of
BMI with breast cancer risk was confirmed to be approximately
linear using cubic splines and likelihood ratio tests.

Finally, we explored whether the metabolite–breast cancer
associations were likely to be distinct from those of other bio-
markers previously postulated to explain the BMI–breast cancer
association. We adjusted metabolite–breast cancer associations
for levels of select steroid hormone and insulin resistance–
related metabolites from the metabolomics panel to determine
if associations were independent. We also evaluated correla-
tions of select metabolites with circulating estradiol from base-
line (one year prior to the serum used in the current analysis),
previously measured in a subset of 260 participants (245 cases,
15 controls) (23). In postmenopausal women, circulating
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estradiol is relatively stable over several years (five-year ICC ¼
0.73) (24).

All statistical tests were two-sided. Analyses were done in
SAS (v. 9.3) and R (v. 3.1.2).

Results

Population Characteristics

Women were, on average, 64 years of age. In line with past
studies, breast cancer risk factors—early age at menarche, late
age at first live birth/parity, late age at menopause, a history of
benign breast disease, family history of breast cancer, low
physical activity, and a high BMI—were generally more preva-
lent among cases than controls (Supplementary Table 2,
available online).

BMI and Metabolite Correlations

Sixty-seven of the 617 metabolites were statistically signifi-
cantly and at least moderately associated with BMI (Bonferroni
P� 8.10�10-5, absolute r � 0.15), predominantly comprising
amino acids (n ¼ 19) and lipids (n ¼ 19) (Figure 1). Pearson corre-
lations were positive for 46 metabolites, inverse for 21, and
ranged from –0.26 (oxalate) to 0.35 (mannose) (Table 1). There
was no statistically significant heterogeneity of BMI-metabolite
associations by case status (a ¼ 0.05/617 threshold).

BMI-Associated Metabolites and Breast Cancer Risk

Of 67 BMI-associated metabolites, seven were statistically sig-
nificantly (false discovery rate < 0.2) associated with breast can-
cer risk (Table 2), and 23 were statistically significantly
associated with ERþ breast cancer risk (Table 3). All associations
were positive in direction, except for an inverse association
with ERþ disease for alpha tocopherol. Breast cancer odds ratios
comparing high vs low metabolite levels (90th vs 10th percen-
tile) ranged from 1.45 to 1.84, while ERþ breast cancer odds
ratios for the same contrast ranged from 1.50 to 2.49 (multivari-
able models that included BMI). The associations were slightly
stronger in the models without BMI than in models with BMI
(ORs shifted 0.01–0.08 away from the null) and were consistent
with linearity in cubic spline models (all Pnonlinearity > .05). There
was no statistically significant (a ¼ 0.05/67 threshold) heteroge-
neity when examining cases with shorter vs longer times to di-
agnosis (� vs> 6.7 years). Results for metabolites that were not
statistically significantly associated with breast cancer or ERþ
breast cancer risk can be found in Supplementary Tables 3
and 4 (available online).

We also examined associations with ER- breast cancers, but
had no statistically significant findings (data not shown). Our
top result was for gamma-glutamyltyrosine, which had an odds
ratio of 0.32 (95% CI¼ 0.12 to 0.81) and a P value of .02 that was
not statistically significant after adjusting for multiple testing.

To determine whether our primary findings were robust
to alternate corrections for multiple testing, we recalculated
false discovery rates as if all 617 metabolites had been analyzed.

Figure 1. Manhattan plot displaying the P values for BMI-metabolite Pearson correlations according to metabolite chemical class. The total number of metabolites and

the number with statistically significant associations (Bonferroni P < 8.10� 10-5 and absolute correlations of r � 0.15) are presented by chemical class in the key.

Correlation coefficients were adjusted for age at blood draw (years), case–control status (no, yes), and smoking history (never, former, current).
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Four of seven metabolites associated with breast cancer risk
retained statistical significance, as did 20 of 23 metabolites as-
sociated with ERþ breast cancer risk (Supplementary Tables 5
and 6, available online).

Independent Associations With Breast Cancer Risk

Because breast cancer–associated metabolites were intercorre-
lated (Supplementary Figure 1, available online), with potentially
redundant information, we used forward selection to identify a
parsimonious set of metabolites independently associated with
risk. Two metabolites were independently associated with over-
all breast cancer risk (Table 4): 16a-hydroxy-DHEA-3-sulfate
(OR¼ 1.65, 95% CI¼ 1.22 to 2.22) and 3-methylglutarylcarnitine
(OR¼ 1.67, 95% CI¼ 1.21 to 2.30). Four metabolites were inde-
pendently associated with estrogen receptor–positive (ERþ)
breast cancer risk: 16a-hydroxy-DHEA-3-sulfate (OR¼ 1.84,
95% CI¼ 1.27 to 2.67), 3-methylglutarylcarnitine (OR¼ 1.91, 95%
CI¼ 1.23 to 2.96), allo-isoleucine (OR¼ 1.76, 95% CI¼ 1.23 to
2.51), and 2-methylbutyrylcarnitine (OR¼ 1.89, 95% CI¼ 1.22
to 2.91).

