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ABSTRACT
Harnessing the immune system by checkpoint blockade has greatly expanded the therapeutic options for
advanced cancer. Since the efficacy of immunotherapies is influenced by the molecular make-up of the
tumor and its crosstalk with the immune system, comprehensive analysis of genetic and immunologic
tumor characteristics is essential to gain insight into mechanisms of therapy response and resistance. We
investigated the association of immune cell contexture and tumor genetics including tumor mutational
burden (TMB), copy number alteration (CNA) load, mutant allele heterogeneity (MATH) and specific
mutational signatures (MutSigs) using TCGA data of 5722 tumor samples from 21 cancer types. Among
all genetic variables, MutSigs associated with DNA repair deficiency and AID/APOBEC gene activity showed
the strongest positive correlations with immune parameters. For smoking-related and UV-light-exposure
associated MutSigs a few positive correlations were identified, while MutSig 1 (clock-like process) corre-
lated non-significantly or negatively with the major immune parameters in most cancer types. High TMB
was associated with high immune cell infiltrates in some but not all cancer types, in contrast, high CNA
load and high MATH were mostly associated with low immune cell infiltrates. While a bi- or multimodal
distribution of TMB was observed in colorectal, stomach and endometrial cancer where its levels were
associated with POLE/POLD1 mutations and MSI status, TMB was unimodal distributed in the most other
cancer types including NSCLC and melanoma. In summary, this study uncovered specific genetic-immu-
nology associations in major cancer types and suggests that mutational signatures should be further
investigated as interesting candidates for response prediction beyond TMB.
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Introduction

During the last five years, the development and use of antibodies
directed against checkpoint molecules has considerably changed
the therapeutic landscape of many advanced solid cancer types,
where treatment options were very limited.1,2 As of now,
approximately 2,000 immuno-oncology-related trials are being
conducted and with an increasing portfolio of drugs under
development, additional studies will enter the clinical arena and
expand the spectrum of therapies in the near future.3 While
many trials showed highly encouraging data suggesting a can-
cer-type dependent durable response and prolonged survival in
about 10–30% of the patients,2,4 it became evident that even with
combinatorial regimens including two checkpoint blockers or
chemotherapy and checkpoint inhibitors,5–7 many patients are
either resistant at baseline or acquire resistance during therapy.8

In general, high PD-L1 expression levels either in tumor cells or
immune cells help to identify subsets of patients that benefit from
PD-1 or PD-L1 inhibitors,9,10 but PD-L1 testing is rather coarsely

granular and does not account for the complexity of cancer-
immune cell interactions.11While detection of PD-L1 expression
levels by immunohistochemistry was approved as companion
diagnostic for certain clinical scenarios, the FDA acknowledged
these observations by introducing a new class of predictive bio-
markers termed complementary diagnostics, which aid clinical
decision making but are not a prerequisite for treatment.12

To overcome these limitations, several novel and complemen-
tary biomarkers are currently under investigation. Additional to
negative predictors of response,13–16 which might play an
increasingly important role in the near future, tumor mutational
burden (TMB) approximating neo-antigenicity17,18 was observed
to predict response to various checkpoint agents in different
cancer types.11,19,20 The potential of TMB as biomarker for
immune therapy response independent from PD-L1 was demon-
strated in phase III non-small cell lung carcinoma (NSCLC)
trials including a retrospective analysis of the Checkmate 026
trial and more recent corroborative data obtained from the
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Checkmate 227 trial.6,21 In keeping with these results and further
supporting the conceptual approach, the diagnostic assessment
of specific mechanisms that drive TMB and the development of
neo-antigens, such as mismatch repair deficiency (dMMR), has a
strong clinical utility in patients receiving PD-1 blockade.22,23

These observations led to the recent FDA approval of the micro-
satellite instability (MSI) status as tumor type agnostic predictive
biomarker for pembrolizumab.

However, a more robust and accurate response prediction will
be only achieved by assays that reflect the complex and multi-
levelednature of the interaction between components of the tumor
microenvironment (TME), cancer cells and tumor genetics. All
assays currently used in clinics at best indirectly reflect the immune
cell contexture, a hallmark that crucially distinguishes tumors
which are likely to respond from those that will not respond to
immunotherapy.24 The development of such assays, however,
requires a more thorough understanding of the interplay between
the genetic make-up and immune cell compositions in specific
cancer types – both at baseline and during spatiotemporal devel-
opment.While several studies on either specific tumor types25,26 or
immune cell activities27 have greatly elucidated these interactions
also with respect to clinical implications, comprehensive pan-
cancer analyses are still limited and were focused on the effect of
copy number alterations28 as well as cancer type-specific immune
cell repertoires including the role of B cells.29 Very recently,
analyzing the TCGA dataset, Thorsson and co-authors suggested
a pan-cancer tumor classification into six main immune subtypes
with putative prognostic implications.30

