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ABSTRACT
Somatic gain-of-function mutations in isocitrate dehydrogenase (NADP(+)) 1, cytosolic (IDH1) or isoci-
trate dehydrogenase (NADP(+)) 2, mitochondrial (IDH2) are bona fide oncogenic drivers of acute myeloid
leukemia and glioma because the neomorphic enzymes catalyze the synthesis of R-2-hydroxylutarate (R-
2-HG), an oncometabolite with robust epigenetic effects. Recent data indicate that R-2-HG released by
malignant cells can accumulate in the extracellular space and be taken up by T lymphocytes, ultimately
compromising their capacity to mediate anticancer immune responses. Thus, R-2-HG drives oncogenesis
and tumor progression not only as a cancer cell-autonomous epigenetic modifier, but also as an
immunosuppressive metabolite. Chemical inhibitors of mutant IDH1 and IDH2, which currently are
under clinical evaluation, may therefore mediate dual anticancer effects by targeting cancer cells and,
at the same time, relieving R-2-HG-mediated immunosuppression.
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R-2-hydroxyglutarate (R-2-HG) is a bona fide ‘oncometabo-
lite’ because it accumulates in (pre-) malignant cells as a
consequence of a somatic gain-of-function mutations and is
causally involved in malignant transformation and tumor
progression.1 In particular, gain-of-function mutations in iso-
citrate dehydrogenase (NADP(+)) 1, cytosolic (IDH1) or iso-
citrate dehydrogenase (NADP(+)) 2, mitochondrial (IDH2),
which are particularly prevalent among acute myeloid leuke-
mia (AML) and glioma patients,2,3 result in the acquisition of
a neomorphic enzymatic function that catalyzes the direct
conversion of alpha-ketoglutarate (α-KG, a key intermediate
of the Krebs cycle) into R-2-HG.4–6 Intracellular R-2-HG
accumulation coupled to α-KG depletion has oncogenic
effects because it inhibits histone lysine demethylases
(KDMs) and the TET family of DNA hydroxylases,7,8 result-
ing in histone hypermethylation, epigenetic programming and
disruption of normal stem cell differentiation coupled to the
acquisition of additional mutations.9 Until recently, R-2-HG
has received considerable attention also because it can be
detected in body fluids (including the plasma and cerebrosp-
inal fluid) and organs (by nuclear magnetic resonance), hence
constituting a biomarker that can be monitored non-inva-
sively for diagnostic purposes as well as for measuring the
therapeutic effects of clinically relevant IDH1 or IDH2
inhibitors.10,11 Recent clinical data from a Phase I trial
demonstrate indeed that ivosidenib, a chemical inhibitor of
mutant IDH1 can be safely administered to AML patients and
is associated with an objective response rate of 40%.12 These
findings constituted the ground for the approval of ivosidenib
(commercialized under the name of Tbsovo®) by the US Food

and Drug Administration for the treatment of relapsed or
refractory AML.13

Although cancer has long been considered as a cellular
disease driven by (epi-)genetic alterations, it has recently
become clear that malignant cells emerge, progress and
respond to therapy in the context of a complex and bidirec-
tional crosstalk with the host immune system.14 In particular,
tumors become clinically manifest only when immunosurveil-
lance fails, which can occur for different reasons that include,
but are not limited to: (i) primary immune defects rendering
the host immune system unable to recognize (pre-)malignant
cells, (ii) active secretion by (pre-)malignant cells of inhibitory
factors that interfere with immune functions locally or sys-
temically; or (iii) evolution of (pre-)malignant cells towards a
state of reduced antigenicity of adjuvanticity.15–18 In this
context, it appeared logical that R-2-HG would mediate
some immunosubversive effects.