Mediation of Obesity and Breast Cancer Associations

In a model without metabolites and that excluded potential
mediators of BMI-cancer associations (eg, diabetes), the odds ra-
tio per 5 kg/m2 increase in BMI was 1.14 (95% CI¼ 1.01 to 1.28).
After adding 16a-hydroxy-DHEA-3-sulfate and 3-methylglutar-
ylcarnitine to the model, the odds ratio per 5 kg/m2 BMI dropped
to 1.06 (95% CI¼ 0.93 to 1.20). The effect of BMI was attenuated
by 57.6% (95% CI¼ 21.8% to 100.0þ%) in this model, which can
be attributed to BMI’s indirect effect as mediated by the two
metabolites (OR¼ 1.08, 95% CI¼ 1.05 to 1.16). Conversely, adding
BMI to a model with metabolites had little effect on metabolite–
breast cancer associations (Supplementary Table 7, available
online).

Table 1. Serum metabolites statistically significantly and at least
moderately associated with body mass index (P < 8.10� 10-5 and ab-
solute r � 0.15) among 1242 participants in a nested case–control
study within the PLCO cohort*

Metabolite r P

Amino acid
Glutamate 0.26 1.88�10-20

Asparagine –0.24 1.03�10-17

C-glycosyltryptophan 0.24 2.70�10-17

3-methylglutarylcarnitine-1 0.22 2.41�10-15

3-methyl-2-oxobutyrate 0.22 1.04�10-14

Isovalerylglycine –0.22 1.06�10-14

Kynurenine 0.20 9.38�10-13

N-acetylglycine –0.19 2.14�10-11

2-hydroxybutyrate 0.19 4.18�10-11

Allo-isoleucine 0.19 4.88�10-11

Valine 0.18 2.38�10-10

5-methylthioadenosine 0.18 3.29�10-10

N-acetylalanine 0.18 4.65�10-10

2-methylbutyrylcarnitine 0.17 7.12�10-10

Acisoga 0.17 1.43�10-09

Cystine 0.16 6.71�10-09

Isobutyrylglycine –0.16 1.30�10-08

N-delta-acetylornithine –0.16 3.85�10-08

Glycine –0.15 7.58�10-08

Carbohydrate
Mannose 0.35 1.44�10-36

Glucose 0.22 2.85�10-15

Glycerate –0.22 8.88�10-15

Pyruvate 0.20 4.44�10-12

Cofactors and vitamins
Gamma-tocopherol 0.29 4.50�10-25

Oxalate –0.26 1.36�10-20

Threonate –0.25 3.42�10-18

Quinolinate 0.23 2.43�10-16

Delta-tocopherol 0.18 1.58�10-10

Gamma-CEHC glucuronide 0.15 5.05�10-08

Alpha-tocopherol –0.15 1.13�10-07

Energy
Alpha-ketoglutarate 0.23 5.36�10-16

Lipid
Glycerol 0.28 8.37�10-23

Butyrylcarnitine 0.27 1.33�10-22

2-aminoheptanoate 0.25 9.71�10-19

Scyllo-inositol –0.24 1.25�10-17

Oleoyl sphingomyelin 0.22 2.48�10-14

Hexanoylcarnitine 0.21 5.57�10-14

Hydroxybutyrylcarnitine 0.20 5.26�10-13

Palmitoleoyl sphingomyelin 0.20 5.38�10-12

Propionylglycine –0.19 2.83�10-11

16a-hydroxy DHEA 3-sulfate 0.19 3.84�10-11

Phosphoethanolamine –0.18 2.80�10-10

1-linoleoylglycerophosphocholine –0.18 6.44�10-10

Lathosterol 0.18 7.06�10-10

1-linolenoylglycerophosphocholine –0.17 7.42�10-10

Malonylcarnitine 0.17 5.22�10-09

Palmitoyl-linoleoyl-glycerophosphoinositol 0.16 8.14�10-09

1-dihomo-linolenylglycerol 0.16 1.69�10-08

7-HOCA† 0.16 4.23�10-08

4-androsten-3beta,17beta-diol disulfate (2) 0.16 4.36�10-08

Nucleotide
N2,N2-dimethylguanosine 0.26 1.00�10-20

N6-carbamoylthreonyladenosine 0.26 1.05�10-19

Urate 0.24 6.71�10-18

(continued)

Table 1. (continued)