Total TMB can be decomposed into mutational signatures
(i.e. different types of base substitutions within a trinucleotide
context, MutSigs) as recently introduced by Alexandrov and
co-authors.31–33 Specific Mutsigs have been argued to be con-
nected to specific biological processes including exogenous
mutagens (e.g. UV-light, smoking), age-related deamination,
defects in the DNA repair machinery and APOBEC enzyme
expression. Mutant-allele tumor heterogeneity (MATH) is
tumor genetic score for clonal diversity that was recently
introduced by Mronz and Rocco.34,35

Here, we investigated the association of immune contex-
ture and the expression of immune checkpoints with TMB,
copy number alteration (CNA) load, MATH, mutational sig-
natures and specific driver gene mutations across 5722 tumors
of 21 cancer types from the TCGA dataset. The correlations
analyses with the immune variables are structured as follows:
First, we performed a pan-cancer analysis of all genetic vari-
ables. Second, we analyzed the global measures of mutational
burden (TMB, CNA load and MATH) specifically in each
cancer type. Third, we analyzed mutational signatures speci-
fically in each cancer type. Fourth, we analyzed mutations in
specific genes in each cancer type.

Results

We correlated 37 tumor microenvironment (TME) para-
meters including 35 immunological variables and two non-
immunological variables (endothelial cells and fibroblasts)
with three global measures of mutational burden and 23
mutational signatures (Figure 1). The investigated cancer
types are cited by the acronyms listed in the abbreviation

section. For visualization of immunology-genetic correlations,
we developed a new kind of heatmap and clustering: columns
were clustered in the conventional way, i.e. with respect to the
correlation data shown in the heatmap, but rows were clus-
tered with respect to the levels of the immunological variables
in the pan-cancer cohort. As a consequence, the order of the
immunological variables is the same in all heatmap displays.

Pan-cancer analysis of immune contexture and genetic
variables

Correlation analysis of TME parameters and genetic variables
was performed across 21 cancer types (Figure 2). We detected a
cluster of highly correlating immune variables that we termed
“core immune signature” (CIS, mean pairwise correlation = 0.71,
highlighted in yellow) including five immune cell populations
(T cells, M1 macrophages, NK cells, CD8 + T cells and cytotoxic

Figure 1. Flowchart of data collection and analysis (number of investigated para-
meters in brackets). Mutation calls, copy number alteration (CNA) and gene expres-
sion data were obtained from the cBioPortal. Tumor mutational burden (TMB) and
mutant allele tumor heterogeneity (MATH) were calculated from the mutation calls,
CNA load was calculated from the GISTIC CNA calls and levels of mutational
signatures were obtained from.32 The abundance of cell populations in the tumor
microenvironment (TME) was estimated from bulk tissue gene expression data
using the bioinformatic methods MCP-counter and CIBERSORT. Cytolytic activity
(CYT) as well as PD-L1, PD-1, CTLA4 and IDO1 mRNA expression were also obtained
from the bulk tissue gene expression data. Correlation analysis of 37 parameters of
TME (35 immunological variables and two non-immunological variables) with 26
parameters of tumor genetics was performed.
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lymphocytes), cytolytic activity (CYT) as well as CTLA4, PD-1
and IDO1 expression, but not PD-L1 expression.

TMB showed the highest positive correlations with the CIS and
other immune variables among all genetic variables, CNA load
showed mixed positive and negative correlations, while MATH
correlated negatively with all variables of the CIS. The two AID/
APOBEC related MutSigs 2 and 13 as well as the DNA mismatch
repair associatedMutSigs 6, 15, 20 and 26 were among theMutSig
that correlated most strongly positive with the CIS. Endothelial
cells and fibroblasts (serving as non-immunological controls),
clustered far away from the CIS and correlated negatively with
TMB, CNA load and several of the MutSigs.

Cancer type-specific analysis of immune contexture and
TMB

Next, we investigated the correlation of the 37 immunological
parameters with TMB within each of the 21 cancer types (Figure
3(A)). Cancer types were separated into those with negative or
non-significant correlations with the CIS (cluster I, highlighted in
blue) and those that correlated positively (cluster II, highlighted in
yellow and including LGG, OV, BRCA, LUAD, CESC, UCEC,
BLCA, LUSC, and COADREAD). Stomach adenocarcinoma
(STAD) clustered separately from clusters I and II and exhibited
some significant positive correlations with immunological vari-
ables. The strongest correlations of immune variables with TMB

Figure 2. Pan-cancer (5722 tumors spanning 21 cancer types) correlation analysis of 37 TME parameters (including 35 immunological variables and two non-
immunological cell populations) with 26 tumor genetic variables. A core cluster of immunological variables (T cells, CYT, M1 macrophages, NK cells, cytotoxic
lymphocytes, CD8 + T cells as well as PD-1, CTLA4 and IDO1 expression) clustered tightly together (yellow box). In the heatmap, 37% of the correlations were
significantly positive, 21% were significantly negative (white crosses, FDR< 5%). The abundance of cell populations was estimated by MCP-counter1 and CIBERSORT2.
DNA repair deficiency related MutSigs: 3, 6, 10, 15, 20 and 26. APOBEC related MutSigs: 2 and 13.
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were detected in UCEC (follicular helper T cells: ρ = 0.32, M1
macrophages: ρ= 0.29) andCOADREAD (cytotoxic lymphocytes:
ρ = 0.30, NK cells: ρ = 0.30). PD-L1 expression correlated signifi-
cantly with TMB only in COADREAD (ρ = 0.28, p = 8.8E-05,
q = 0.00097) and STAD (ρ = 0.23, p = 3.2E-05, q = 0.00039).