Recent data confirm that R-2-HG may mediate both direct
and indirect immunosuppressive effects (Figure 1). First, R-2-
HG limits the ability of cancer cells to secrete C-X-C motif
chemokine ligand 10 (CXCL10), thus reducing the recruitment
of T cells to the tumor bed.19,20 Second, R-2-HG can be taken up
by non-malignant cells of the tumor microenvironment, includ-
ing cancer-associated fibroblasts and myeloid cells, which
respond to R-2-HG with increased proliferation rates and acti-
vation of the pro-inflammatory transcription factor NF-κB,
respectively,21,22 ultimately generating a microenvironment
that favors tumor progression.23 Third, R-2-HG and its enantio-
mer (S-2-HG) can be incorporated by immune effectors and
mediate immunosuppressive effects. Reportedly, S-2-HG enters
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activated mouse CD8+ T cells to inhibit histone and DNA
demethylation and activate hypoxia inducible factor 1 subunit
alpha (HIF1A, best known as HIF-1α), resulting in suppressed T
cell proliferation and effector functions.24 Conversely, R-2-HG
has been suggested to destabilize HIF-1α in human naïve T cells
to boost oxidative phosphorylation, culminating with increased
differentiation towards CD4+CD25+FOXP3+ regulatory T
(TREG) cells at the expenses of TH17 helper cells.25 Yet another
recent paper indicates that R-2-HG can be taken up by human T
cells through the plasma membrane transporter solute carrier
family 13 member 3 (SLC13A3) irrespective of their activation
status, hence interfering with nuclear factor of activated T cells 1
(NFATC1) signaling and limiting proliferative potential and
effector functions.26

Intriguingly, these effects are at least partially mediated by
some degree of ATP shortage resulting from inhibition of oxida-
tive phosphorylation,27 because they can be reverted by supple-
mentation of R-2-HG-treated T lymphocytes with a cell-
permeable variant of ATP.26 Moreover, they are tied to a pathway
in which R-2-HG inhibits the activity of ornithine decarboxylase
(ODC), the rate-limiting enzyme for polyamine biosynthesis,
either directly or indirectly upon ODC phosphorylation by 5ʹ-
AMP-activated protein kinase (AMPK). Thus, the polyamine
putrescine can interfere with the ability of R-2-HG to suppress T
cell proliferation in vitro.26 Unfortunately, it has not been deter-
mined whether polyamines would negate the immunosuppressive
effects of IDH1 or IDH2 mutations in vivo. This stands out as a
feasible strategy because spermidine has potent immunostimula-
tory effects that can be harnessed for boosting natural and ther-
apy-driven anticancer immunosurveillance.28,29

Based on these observations, it is tempting to speculate
(pending mechanistic validation) that the clinically efficacy

of IDH1 (and presumably also IDH2) inhibitors may be
ascribed to a dual effect, namely (i) a cancer cell-autonomous
action that interferes with R-2-HG-dependent epigenetic
reprogramming, and (ii) the reinstatement of anticancer
immunosurveillance. Thus, IDH1 inhibitors do not seem to
escape the general rule that anticancer agents can only be
successful if they favor anticancer immune responses.30,31

Future will tell whether IDH1 inhibitors can be combined
with other immunotherapeutic agents to improve the clinical
management of patients with AML or glioma.
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Figure 1. Dual action of R-2-HG in the pathogenesis of cancers with IDH1 or IDH2 mutations. Gain-of-function mutations in isocitrate dehydrogenase (NADP(+)) 1,
cytosolic (IDH1) or isocitrate dehydrogenase (NADP(+)) 2, mitochondrial (IDH2) drive the synthesis of R-2-hydroxylutarate (R-2-HG). The accumulation of R-2-HG (and
to some extent its enantiomer S-2-HG) supports oncogenesis and tumor progression not only by causing the epigenetic reprogramming of (pre-)malignant cells, but
also by favoring the establishment of an immunosuppressive microenvironment. The therapeutic activity of IDH1 inhibitors may therefore involve a robust
immunological component. α-KG, alpha-ketoglutarate; CXCL10, C-X-C motif chemokine ligand 10; HIF-1α (official name, HIF1A), hypoxia inducible factor 1 subunit
alpha; NFATC1, nuclear factor of activated T cells 1; ROS, reactive oxygen species; STAT1, signal transducer and activator of transcription 1; TREG, regulatory T.
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