Metabolite r P

N1-methylguanosine 0.24 6.84�10-17

Pseudouridine 0.21 1.51�10-13

5,6-dihydrouracil 0.17 3.37�10-09

Peptide
Gamma-glutamylvaline 0.23 2.47�10-16

Gamma-glutamylisoleucine 0.19 1.58�10-11

Gamma-glutamylglutamine –0.19 6.37�10-11

Gamma-glutamylphenylalanine 0.17 1.75�10-09

Gamma-glutamyltyrosine 0.15 5.54�10-08

Xenobiotics
Methyl glucopyranoside –0.22 2.43�10-15

Propyl 4-hydroxybenzoate sulfate –0.19 7.59�10-12

Tartronate –0.18 2.51�10-10

Methyl-4-hydroxybenzoate sulfate –0.17 4.72�10-09

Catechol sulfate –0.16 1.60�10-08

Hydrochlorothiazide 0.16 3.05�10-08

*Metabolites were sorted by chemical class, then P values within chemical class.

Pearson correlation coefficients were adjusted for age at blood draw (years),

case–control status (no, yes), and smoking history (never, former, current). PLCO

¼ Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial.

†Full metabolite name is 7-alpha-hydroxy-3-oxo-4-cholestenoate.
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Table 2. Multivariable ORs and 95% CIs for postmenopausal invasive breast cancer when comparing the 90th with the 10th percentile levels of
BMI-associated metabolites*

Multivariable-adjusted† Multivariable-adjusted including BMI‡

Metabolite Chemical class OR (95% CI) P OR (95% CI) P Q§

16a-hydroxy DHEA 3-sulfate Lipid 1.82 (1.36 to 2.43) 5.75� 10-05 1.76 (1.31 to 2.37) 1.58� 10-04 0.01
3-methylglutarylcarnitine Amino acid 1.84 (1.34 to 2.52) 1.66� 10-04 1.80 (1.31 to 2.48) 2.89� 10-04 0.01
Hydroxybutyrylcarnitine Lipid 1.61 (1.19 to 2.18) .002 1.57 (1.16 to 2.14) .004 0.08
Allo-isoleucine Amino acid 1.52 (1.16 to 1.98) .002 1.47 (1.13 to 1.92) .005 0.08
2-methylbutyrylcarnitine Amino acid 1.53 (1.13 to 2.08) .006 1.47 (1.08 to 2.01) .01 0.19
3-methyl-2-oxobutyrate Amino acid 1.57 (1.13 to 2.17) .007 1.50 (1.08 to 2.09) .02 0.19
4-androsten-3beta,17beta-diolk Lipid 1.50 (1.11 to 2.02) .008 1.45 (1.07 to 1.96) .02 0.19

*Only metabolites with a false discovery rate <0.2 are presented. BMI ¼ body mass index; CI ¼ confidence interval; OR ¼ odds ratio.

†Odds ratios were estimated with conditional logistic regression and adjusted for age at blood draw (years), age at menarche (�12 years, 12–13 years or missing, �14

years), age at first live birth and number of live births (nulliparous, age �19 years and one or more live births, age 20–29 years with one or two live births, age 20–29 with

three or more live births or missing, age 30þ with one or more live births), type of menopause and age at menopause (natural and <45 years, natural and 45–49 years,

natural and 50–54 years, natural and �55 years, bilateral oophorectomy/surgery, drugs/radiation, hysterectomy or missing), menopausal hormone therapy use at blood

draw (never, former, current), history of benign breast disease (no or missing, yes), first-degree family history of breast cancer (no or missing, yes), race/ethnicity (non-

Hispanic white or missing, other), education (high school or less, post–high school training besides college, some college or missing, completed college, postgraduate),

smoking history (never, former, current), diabetes history (no or missing, yes), and leisure time physical activity (none, less than one hour/week, one hour/week, two

hours/week, three hours/week, four or more hours/week, missing).

‡Adjusted for the variables above plus body mass index (<25 kg/m2, 25.0–<30 kg/m2 or missing, >30 kg/m2).

§The Q value is the estimated probability of a false discovery. Results are shown only for those associations with a Q value of less than 0.20.

kFull metabolite name is 4-androsten-3beta,17beta-diol disulfate 2.

Table 3. Multivariable ORs and 95% CIs for estrogen receptor–positive breast cancer when comparing the 90th with the 10th percentile levels of
BMI-associated metabolites*