In a recent landmark study on hypermutated cancers, a
TMB cutoff point of 10 mut/MB was suggested to separate
hypermutated from non-hypermutated tumors.36 Using this
definition, we detected strong and significant increases of
specific immune cell populations in hypermutated tumors

Figure 3. Immune correlates of TMB in 21 specific cancer types and in the combined pan-cancer cohort. (A) Separation of cancer types in a cluster showing non-
significant or negative correlations of TMB with the immune variables (cluster I, blue) and a cluster showing significant positive correlations (cluster II, yellow).
Overall, 9% of the correlations were significantly positive, 9% were significantly negative (white crosses, FDR< 5%). (B) Fold changes of hypermutated (TMB ≥ 10
mut/Mb) vs. normal mutated (TMB < 10 mut/Mb) tumors. 13% of the correlations were significantly positive, 7% were significantly negative (white crosses,
FDR< 5%). (C) Highly significant correlation of PD-L1 mRNA and TMB in colorectal cancer (COAD). (D) Highly significant correlation of PD-L1 mRNA and TMB in
stomach adenocarcinoma (STAD). (E) Significant correlation of TMB and PD-L1 mRNA in uterine corpus endometrial carcinoma (UCEC). The abundance of cell
populations was estimated by MCP-counter1 and CIBERSORT2.

e1526613-4 J. BUDCZIES ET AL.



of COADREAD, STAD, UCEC, CESC, BRCA, LGG, BLCA
and LUSC (Figure 3(B)). Among these cell populations, M1
macrophages were significantly and more than two-fold
increased in COAREAD, LUAD, UCED and STAD.
Additionally, CD4+ and CD8+ T cells were strongly
increased in the hypermutated tumors of many of these
cancer types. In contrast, activated dendritic cells were
decreased more than two-fold in LUAD, UCEC and
STAD. Interestingly, in contrast to all other major cancer
types, hypermutation in KIRC was associated with strong
decreases of CYT (fold change = -2.7, p = 6.5E-05,
q = 0.00076) and many immune cell types, in particular of
CD8+ T cells.

Cancer type-specific analysis of PD-L1 expression and
TMB/MSI

Scatterplots of the correlation of PD-L1 expression and TMB
suggested that the cutoff point TMB = 10 mut/Mb is appro-
priate for COADREAD and STAD, but not for UCEC (Figure
3(C-E), Supplementary Figure 1). For COADREAD and
STAD this cutoff point separated almost perfectly between
MSI-H or POLE/POLD1 mutated tumors and MSI-L/MSS
tumors and PD-L1 was strongly and highly significantly over-
expressed in the tumors above the cutoff point of in these
cancer types (fold change = 3.8, p = 5.7E-11, q = 1.5E-09 and
fold change = 1.8, p = 8.8E-06, q = 0.00013). In UCEC, the
analysis revealed a more complex situation of four clusters
(ordered by increasing TMB) with most MSI-H tumors
located in the 2nd cluster and scattering around TMB = 10
mut/Mb. The first cluster was composed almost exclusively of
MSI-L/MSS tumors, while the second cluster was composed
almost exclusively of MSI-H tumors and the fourth cluster
was composed exclusively of POLE/POLD1 mutated tumors.
A bimodal distribution of TMB was observed in BRCA,
CESC, KIRC, and LIHC, while an unimodal distribution of
TMB was observed in SKCM, LUAD, LUSC and HNSC.

Cancer type specific analysis of immune contexture and
CNA load as well as MATH

Correlation analysis of CNA load with immune parameters
separated cancer types into two clusters (Figure 4(A)): cancer
types that correlated negatively with many of the immunolo-
gical variables (cluster I, highlighted in blue), particularly
pronounced for COADREAD, STAD, BLCA, and HNSC,
and cancer types with either non-significant or a very few
significant positive correlations with immunological variables
(cluster II, highlighted in yellow). Significantly positive corre-
lations were detected in LGG, BRCA, KIRC, PCPG, PRAD
and KIRP. PAAD clustered far away far away from both
clusters and showed significant negative correlations with
many of the immune variables in the CIS. In none of the
cancer types, significantly positive correlations of PD-L1
expression and CNA load were detected.

Correlation analysis of MATH showed a uniform result with
predominating negative or non-significant correlations in all 14
cancer types for which MATH could by calculated based on

existing mutant variant allele frequency data (Figure 4(B)).
Negative correlations with many immune variables were
detected in PAAD, BLCA, STAD, THCA, ESCA, BRCA,
PRAD, and THCA. In none of the cancer types, significant
positive correlations of PD-L1 expression and MATH were
detected. Altogether, the percentage of significant positive cor-
relations with immune infiltrates in the heatmaps decreased
from TMB (9%) to CNA (6%) and MATH (3%).

