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Abstract

Background: Muscle-invasive bladder cancers (MIBCs) cause approximately 150 000 deaths per year worldwide. Survival for
MIBC patients is heterogeneous, with no clinically validated molecular markers that predict clinical outcome. Non-MIBCs
(NMIBCs) generally have favorable outcome; however, a portion progress to MIBC. Hence, development of a prognostic tool
that can guide decision-making is crucial for improving clinical management of bladder urothelial carcinomas.
Methods: Tumor grade is defined by pathologic evaluation of tumor cell differentiation, and it often associates with clinical
outcome. The current study extrapolates this conventional wisdom and combines it with molecular profiling. We developed
an 18-gene signature that molecularly defines urothelial cellular differentiation, thus classifying MIBCs and NMIBCs into two
subgroups: basal and differentiated. We evaluated the prognostic capability of this “tumor differentiation signature” and
three other existing gene signatures including the The Cancer Genome Atlas (TCGA; 2707 genes), MD Anderson Cancer Center
(MDA; 2252 genes/2697 probes), and University of North Carolina at Chapel Hill (UNC; 47 genes) using five gene expression
data sets derived from MIBC and NMIBC patients. All statistical tests were two-sided.
Results: The tumor differentiation signature demonstrated consistency and statistical robustness toward stratifying MIBC
patients into different overall survival outcomes (TCGA cohort 1, P ¼ .03; MDA discovery, P ¼ .009; MDA validation, P ¼ .01),
while the other signatures were not as consistent. In addition, we analyzed the progression (Ta/T1 progressing to �T2)
probability of NMIBCs. NMIBC patients with a basal tumor differentiation signature associated with worse progression
outcome (P ¼ .008). Gene functional term enrichment and gene set enrichment analyses revealed that genes involved in the
biologic process of immune response and inflammatory response are among the most elevated within basal bladder cancers,
implicating them as candidates for immune checkpoint therapies.
Conclusions: These results provide definitive evidence that a biology-prioritizing clustering methodology generates meaning-
ful insights into patient stratification and reveals targetable molecular pathways to impact future therapeutic approach.

Bladder cancer is among the most underpublicized and under-
studied cancer types. Yet, bladder cancer is estimated to cause
approximately 76 960 new cases and 16 390 deaths per year in
the United States (1). Muscle-invasive bladder cancer (MIBC; tu-
mor stages II–IV) accounts for the majority of patient mortality
(2). No major progress has been made in improving the survival
of MIBC patients over the past 30 years. The current standard-

of-care treatment is limited to neoadjuvant chemotherapy and
radical cystectomy in the United States (2–4). Recently, anti-PD-
L1 immunotherapy was granted accelerated approval by US
Food and Drug Administration (FDA) to treat metastatic bladder
cancer (5).

In the past few years, The Cancer Genome Atlas (TCGA)
consortium, others, and our group (6–13) have reported
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subclassification of bladder cancer into distinct subtypes based
on unique molecular signatures (8–13). We previously reported
a basal subtype of MIBCs characterized by high expression of
cytokeratins (KRT14/KRT5) and cell surface receptors
(Thy-1/CD44) that are generally expressed in stem and basal
cells of the normal bladder urothelium (6,7). Independently,
TCGA reported four clusters of MIBCs with various characteris-
tics (9). Cluster I/II tumors resembled papillary histology, and
Cluster III/IV tumors expressed high levels of cytokeratins
(KRT14/KRT5), along with other surface proteins reported to
mark stem/basal cells (9). Additional studies from Lund
University, the MD Anderson Cancer Center (MDA), and the
University of North Carolina at Chapel Hill (UNC) reported
MIBCs with basal and luminal characteristics (8,10,11). Despite
the independent clustering methodologies employed, there are
overlaps between the different subclassifications proposed. A
consensus meeting held in 2015 concluded that MIBCs can be
classified into at least two major subtypes: basal/squamous-like
(BASQ) and differentiated/luminal (14). State-of-the-art clinical
trials now evaluate whether cancer subtyping plays a role in un-
derstanding therapeutic responses (15–18). While subclassifica-
tion of MIBCs into subtypes reveals an exciting area of research,
we rationalized that a methodology that assimilates biology
during data analysis may provide valuable insights. Clinically,
tumor grading is a pathological evaluation of tumor differentia-
tion that often associates with patient outcome. The current
study extrapolates this conventional wisdom into molecular
profiling by developing a biology-based clustering methodology
from a panel of 18 genes that define various stages of urothelial
cell differentiation (7). The prognostic value of this newly de-
fined “tumor differentiation signature” was compared with
other published signatures in stratifying clinical outcome. The
overarching goal is to demonstrate the relevance to consider tu-
mor biology during classification of tumors into subtypes.