Multivariable-adjusted† Multivariable-adjusted including BMI‡

Metabolite Chemical class OR (95% CI) P OR (95% CI) P Q§

3-methylglutarylcarnitine Amino acid 2.52 (1.66 to 3.83) 1.41� 10-05 2.49 (1.64 to 3.79) 2.03� 10-05 0.001
16a-hydroxy DHEA 3-sulfate Lipid 2.10 (1.47 to 3.00) 4.10� 10-05 2.07 (1.45 to 2.97) 7.19� 10-05 0.002
4-androsten-3beta,17beta-diolk Lipid 2.11 (1.44 to 3.09) 1.18� 10-04 2.08 (1.41 to 3.05) 1.94� 10-04 0.004
2-methylbutyrylcarnitine Amino acid 2.21 (1.47 to 3.32) 1.28� 10-04 2.19 (1.45 to 3.32) 1.97� 10-04 0.004
Gamma-glutamylvaline Peptide 2.35 (1.52 to 3.64) 1.28� 10-04 2.35 (1.50 to 3.68) 2.05� 10-04 0.004
Allo-isoleucine Amino acid 1.91 (1.35 to 2.69) 2.22� 10-04 1.89 (1.34 to 2.68) 3.23� 10-04 0.004
Urate Nucleotide 1.92 (1.35 to 2.73) 2.95� 10-04 1.89 (1.32 to 2.71) 5.03� 10-04 0.005
3-methyl-2-oxobutyrate Amino acid 2.01 (1.36 to 2.99) 5.21� 10-04 1.98 (1.32 to 2.95) 8.55� 10-04 0.01
N-acetylalanine Amino acid 1.86 (1.29 to 2.70) 9.53� 10-04 1.83 (1.26 to 2.66) .002 0.01
C-glycosyltryptophan Amino acid 1.74 (1.21 to 2.49) .002 1.70 (1.17 to 2.47) .005 0.03
Valine Amino acid 1.88 (1.23 to 2.85) .005 1.84 (1.20 to 2.82) .005 0.03
Gamma-glutamylisoleucine Peptide 1.78 (1.19 to 2.64) .006 1.75 (1.17 to 2.63) .006 0.04
Alpha-tocopherol Cofactors¶ 0.59 (0.40 to 0.89) .01 0.60 (0.40 to 0.90) .01 0.07
N1-methylguanosine Nucleotide 1.65 (1.13 to 2.42) .01 1.61 (1.09 to 2.39) .02 0.09
Hexanoylcarnitine Lipid 1.65 (1.09 to 2.48) .02 1.60 (1.06 to 2.43) .03 0.12
Hydroxybutyrylcarnitine Lipid 1.56 (1.07 to 2.26) .02 1.52 (1.05 to 2.22) .03 0.12
2-hydroxybutyrate Amino acid 1.56 (1.07 to 2.29) .02 1.54 (1.04 to 2.26) .03 0.12
Delta-tocopherol Cofactors 1.64 (1.08 to 2.51) .02 1.59 (1.04 to 2.45) .03 0.13
Glutamate Amino acid 1.55 (1.06 to 2.27) .02 1.52 (1.03 to 2.24) .04 0.13
Gamma-tocopherol Cofactors 1.54 (1.05 to 2.25) .03 1.49 (1.01 to 2.20) .04 0.14
1-linolenoylglycerophosphocholine Lipid 1.43 (0.98 to 2.09 .07 1.48 (1.01 to 2.17) .05 0.15
Gamma-glutamylphenylalanine Peptide 1.54 (1.04 to 2.29) .03 1.50 (1.01 to 2.25) .05 0.14
Quinolinate Cofactors 1.55 (1.05 to 2.30) .03 1.50 (1.00 to 2.26) .05 0.15

*Only metabolites with a false discovery rate <0.2 are presented. BMI ¼ body mass index; CI ¼ confidence interval; OR ¼ odds ratio.

†Odds ratios were estimated with conditional logistic regression and adjusted for age at blood draw (years), age at menarche (�12 years, 12–13 years or missing, �14

years), age at first live birth and number of live births (nulliparous, age �19 years and one or more live births, age 20–29 years with one or two live births, age 20–29 with

three or more live births or missing, age 30þ with one or more live births), type of menopause and age at menopause (natural and <45 years, natural and 45–49 years,

natural and 50–54 years, natural and �55 years, bilateral oophorectomy/surgery, drugs/radiation, hysterectomy or missing), menopausal hormone therapy use at blood

draw (never, former, current), history of benign breast disease (no or missing, yes), first-degree family history of breast cancer (no or missing, yes), race/ethnicity (non-

Hispanic white or missing, other), education (high school or less, post–high school training besides college, some college or missing, completed college, postgraduate),

smoking history (never, former, current), diabetes history (no or missing, yes), and leisure time physical activity (none, less than one hour/week, one hour/week, two

hours/week, three hours/week, four or more hours/week, missing).

‡Adjusted for the variables above plus body mass index (<25 kg/m2, 25.0–<30 kg/m2 or missing, >30 kg/m2).

§The Q value is the estimated probability of a false discovery. Results are shown only for those associations with a Q value of less than 0.20.

kFull metabolite name is 4-androsten-3beta,17beta-diol disulfate 2.

¶Cofactors and vitamins.