Cancer type specific analysis of immune contexture and
mutational signatures

The 37 TME parameters were correlated with TMB, MATH,
CNA load as well as 23 mutational signatures in 21 cancer
types (Figure 5(A)). Correlation strengths ranged between
−0.54 and 0.51 with 388 correlations (7.3%) being significantly
negative and 163 (3.0%) correlations being significantly positive
out of a total of 5346 investigated correlations. The strongest
positive correlations of immunological variables and genetic
variables were observed for specific mutational signatures
(colored points). These were stronger than the ones observed
for the summary mutational metrics TMB, CNA Load and
MATH (black and grey points). The strongest negative correla-
tions were detected for CNA load, but many strongly negative
and highly significant correlations were detected for MutSig 1
and MutSig 5 as well.

For a more detailed interpretation we grouped the mutational
signatures according to the putative etiology (Figure 5(B-C),
Supplementary Figure 2). First, we investigated mutational sig-
natures associated with failure of DNA repair and detected
strong significant positive correlations with the CIS in
COADREAD, STAD, and UCEC as well as a weaker positive
correlation in BRCA (Figure 4(B)). Particularly, cytotoxic lym-
phocytes correlated significantly positive with the four signa-
tures associated with defective DNA mismatch repair: with
MutSig 6 in COADREAD (ρ = 0.50), with MutSigs 15 and 20
in STAD (ρ = 0.22 and ρ = 0.24) and with MutSigs 6 and 26 in
UCEC (ρ = 0.21 and ρ = 0.22).MutSig3, associatedwith defective
double strand repair by homologous recombination, correlated
positively with IDO1 (ρ = 0.18), M0 macrophages (ρ = 0.17) and
eight other immune variables in BRCA. MutSig 10, associated
with POLE loss-of-function mutations, correlated significantly
with M1 macrophages (ρ = 0.26) and follicular T helper cells
(ρ = 0.21) in UCEC as well as significantly with eosinophils
(ρ = 0.11) in BRCA. PD-L1 expression correlated significantly
withMutSig 6 in COADREAD (ρ = 0.50) andMutSigs 15 and 20
in STAD (ρ = 0.30 and ρ = 0.30).

Second, we found significant positive correlations of the two
signatures associated with activity of AID/APOBEC enzymes
with many immune parameters in CESC and BRCA and with
a couple of immune variables in BLCA, THCA and LUSC
(Figure 5(C)). T cells correlated significantly with MutSig 2 in
CESC (ρ = 0.31), with MutSig 2 and MutSig 13 (ρ = 0.09 and
ρ = 0.16) in BRCA and with MutSig 2 in THCA (ρ = 0.14). NK
cells correlated significantly with MutSig 2 in CESC (ρ = 0.23),
with MutSig 13 in BRCA (0.15) and with MutSig 2 in BLCA
(ρ = 0.28). In CESC, correlations of immune cell populations
with MutSig 2 were stronger than with MutSig13, while this was
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the other way around in BRCA. PD-L1 expression correlated
significantly withMutSig 2 andMutSig 13 in CESC (ρ = 0.28 and
ρ = 0.21), withMutSig 13 in BRCA (ρ = 0.17), and withMutSig 2
in HNSC (ρ = 0.18).

Third, positive correlations of immune cell populations
with mutational signatures associated with the exposure to
exogenous hazards and chemicals were rare and inhomoge-
neous across cancer types (Supplementary Figure 2b). The
strongest among them were correlations of eosinophils with
MutSig 22 (aristolochic acid associated) in LIHC (ρ = 0.23), of
activated mast cells with MutSig 11 (alkylating agents asso-
ciated) in SKCM (ρ = 0.23) and of CD4+ activated memory
cells with MutSig 4 indicating tobacco smoking in LUAD
(ρ = 0.23). No significant positive correlations with PD-L1
expression were observed.

Fourth, correlations of immune variables with MutSig 1
(clock-like process) were absent or negative in the vast majority
of cases (99% of analyses, Supplementary Figure 2a). Negative
correlations of immune cells with MutSig 1 were observed in in
STAD, BRCA and SKCM and to some extend in PRAD. There

were a few exceptions of significant positive correlations of
immune variables with MutSig1: IDO1 expression and CYT in
LGG (ρ = 0.26 and ρ = 0.18), T cells follicular helper cells in
LUSC (ρ = 0.23), CD4+ resting memory cells in UCEC
(ρ = 0.21), PD-L1 expression and plasma cells in HNSC
(ρ = 0.18 and ρ = 0.14) andM0macrophages in KIRC (ρ = 0.14).