Methods

Statistical Methods for Clustering and Classification
Analysis of the Bladder Cancer Data Sets

We evaluated the prognostic capability of four classifiers, in-
cluding TCGA (2707 genes), MDA (2252 genes/2697 probes), UNC
(47 genes), and the tumor differentiation (18 genes) signatures
using five gene expression data sets derived from human MIBC
and NMIBC patients (Table 1). The TCGA MIBC data were gener-
ated by RNA-seq, and gene expression was quantified by the
RSEM method and normalized within sample to a fixed upper
quartile (9). The other four data sets were generated by Illumina
microarrays, and the normalized data were directly downloaded

from the GEO website (http://www.ncbi.nlm.nih.gov/geo/). For
microarray data sets, when there were multiple probes for a
gene, we chose the one with largest variance to represent the
gene. To make the data sets comparable, for each gene in each
data set, we standardized its expression values by subtracting
the sample mean and then dividing by the sample standard de-
viation. We used the TCGA data set and hierarchical clustering
algorithm (with 1 – Pearson correlation coefficient as the dis-
tance between samples and the “complete” agglomeration
method) to generate the expression signature for the 18-gene
tumor differentiation classifier in which the patient samples
were clustered into two subgroups with distinct expression pat-
terns. Using the clustered TCGA data set as the training data set
and Euclidean distance based on the 18 genes as the metric to
define the neighborhood among samples, we then classified the
samples in the other three data sets into the two subgroups us-
ing the 1-nearest neighbor algorithm. For the other three gene
signatures, if the samples in each data set had been classified,
we directly used the results for comparison (ie, MDA discovery
data sets). Otherwise, the 1-nearest neighbor algorithm was
used for the classification analyses.

Survival and Functional Enrichment Analyses

Kaplan-Meier method was used to generate survival curves for
the subgroups in each data set, and the log-rank test was used
to test if they were statistically different. Moderated t-statistics
were used to test if genes were differentially expressed between
the groups of interest, and the Benjamini-Hochberg method
was used to estimate false discovery rate (FDR) (19). Genes with
an FDR of less than 0.05 were considered statistically signifi-
cant. Gene functional term enrichment analysis was performed
using the DAVID bioinformatics tools (https://david.ncifcrf.gov/)
for the differentially expressed genes. Gene set enrichment
analysis was performed using GSEA software (http://software.
broadinstitute.org/gsea/index.jsp). All the statistical analyses
were performed using R (https://www.r-project.org/), and the P
values were two-sided. P values of less than .05 were considered
statistically significant.

Results

Compiling a Biology-Based Tumor Differentiation Gene
Signature

Tumor grade is defined by pathologic evaluation of tumor cell
differentiation, which historically associates with disparate bio-
logic behaviors (7). While all MIBCs are pathologically evaluated
as high-grade cancers (T2 and higher), we hypothesized that

Table 1. Data sets used for the comparative analysis of MIBC gene signatures*

Data Set Accession
No. of

samples
No. of

survival data Platform
Median

survival, mo
Median

follow-up, mo Censored, %

TCGA TCGA 408 408 Illumina Hiseq for RNAseq 34 17.6 55.9
MDA discovery GSE48277 73 73 Illumina HumanHT-12 V3.0 37.2 30.4 38.4
MDA validation GSE48277 57 57 Illumina HumanHT-12

WG-DASL V4.0 R2
79.2 38.1 54.4

Lund GSE32894 308 224 Illumina HumanHT-12 V3.0 NA 35.1 88.9
CancerCell2016

(NMIBC)
E-MTAB-4321 460 460 Illumina Hiseq for RNAseq NA 33 (progression-

free survival)
93.3

*MIBC ¼muscle-invasive bladder cancers; NMIBC ¼ non-MIBC; TCGA ¼ The Cancer Genome Atlas.
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expression of genes associated with urothelial cell differentia-
tion (within a tumor) might provide molecular information to
its corresponding differentiation status. Thus, such molecular
information likely complements pathologic grading and reflects

pathobiology that might better predict outcome (6,7). First, we
developed a classifier from 18 genes differentially expressed in
various layers of the bladder urothelium (ie, different cellular
differentiation stages) (Figure 2A). Established cytokeratins,

A 

B 

Figure 1. Flowchart of the current study. A) This figure summarizes the overall rationale and the sequence of statistical analyses performed to generate each of the fig-

ures and tables in the current study. B) Schematic of urothelial carcinoma molecular subtypes. MIBC ¼muscle-invasive bladder cancer; NMIBC ¼ non-MIBC; PFS ¼ pro-

gression-free survival.
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uroplakins, and clusters of differentiation (CD) markers were se-
lected on the basis of their expression corresponding to various
differentiation stages or cell layers of the bladder urothelium
(Figure 2A). For instance, KRT5/17 and CD44 are reported to be
expressed in basal cells of human urothelium (7,21,22). KRT14,
originally thought to define urothelial squamous differentiation
(21,23), was also reported to be expressed in early stem/progeni-
tor cells in the urothelial basal layer (6). A recent study employ-
ing a KRT14 Cre reporter mouse followed by lineage-tracing in
bladder urothelium provided definitive evidence demonstrating
that KRT14 could mark stem/progenitor cells, with the capacity
of giving rise to all urothelial layers (24).