A
R

T
IC

LE

592 | JNCI J Natl Cancer Inst, 2018, Vol. 110, No. 6



For ERþ breast cancer, in a model without metabolites, the
odds ratio per 5 kg/m2 BMI was 1.07 (95% CI¼ 0.92 to 1.23),
which, contrary to expectations, was weaker than the associa-
tion for overall breast cancer. Adjusting for allo-isoleucine,
2-methylbutyrylcarnitine, and 3-methylglutarylcarnitine
together—grouped because of their common role in branched-
chain amino acid (BCAA) catabolism (Figure 2)—decreased the
odds ratio substantially (OR¼ 0.95) and attenuated the logOR by
100.0þ% (95% CI¼ 41.5% to 100.0þ%). Adding 16a-hydroxy-
DHEA-3-sulfate decreased the odds ratio further (OR¼ 0.91, 95%
CI¼ 0.78 to 1.07), and the final indirect effect was OR¼ 1.18 (95%
CI¼ 1.08 to 1.27). These estimates for ERþ cancer, however,

should be interpreted with caution owing to the weaker-than-
expected association with BMI.

Other Circulating Biomarkers

16a-hydroxy-DHEA-3-sulfate is biochemically related to DHEA,
estrone, and estradiol (Figure 3), steroid hormones previously
implicated in breast carcinogenesis (25–27). When we added
DHEA-sulfate to models, the association of 16a-hydroxy-DHEA-
3-sulfate with breast cancer risk attenuated by 8.7% (OR¼ 1.65,
95% CI ¼ 1.22 to 2.22, before and 1.58, 95% CI ¼ 1.06 to 2.33, after)

Table 4. BMI-associated metabolites associated with postmenopausal breast cancer and estrogen receptor–positive breast cancer in forward
selection models*

Breast cancer ERþ breast cancer

Metabolite† Chemical class OR (95% CI)‡ P Q§ OR P Q

16a-hydroxy DHEA 3-sulfate Lipid 1.65 (1.22 to 2.22) .001 0.07 1.84 (1.27 to 2.67) .001 0.09
Allo-isoleucine Amino acid – – – 1.76 (1.23 to 2.51) .002 0.09
2-methylbutyrylcarnitine Amino acid – – – 1.89 (1.22 to 2.91) .004 0.09
3-methylglutarylcarnitine Amino acid 1.67 (1.21 to 2.30) .002 0.07 1.91 (1.23 to 2.96) .004 0.09

*Multivariable odds ratios and 95% confidence intervals are provided for a comparison of 90th and 10th percentile levels of BMI-associated metabolites. BMI ¼ body

mass index; CI ¼ confidence interval; OR ¼ odds ratio.

†Odds ratios were estimated with conditional logistic regression and adjusted for age at blood draw (years), age at menarche (�12 years, 12–13 years or missing, �14

years), age at first live birth and number of live births (nulliparous, age �19 years and one or more live births, age 20–29 years with one or two live births, age 20–29 with

three or more live births or missing, age 30þ with one or more live births), type of menopause and age at menopause (natural and <45 years, natural and 45–49 years,

natural and 50–54 years, natural and �55 years, bilateral oophorectomy/surgery, drugs/radiation, hysterectomy or missing), menopausal hormone therapy use at blood

draw (never, former, current), history of benign breast disease (no or missing, yes), first-degree family history of breast cancer (no or missing, yes), race/ethnicity (non-

Hispanic white or missing, other), education (high school or less, post–high school training besides college, some college or missing, completed college, postgraduate),

smoking history (never, former, current), diabetes history (no or missing, yes), leisure time physical activity (none, less than one hour/week, one hour/week, two

hours/week, three hours/week, four or more hours/week, missing), and body mass index (<25 kg/m2, 25.0–<30 kg/m2 or missing, >30 kg/m2).

‡The models include all metabolites statistically significantly associated with breast cancer or ERþ breast cancer (false discovery rate <0.2). Odds ratios and P values

are based on mutually adjusted models. For breast cancer, 16a-hydroxy DHEA 3-sulfate and 3-methylglutarylcarnitine were included in the model. For ERþ breast can-

cer, 16a-Hydroxy DHEA 3-sulfate, Allo-isoleucine, 2-methylbutyrylcarnitine, and 3-methylglutarylcarnitine were included in the model. Forward selection models were

used to identify a parsimonious set of metabolites statistically significantly and independently associated with risk. Specifically, models were constructed by adding

the metabolite with the lowest P value to the model, retesting all remaining metabolites for statistical significance, and then adding the metabolite with the lowest P

value from this new set. We did this until the false discovery rate threshold of 0.20 was reached.

§The Q value is the estimated probability of a false discovery.