Analysis of PD-L1 and PD-1 expression levels with
immune cell contexture

We analyzed the correlation of PD-1 and PD-L1 mRNA
expression with the infiltration of immune cell populations
in specific cancer types (Figure 6). For both, PD-L1 and PD-1
the strongest correlations occurred with immune variables in
the central immune signature (CIS) associated with T cell und
M1 activated macrophage populations as well as CYT (yellow
boxes). However, correlations of PD-1 expression with CIS
were much higher than the corresponding correlations of PD-
L1: As an example, correlations of PD-1 expression with CYT
ranged between 0.65 and 0.94 (there were two exceptions with

Figure 4. Immune correlates of CNA load and MATH in 21 cancer types and in the combined pan-cancer cohort. (A) Separation of cancer types showing a cluster of
significant negative correlations of CNA load with the immune variables (cluster I, blue) and a cluster showing significant positive or non-significant correlations
(cluster II, yellow). Overall, 6% of the correlations were significantly positive, 25% were significantly negative (white crosses, FDR< 5%). (B) Negative or non-significant
correlation of MATH with immune variables in almost all cancer types (except SKCM). 3% of the correlations were significantly positive, 18% were significantly
negative (white crosses, FDR< 5%). The abundance of cell populations was estimated by MCP-counter1 and CIBERSORT2.
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Figure 5. Correlations analysis of 37 TME parameters with 26 genetic variables in 21 cancer types. (A) Volcano plot showing 551 significant (above dashed line,
FDR< 5%) correlations out of a total number of 5346 analyses. (B) Correlation of immunological variables with mutational signatures associated with failure of DNA
repair (MutSigs 6, 15, 20, 26: defective mismatch repair; MutSig 3: defective double strand repair by HR; MutSig 10: POLE mutations): 8% of the correlations were
significantly positive, 2% were significantly negative (white crosses, FDR< 5%). (C) Correlation of immunological variables with mutational signatures associated with
activity of the AID/APOBEC family of cytidine deaminases: 7% of the correlations were significantly positive, 2% were significantly negative (white crosses, FDR< 5%).
The abundance of cell populations was estimated by MCP-counter1 and CIBERSORT2.
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a lower correlation: PCPG ρ = 0.47 and GBM ρ = 0.56)., while
correlations of PD-L1 expression with CYT ranged between
0.34 and 0.73 in different cancer types (there were four excep-
tions with a lower correlation: KIRC ρ = 0.13 PCPG ρ = 0.16,
KIRP ρ = 0.17, and GBM ρ = 0.27).

Analysis of specific genotypes and immune contextures in
specific cancers types

Finally, we investigated whether the level of the immune
variables were associated with the mutational status of specific
genes (Figure 7). The top twelve genes with the most are
significant differences between mutated (mut) and wildtype
(wt) tumors are highlighted in rainbow colors. The list of top
genes included the tumor suppressor gene TP53 and the
oncogene BRAF, but not the oncogene KRAS. Interestingly,
we detected only two significant correlations of KRAS muta-
tions with differences of immune parameters: B lineage cells
were much lower in KRAS mutant stomach adenocarcinoma
(fold change = -2.7, p = 2.7E-04) and endothelial cells were
slightly lower in KRAS mutant colorectal carcinoma (fold
change = −1.2, p = 2.5E-04).

TP53mutations were associated with increased immunologi-
cal variables in BRCA, but decreased immunological variables in
HNSC and STAD. In TP53 mutated BRCA, monocytic lineage
cells (fold change = 1.6, p = 3.1E-22) and M0 macrophages (fold
change = 3.8, p = 6.0E-21) showed the highest significances

among many other increased cell populations. These changes
occurred together with a strong up-regulation of IDO1 (fold
change = 3.2) and CTLA4 (fold change = 2.3) as well as a
moderate up-regulation of PD-1 (fold change = 1.7) and PD-L1
(fold change = 1.4, all p < 1.0E-05). In TP53mutated HNSC, the
changes of CD8+ T cells were at the top of a list ordered by
significances (MCP-counter estimate: fold change = -2.8,
p = 8.1E-13; CIBERSORT estimate: fold change = -5.3,
p = 7.7E-12). These changes occurred together with a strong
down-regulation of PD-1 (fold change = -2.0) and IDO1 (fold
change = -3.1) as well as a moderate down-regulation of CTLA4
(fold change = -1.5) and PD-L1 (fold change = -1.4). In STAD,
TP53 mutations were associated with a moderate decrease of
many immunological variables including cytotoxic lymphocytes
(fold change = -1.5, p = 1.1E-05) and cytolytic activity (fold
change = -1.6, p = 4.0E-05).

BRAF mutations were associated with many increased
immunological variables in THCA, but only a few and weak
significant associations were detected in SKCM, while no
significant associations were detected in LUAD. In BRAF
mutated THCA, Myeloid dendritic cells (fold change = 3.0),
M0 macrophages (fold change = 4.7) as well as PD-L1 (fold
change = 2.1) and CTLA 4 expression (fold change = 2.7)
were increased with the highest significance (all p < 1.0E-11).

In LGG, mutations of IDH1, CIC and NOTCH1 were asso-
ciated with decreased immune cell infiltration. The cell popula-
tions decreased at highest significance were T cells (fold

Figure 6. Association of high immune checkpoint expression with the presence of immune cell infiltrates. (A) Strong positive correlation of PD-L1 expression with the
immune variables in the central immune signature (CIS, yellow box). 60% of the correlations were significantly positive, 3% were significantly negative (white crosses,
FDR< 5%). (B) Very strong positive correlation of PD-1 expression with the immune variables in the central immune signature (CIS, yellow box). 69% of the correlations were
significantly positive, 6% were significantly negative (white crosses, FDR< 5%). The abundance of cell populations was estimated by MCP-counter1 and CIBERSORT2.
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change = -1.7) and resting CD4 memory T cells (fold change = -
2.6) in IDH1 mutated tumors and monocyte lineage cells (fold
change = -1.9) and monocytes (fold change = -2.4) in CIC
mutated tumors. IDH1 mutations and CIC mutations were
associated with a significantly decreased PD-L1 expression
(fold change −2.0 and −2.0) and PD-1 expression (fold change
−1.9 and −1.7).

Discussion

We presented a comprehensive association analysis of immune
cell contexture and immune checkpoint expression with global
mutational measures including TMB, CNA load and MATH as
well as with specific mutational signatures within and across
major cancer types. Immune cell populations were estimated

Figure 7. Association of the levels of 37 TME parameters with mutations in specific genes. For each cancer type, all genes that were mutated in at least 20 tumors
were included in the analysis. (A) Volcano plot with rainbow colors highlighting the twelve top genes (TP53, BRAF, IDH1, CDH1, PIK3CA, CIC, CTNNB1, TRRAP, OVGP1,
ACVR2A, SI CASP8) that correlated highly significant (p < 1.0E-07) with at least one immune variables in at least one cancer type. (B) Heatmaps showing the fold
change (mut vs. wt tumors) pattern of the twelve top genes in the cancer types with at least ten mutated tumors.
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based on bulk tumor RNA-Seq data using the two bioinformatic
methods MCP-counter and CIBERSORT.37,38 MCP-counter is a
mathematically simple and robust approach based on marker
genes that are specifically expressed in the cell types under
investigation. Because specific marker genes are available only
for a limited number of cell types the number of detectable cell
population is limited to ten.37 CIBERSORT allows abundance
estimation for a higher number 22 cell types and is based on a
mathematical more complex and thus more error-prone linear
deconvolution of the bulk tissue gene expression profile using ν-
SVR. There were two cells types that could be estimated by both
methods: CD8 + T cells and neutrophils. For both of them, the
MCP-counter and CIBERSORT results clustered together in the
pan-cancer correlation analysis supporting the validity of the
bioinformatic approaches.

In the cancer type specific analysis of TMB significant
positive correlations with TME immune parameters were
detected in COADREAD, STAD, UCEC, CESC, BRCA,
LGG, BLCA, LUSC and LUAD. In all of these cancer types
either mutational signatures associated with defective DNA
repair, APOBEC gene family over-expression or exposure to
tobacco smoke are detectable in subsets of tumors.

In COADREAD and STAD, a TMB cutoff of 10 mut/Mb
separated almost perfect MSI-H or POLE/POLD1 mutated
tumors from MSI-L/MSS tumors and was connected with
over-expression of PD-L1 in the hypermutated tumors.
However, correlations of PD-L1 expression and TMB were
moderate in COADREAD and STAD (ρ = 0.28 and ρ = 0.23)
and even weaker (and insignificant after multiple testing cor-
rection) in all other cancer types. Thus, PD-L1 expression and
TMB should be considered as complimentary parameters
carrying independent information on tumor biology. In
most of the cancer types, there were many tumors with high
PD-L1 expression or high TMB but not both. Collectively,
these data also have direct clinical implications as they argue
that both tests should be considered complimentary rather
than exclusive in regard to evaluating patients for immunolo-
gical treatment. Data of the Checkmate 026 and 227 trials
support this notion.6,21 Optimization of the TMB cutoff point
for immune checkpoint blockade is still under development.
For NSCLC different cutoff points of 158, 200 and 243 per
exome have been investigated.19,21,39 Our data revealed differ-
ent shapes of the TMB and PD-L1 expression distribution in
different cancer types and suggest there is no one-fits-all TMB
cutoff point and that cutoff optimization needs to be done
separately for each cancer type.

Of note, PD-L1 can be expressed by different cell types40

and the bulk tissue RNA-Seq approach levels used here inte-
grates contributions from different cells types including
tumors cells, immune cells, fibroblasts and others. Using this
approach, decomposition of PD-L1 expression into contribu-
tions from specific cells types is not feasible but would require
tissue microdissection and separate gene expression analysis
of specific cell fractions. In NSCLC, four of five immune
checkpoint blockage companion/complementary diagnostic
tests are based on PD-L1 protein expression on tumors cells,
while a single test includes both, PD-L1 protein expression on
tumor cells and on immune cells.41 In many cancer types,
immunohistochemical evaluation of PD-L1 expression

remains puzzling and controversial because of several unre-
solved issues including different staining platform and anti-
bodies as well as different methods and thresholds for PD-L1
counting.

In line with previous data, correlations of immune cell popula-
tions with CNA Load were negative or not significant in most
cancer types.28 There were only a few exceptions with significant
positive correlations in cancer types including BRCA, KIRC and
LGG. Interestingly, we detected significant negative correlations of
many immune cell populations with subclonal genetic diversity
(measured by MATH) in PAAD, BLCA, STAD, ESCA, BRCA,
PRADandTHCA.These observations are in keepingwith a recent
report from Granahan et al.42 suggesting that high clonal, but low
subclonal neo-antigen burden is indicative of response to check-
point blockade in NSCLC and melanoma.