Table 5. Multivariable ORs and 95% CIs for postmenopausal breast cancer per 5 kg/m2 unit increase in BMI, without and with adjustment for
metabolites associated with breast cancer or ERþ breast cancer

Breast cancer ERþ breast cancer

Model OR per 5 kg/m2 (95% CI) Attenuation of logOR OR per 5 kg/m2 (95% CI) Attenuation of logOR

Base model* 1.14 (1.01 to 1.28) – 1.07 (0.92 to 1.23) –
Base þ 16a-hydroxy DHEA 3-sulfate 1.09 (0.96 to 1.23) 33.9% (11.0% to 100.0þ%) 1.00 (0.86 to 1.17) 94.5% (20.0% to 100.0þ%)
Base þ allo-isoleucine – – 1.01 (0.87 to 1.18) 79.0% (19.7% to 100.0þ%)
Base þ 2-methylbutyrylcarnitine – – 1.04 (0.89 to 1.20) 45.8% (4.5% to 100.0þ%)
Base þ 3-methylglutarylcarnitine 1.10 (0.97 to 1.24) 30.4% (10.6% to 100.0þ%) 1.01 (0.87 to 1.18) 78.9% (14.4% to 100.0þ%)
Base þ BCAA-related metabolites† – – 0.95 (0.82 to 1.12) 100.0þ% (41.5% to 100.0þ%)
Base þ combined metabolites‡ 1.06 (0.93 to 1.20) 57.6% (21.8% to 100.0þ%) 0.91 (0.78 to 1.07) 100.0þ% (60.5% to 100.0þ%)

*Odds ratios were estimated with conditional logistic regression and adjusted for age at blood draw (years), age at menarche (�12 years, 12–13 years or missing, �14

years), age at first live birth and number of live births (nulliparous, age �19 years and one or more live births, age 20–29 years with one or two live births, age 20–29 with

three or more live births or missing, age 30þ with one or more live births), type of menopause and age at menopause (natural and <45 years, natural and 45–49 years,

natural and 50–54 years, natural and �55 years, bilateral oophorectomy/surgery, drugs/radiation, hysterectomy or missing), menopausal hormone therapy use at blood

draw (never, former, current), history of benign breast disease (no or missing, yes), first-degree family history of breast cancer (no or missing, yes), race/ethnicity

(non-Hispanic white or missing, other). For models with adjustment for metabolites, metabolites are included on a continuous basis on the log-scale. BMI ¼ body mass

index; CI ¼ confidence interval; ER ¼ estrogen receptor; OR ¼ odds ratio.

†BCAA-related metabolites consist of allo-isoleucine, 2-methylbutyrylcarnitine, and 3-methylglutarylcarnitine.

‡For breast cancer, the combined metabolites consist of 16a-hydroxy DHEA 3-sulfate and 3-methylglutarylcarnitine. For ERþ breast cancer, the combined metabolites

consist of all of 16a-hydroxy DHEA 3-sulfate, allo-isoleucine, 2-methylbutyrylcarnitine, and 3-methylglutarylcarnitine. The resulting odds ratio can be interpreted as

the direct effect.
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(see Supplementary Table 8, available online). In contrast, add-
ing 16a-hydroxy-DHEA-3-sulfate to the model attenuated the
association of DHEA-sulfate with breast cancer risk by 80.0%
(OR¼ 1.47, 95% CI ¼ 1.08 to 2.01, before and 1.08, 95% CI ¼ 0.71 to
1.62, after). Results for ERþ breast cancer were more equivocal,
however, with neither metabolite predominating when mod-
eled together (Supplementary Table 8, available online), possi-
bly reflecting their collinearity (Pearson correlation ¼ 0.68).
Adjusting for estrone-sulfate had no effect on the 16a-hydroxy-
DHEA-3-sulfate association (OR changed by less than 0.02), and
estradiol had no correlation with 16a-hydroxy-DHEA-3-sulfate
(r ¼ –0.04).

The remaining breast cancer–associated metabolites are in-
volved in BCAA metabolism, which recent studies implicate in
insulin resistance (7,29,30). Study participants lacked fasting

insulin measures, and so, on an exploratory basis, we adjusted
instead for levels of the insulin resistance–related metabolites of
2-hydroxybutyrate, urate, and mannose. In comparison with
fasting insulin, which has a correlation of –0.5 with insulin
sensitivity as measured by the gold standard euglycemic clamp
method, 2-hydroxybutyrate and urate have more modest correla-
tions of approximately –0.3 (29,30). Mannose is a glucose epimer
that outperforms fasting glucose for prediction of future diabetes
(31–34) and is insensitive to recent food intake (35). When adjust-
ing associations for these metabolites, the odds ratios for BCAA-
related metabolites attenuated by at most 11.8% (Supplementary
Table 9, available online). In contrast, after adjusting for BCAA-
related metabolites, the associations of insulin resistance–related
metabolites with breast cancer risk attenuated by 17.7% to 73.9%
(Supplementary Table 10, available online).

Figure 2. Pathways of isoleucine and leucine catabolism. Isoleucine and leucine catabolism is shown by arrows, with the enzymes catalyzing the reactions shown in-

side boxes. Straight arrows indicate normal catabolism, whereas side (bent) arrows indicate the byproducts that accumulate when enzyme activity is insufficient to

convert available substrates. Each metabolite at the end of side (bent) arrows was associated with breast cancer risk (either overall or ERþ). Figure is adapted from

Knerr, Vockley, and Gibson (28). IVD ¼ Isovaleryl-CoA dehydrogenase; MCC ¼ Methylcrotonyl-CoA carboxylase; MHBD ¼ 2-methyl-3-hydroxybutyryl-CoA

dehydrogenase.
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Discussion

In this metabolomics analysis, we found that 67 of 617 identi-
fied metabolites were associated with BMI and that two of these
metabolites—16a-hydroxy DHEA 3-sulfate and 3-methylglutary-
lycarnitine—were strongly associated with breast cancer risk.
These metabolites and allo-isoleucine and 2-methylbutyrylcar-
nitine were also associated with ERþ breast cancer. The
addition of these metabolites to models caused the BMI–breast
cancer association to attenuate. Taken together, our findings
point toward metabolic pathways that may contribute to breast
carcinogenesis and that may underlie the association of BMI
with increased risk of postmenopausal breast cancer.

Biologically, the four breast cancer–associated metabolites
cluster into two distinct pathways, namely steroid hormone
metabolism and BCAA metabolism. With respect to steroid hor-
mones, our results specifically implicate changes in the metab-
olism of DHEA, a precursor to androstenedione, testosterone,
and, ultimately, estrone and estradiol (Figure 3). High DHEA lev-
els are associated with increased postmenopausal breast cancer
risk (25–27), putatively due to its role as an estradiol precursor
and/or androgen receptor agonist.

Our results further suggest that metabolism of DHEA into
16a-hydroxy DHEA 3-sulfate, a rarely studied DHEA metabolite
formed after 16a-hydroxylation of DHEA, may independently
contribute to breast cancer risk. 16a-hydroxy DHEA 3-sulfate
was positively associated with breast cancer risk independent
of levels of DHEA-sulfate and estrone-sulfate, and this metabo-
lite was uncorrelated with estradiol levels. In laboratory studies,
16a-hydroxy DHEA 3-sulfate binds and activates the b estrogen
receptor (36) and, perhaps more importantly, is metabolized
into 16a-hydroxyestrone and other 16-hydroxylation pathway
estrogen metabolites (37). Increased formation of these metabo-
lites, relative to 2-hydroxylation pathway metabolites, has been
consistently associated with increased risk of postmenopausal
breast cancer (19,23,38,39). We caution, however, that further
studies are needed to differentiate findings for 16a-hydroxy
DHEA 3-sulfate from those of other intercorrelated sex steroid
hormones, especially DHEA.

The other metabolic pathway that our results suggest may be
important is BCAA metabolism. BCAAs comprise 33% of amino
acids in the body (40) and are catabolized according to well-
regulated and well-characterized enzymatic processes (41). In
some instances, however, catabolism of BCAAs can become dys-
regulated, leading to higher levels of BCAAs and/or metabolic
byproducts indicative of alternative degradation pathways.
Elevated circulating concentrations of BCAAs, for example, are a
known sequala of excess body weight (6–9,42,43), and levels of
isoleucine and leucine, two of the three BCAAs, have been pro-
spectively associated with pancreatic cancer risk (44).

Strikingly, our study found that three metabolites known to
indicate flux through alternative BCAA degradation pathways
(41,45–48) were positively and independently associated with
breast cancer risk (Figure 2). Specifically, elevated levels of allo-
isoleucine, 2-methylbutyrylcarnitine, and 3-methylglutarylcarni-
tine are formed as byproducts when BCAA metabolites are not
fully degraded by the respective enzymes of branched-chain 2-
oxo-acid dehydrogenase (45,46), 2-methylbutyryl-coenzyme A de-
hydrogenase (41,47), and 3-hydroxy-3-methylglutaryl-coenzyme
A lyase (48). To our knowledge, no prior studies have examined
these BCAA-related metabolites in relation to breast cancer risk.

Biologically, degradation of BCAAs through alternative path-
ways has been postulated to promote tumor growth by providing
nutritive building blocks needed for mitosis (49,50), and by ana-
plerotically replenishing the TCA cycle (50), thus helping cancer
cells to meet energetic demands. BCAA byproducts also may trig-
ger cell signaling cascades related to unchecked growth of can-
cer, including PI3K/AKT/mTOR (7,51,52). In several types of
tumors, including non–small cell lung carcinomas (53), myeloid
leukemias (54), and glioblastomas (55), dysregulated catabolism
of BCAAs is a key metabolic feature that underlies their
unchecked growth.