It is a limitation of our study that we cannot exclude an
influence of tumor purity of the detection sensitivity of somatic
mutations and CNAs. However, only samples with at least 60%
tumor nuclei are included in the TCGA cohort. Thus, the
influence of tumor purity is restricted to the calling of subclonal
mutations and low level CNAs. The consequence of varying
tumor purity should be discussed separately for positive and
negative immunology-genetics correlations: For positive corre-
lations, imperfect tumor purity can lead to additional noise and
lower detection sensitivity for correlations. However, varying
tumor purity can significantly bias the results in the case of
negative correlations, as low tumor purity can be caused by the
presence of immune infiltrates and at the same time can lead to
lowermutation andCNAdetection sensitivitymimicking nega-
tive correlations between immune and genetic variables.
Actually, negative correlations with CNA load and MATH
were not only detected for immune cells but also for non-
immunological cell types in the TME (endothelial cells and
fibroblasts). However, two recent studies have shown that nega-
tive correlations of immunological activity with CNA load and
MATH persisted even after correcting CNA and mutation data
for tumor cell content.28,43 The result of negative correlations of
immune infiltrates with MATH, here extended to other cancer
types beyond breast cancer for the first time, could be explained
by mechanisms of immune-editing, clone elimination and thus
reduction of mutational diversity in immunological “hot”
tumors as pointed out in.43

Of note, some mutational signatures showed stronger correla-
tion with immune cell populations than TMB in specific cancer
types. Particularly signatures characterized by C > T and C > G
mutations at TpCpN trinucleotides most likely caused by DNA
editing induced by cytidine deaminases of the APOBEC family44

showed high positive correlation with immunological variables
compared to all mutational signatures and global mutation mea-
sures. These data are in linewith reports showing that beyond their
ability to directly act on viral genomes, APOBEC-induced deami-
nation can positively modulate immunological response.45–47 The
role of the twoAPOBEC-relatedMutSigs 2 and 13was cancer type
specific: For example, while we detected many significant associa-
tions with both MutSigs in BRCA, much stronger associations
were detected for MutSig 2 compared to MutSig 13 in CESC.
Similar observations were made for cancers harboring mutational
signatures associated with DNA repair deficiency including MSI
and POLE-mutations where specific immune cell compositions
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were associated with each of these deficient repair pathways in a
cancer-type specific manner.

In contrast, we noted a cancer type-specific (SKCM, STAT
and BRCA) negative correlation of immune cell infiltrates and
MutSig 1, which describes age-related mutations due to dea-
mination. Of note, these C > T substitutions at NpCpG
trinucleotides can cause classic druggable driver lesions, e.g.
EGFR T790M or KRAS mutations. In addition, with rare
exceptions pan-cancer analysis showed no significant positive
correlations of immune cell patterns with MutSig 1. While
further investigation is required to understand why MutSig 1
related mutated clones acquired over lifetime escape immune
recognition and e.g. APOBEC-driven tumors display a ‘hot’
immune contexture, these data indicate that beyond the abun-
dance of mutations (as measured by TMB), the quality of
TMB, i.e. the composition of TMB by different mutational
signatures, likely plays an important role for immunological
response.

Explaining the different correlations we observed for different
types of MutSigs we believe that, additionally to a possible con-
tribution of the sequence composition, the mutational processes
behind the signatures and the associated specific dynamics of
mutation accumulation represent an important factor for immu-
nogenicity. Specifically, as the average number of mutations per
cell division is higher for fast mutational processes such as MutSig
6 (defective mismatch repair associated) and MutSig2 (APOBEC
related) than for slow mutational processes such as MutSig 1
(clock-like process and accumulation of mutations during life
time) adaption to evade the immune system might be more
difficult when mutations are generated by the former processes.
Therefore, MutSigs could help to read out otherwise hidden
aspects of tumor evolution and to integrate these in therapy
planning.

The correlation of immune cell population with mutations in
specific genes was inhomogeneous with respect to different cancer
types. For example, TP53 mutations correlated positively with
immune cell infiltrates in BRCA, but negatively in HNSC and
STAD. Immune cell infiltrates were higher in BRAF mutated
THCA and SKCM compared to the corresponding wildtype
tumors. In IDH1-mutated LGG immune cell infiltrates were
lower than in wildtype LGG. In principle, the association of the
immune infiltrationswith themutation status of specific genes can
be explained in twoways: (i) the genetic status of prominent driver
genes can be directly immunogenic anddirectly influence immune
response and (ii) the immune cells contexture in mutated tumors
is not primarily due to the immunogenicity of mutations in the
specific gene, but rather a consequence of an immunologically
different cancer subtype including the mutated genes under con-
sideration, but also additional other molecular features. The high
inhomogeneity we observed across cancer types is in favor of the
latter explanation.Our resultsmay have clinical implications as the
mutational status of specific genes – in addition to TMB and PD-
L1 expression – could provide complementary insight into the
responsiveness of a given tumor to immune therapy.