Historically, obesity’s link with postmenopausal breast can-
cer risk has been attributed to its role in increasing levels of
steroid hormones, insulin resistance, and inflammation (4,5,56–
61). Our finding for 16a-hydroxy DHEA 3-sulfate extends upon
the steroid hormone hypothesis by suggesting that a high BMI,
besides increasing levels of estradiol and/or DHEA, may shift

DHEA sulfate

DHEA

Androstenediol

16α-hydroxy DHEA 3-sulfate

16α-hydroxy DHEA

Testosterone Estradiol

Androstenedione Estrone

16α-hydroxy androstenedione

2-hydroxyestrone

4-hydroxyestrone

16α-hydroxyestrone

16α-hydroxylase

16α-hydroxylase

16α-hydroxylase

16α-hydroxylase

Figure 3. Pathways of steroid hormone metabolism. DHEA-sulfate metabolism is shown by arrows, with 16a-hydoxylase activity shown inside boxes. 16a-Hydroxy-

DHEA 3-sulfate, the steroid metabolite we found to be associated with breast cancer risk, is shown in boldface.

A
R

T
IC

LE

S. C. Moore et al. | 595

Deleted Text: ,
Deleted Text: A
Deleted Text: -
Deleted Text:  and that
Deleted Text: -
Deleted Text: -
Deleted Text: ,
Deleted Text: -
Deleted Text: -


hormonal metabolism toward 16a-hydroxylation and sepa-
rately influence breast cancer risk through this pathway. Our
finding for BCAA-related metabolism suggests a new hypothe-
sis, namely that higher levels of circulating BCAAs among
heavier individuals may overload BCAA catabolic pathways,
leading to metabolic byproducts that nutritively enhance breast
cancer cell growth. Alternately, elevated levels of BCAAs may be
a marker of insulin resistance (31,32,62), which has been previ-
ously associated with breast cancer risk (55). Although our ex-
ploratory analyses suggest that these BCAA-related
associations are independent from insulin resistance, further
studies with measures of fasting insulin are needed to more
definitely ascertain this.

Our study identified numerous metabolites to be positively or
inversely associated with BMI that were not related to breast can-
cer risk, including gamma-tocopherol, methyl glucopyranoside,
threonate, and catechol sulfate—metabolites reflective of intake
of fried foods, fruits, supplements, and coffee, respectively (63–66).
A high BMI was also associated with presence of hydrochlorothia-
zide, a diuretic used to lower blood pressure. Like prior studies
(6,8,42,67), we found that disproportionate numbers of amino
acids and lipids were associated with BMI, and the magnitudes of
association observed were highly similar to those of our prior re-
port (Supplementary Figure 2, available online). While most BMI-
associated metabolites were not breast cancer associated, several
may yet prove relevant for other disease outcomes, such as the as-
sociation of mannose with diabetes risk (34).

Our study has several strengths, including many cases and
controls, detailed information on breast cancer risk factors, hor-
mone receptor status data, prediagnostically collected serum,
many identified metabolites, and a highly reliable metabolo-
mics platform. Additionally, our focus on BMI-associated
metabolites allowed us to thoughtfully interrogate the biology
underlying the association of BMI with breast cancer, including
a detailed evaluation of whether our candidate mechanistic
mediators were distinct from those implicated by prevailing hy-
potheses (eg, estrone/estradiol).

A key limitation is that we cannot fully rule out confounding
by unmeasured lifestyle or biological factors. We did, however,
control for many known breast cancer risk factors. Other limita-
tions include that participants were not required to fast and
that an individual’s metabolite levels may vary over time; these
factors can affect metabolite levels (17,68,69) and cause attenua-
tion of odds ratios. Of the seven breast cancer–associated
metabolites, we previously showed that levels of three of them
(3-methyl-2-oxobutyrate, 2-methylbutyrylcarnitine, 4-andros-
ten-3beta-17beta-diol disulfate 2) were unrelated to fasting sta-
tus (P > .05) and were stable over a study year (one-year ICCs ¼
0.50–0.81) (17). Additionally, our study consisted primarily of
non-Hispanic white women; thus generalizability of results to
other women is unknown. Finally, our findings need to be vali-
dated through replication using other metabolomics platforms,
with different analytical approaches, and in other cohorts or a
consortia of cohorts, such as the Consortium of Metabolomics
Studies (70).

In summary, our metabolomics analysis suggests that ste-
roid hormone and BCAA metabolism may be important path-
ways related to breast cancer risk, and that these pathways may
help explain why excess body weight increases postmeno-
pausal breast cancer risk. Future studies should aim to replicate
these findings with different platforms, analytical approaches,
and cohorts and, if findings replicate, determine which
interventions—pharmacologic (71,72) and/or behavioral—might
modulate these pathways and reduce breast cancer risk.
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