In summary, while high TMB appeared to elicit a favorable
immune cell response in many cancer types, CNA load and
mutational subclonality (measured by MATH) tended to be asso-
ciated with low immune cell infiltrates. Additionally and for the
first time, our analysis developed a global picture of the impact of

specific MutSigs on immune response in specific cancer types.
Additional to TMB, MutSigs and specifically MutSigs associated
with DNA repair deficiency as well as with AID/APOBEC gene
activity, should be further investigated as predictors for immune
therapy response.

Patients and methods

Study cohort and data preparation

Somatic mutation, copy number alteration (CNA) and gene
expression data of 21 solid cancer types analyzed in the TCGA
project were obtained from the cBioPortal (http://www.cbioportal.
org). The TCGA data are freely available without restrictions on
their use in publications (http://cancergenome.nih.gov/publica
tions/publicationguidelines). Values of the following 26 genetic
and 37 TME variables were determined for each of the tumors:
TMB was calculated as total number of mutations including all
non-synonymous mutations in the exonic regions and mutations
at splice sites. The CNA Load was calculated as total number of
genes with copy number gains or losses (GISTIC calls −2, −1, 1 or
2).MATHwas calculated as quotient ofmedian absolute deviation
(mad) and median of the distribution of variant allele frequencies
of the detected mutations as described before.34 The levels of 23
specific mutational signatures were obtained from Alexandrov et
al.32 For the mutational status of specific genes, non-synonymous
mutations in the exonic regions and mutations at splice sites were
taken into account. The abundance of 30 specific immune and two
non-immune cells types was estimated from RNAseq data using
the bioinformatic methods MCP-counter and CIBERSORT.37,38

CIBERSORT was run in the mode of absolute quantification
(method: sig score) that is integral part of the R code (available
from: http://cibersort.stanford.edu), but different from the relative
mode used in the original publication. Cytolytic Activity (CYT) of
the local immune infiltratewas estimated as product ofGZMA and
PRF1mRNA expression as described before.27 Gene expression of
PD-L1, PD-1, CTLA4 and IDO1were obtained from the RNA-Seq
data. Tumors were classified as POLE/POLD1 mutated when
having missense mutations or in-frame indels in the proofreading
domains (POLE codons 269–471 or POLD1 codons 304–517) or
truncating mutations anywhere. The study cohort was comprised
of 5722 tumors with the complete set of somatic mutation, muta-
tional signature, RNA-Seq and CNA data available.

Statistical analysis and visualization

Correlation strengths of immune variables and genetic variables
were quantified using Spearman’s rank correlation coefficient and
assessed for significance as implemented by the cor.test function in
the R package stats. Different levels of TME variables in tumors
with mutated and wildtype status of specific genes as well as in
hypermutated and non-hypermutated tumors were quantified
using fold changes and assessed for significance by Welch’s
t-test. A special kind of heatmap display was developed to analyze
the huge amount of correlation information obtained from corre-
lating immune variables with genetic variables in the entire pan-
cancer cohort and specifically in each of the solid cancer types:
First, out of the tree categories, immunology, genetics and topo-
graphy/morphology (cancer type), one variable was fixed. Then,
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the variables of the remaining two categories were assigned to the
x- and y-dimension of the heatmap. Hierarchical clustering of
immune variables and genetic variables was performed using the
levels in the pan-cancer cohort and Spearman correlations as
similarity measure. As a consequence, immunological and genetic
variables were ordered in each heatmap in the same way.
Hierarchical clustering of cancer types was performed based on
the correlation pattern displayed in the heatmap using Euclidean
distance as dissimilarity measure. As a consequence, the ordering
of cancer types was different in different heatmaps. For both kinds
of clustering, the average linkage method was used to calculate
distances between clusters. Multiple testing correction was per-
formed specifically for the set of correlations analyses visualized in
each of the heatmaps using the Benjamini-Hochberg method and
significant (FDR< 5%) correlations were marked by crosses. Both,
significances before (p-values) and aftermultiple testing (q-values)
were reported.

Cancer types investigated in this study

Bladder Urothelial Carcinoma (BLCA), Breast invasive carcinoma
(BRCA), Cervical squamous cell carcinoma and endocervical ade-
nocarcinoma (CESC), Colorectal adenocarcinoma
(COADREAD), Esophageal Carcinoma (ESCA), Glioblastoma
multiforme (GBM), Head and Neck squamous cell carcinoma
(HNSC), Kidney renal clear cell carcinoma (KIRC), Kidney
Renal Papillary Cell Carcinoma (KIRP), Brain Lower Grade
Glioma (LGG), Liver hepatocellular carcinoma (LIHC), Lung
adenocarcinoma (LUAD), Lung squamous cell carcinoma
(LUSC), Ovarian serous cystadenocarcinoma (OV), pancrea-
tic adenocarcinoma (PAAD), Pheochromocytoma and
Paraganglioma (PCPG), Prostate Adenocarcinoma (PRAD), Skin
Cutaneous Melanoma (SKCM), Stomach adenocarcinoma
(STAD), Papillary Thyroid Carcinoma (THCA), and Uterine
Corpus Endometrial Carcinoma (UCEC).
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