Cytokeratins 8/18 are expressed in the intermediate and
more differentiated urothelial cells, while cytokeratin 20 and
uroplakins are expressed in terminally differentiated umbrella
cells that are adjacent to the lumen (Figure 2A) (25,26). We

previously reported that constitutive expression of Stat3 drives
invasive progression of MIBCs in a mouse model (27). STAT3 is
known to maintain stem cell self-renewal (28), and its expres-
sion closely associates with basal KRT14 expression (27).
Therefore, STAT3 and its upstream regulators, including EGFR
and JAK2, were also included in the tumor differentiation
signature (12).

Subclassification of Human MIBCs Into Basal and
Differentiated Subtypes

We employed this 18-gene tumor differentiation signature to
stratify the published TCGA cohort of 129 MIBC patients with
RNA sequencing data (9) and identified two distinct subtypes
(Figure 2B). The first MIBC subtype expressed a higher level of
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Figure 2. A biology-based tumor differentiation classifier. A) Schematic summary of the selection of genes expressed in basal and differentiated cells within normal

bladder urothelium—for compiling the 18-gene tumor differentiation classifier. B) Hierarchical clustering analysis of the 129 muscle-invasive bladder cancer (MIBC)

patients from The Cancer Genome Atlas (TCGA) cohort 1 using the 18 tumor differentiation genes reveals two MIBC subtypes: basal (red) and differentiated (blue). On

the heatmap, green to red color indicates low to high gene expression. C) Published gene signature by TCGA (2707 genes) stratifies MIBC specimens into four clusters. D

and E) Classification of MIBCs from TCGA data set into subgroups, using the 1-nearest neighbor algorithm and gene signatures from MD Anderson Cancer Center (2252

genes) and University of North Carolina at Chapel Hill (47 genes), respectively. MDA ¼ MD Anderson Cancer Center; TCGA ¼ The Cancer Genome Atlas consortium;

UNC ¼ University of North Carolina at Chapel Hill.
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basal cytokeratins and other genes associated with urothelial
basal cells, while expression of differentiation genes was rela-
tively lower, and was therefore designated as “basal” subtype.
The second MIBC subtype expressed a relatively lower level of
basal genes and higher level of differentiation genes, and was
therefore designated as “differentiated” subtype.

Several molecular classification studies on human MIBCs
have been published in the recent years. For instance, a pub-
lished TCGA study performed unsupervised clustering analysis
of 129 MIBC patient samples using 2707 genes, which stratified
patients into four “clusters” (Clusters I, II, III, and IV) (Figure 2C).
The MDA group performed unsupervised clustering analysis of
73 primary fresh-frozen MIBC specimens using 2252 genes (2697
probes) that generated three subtypes including basal, p53-like,
and luminal (10). The UNC group performed consensus cluster-
ing analysis of a meta–data set that identified basal and luminal
subtypes and further identified 47 genes as the subtype predic-
tor (11). Using the 18-gene tumor differentiation signature and
the other three existing gene signatures (TCGA/MDA/UNC), we
classified patient specimens in the testing data sets into corre-
sponding subtypes using the 1-nearest neighbor method with
Euclidean distance. The MDA gene signature and the UNC gene
signature presented by the TCGA data set are shown in Figure 2,
D and E, respectively, where patient specimens were classified
using the 1-nearest neighbor method and genes were arranged
by hierarchical clustering using 1 – Pearson correlation coeffi-
cient as distance and complete agglomeration algorithm. The
heatmap representation of these four gene signatures pre-
sented by different published data sets is shown in
Supplementary Figure 1A (available online).

Prognostic Value of Tumor Differentiation Signature in
Stratifying Patient Survival in Comparison With Other
Existing Gene Signatures

Next, we investigated whether the basal and differentiated sub-
types defined by the tumor differentiation signature using the
published TCGA cohort (9) had prognostic value. The basal MIBC
subtype had worse overall survival compared with the differenti-
ated subtype (P ¼ .03) (Figure 3A). Similarly, the UNC basal subtype
also had worse overall survival compared with the luminal
subtype (P ¼ .04) (Figure 3J). In contrast, in terms of overall sur-
vival, the TCGA subtypes were not statistically significantly differ-
ent (P ¼ .19) (Figure 3D), and the MDA subtypes were marginally
statistically significantly different (P¼ .09) (Figure 3G).

We further evaluated the prognostic value of the tumor dif-
ferentiation signature in additional MIBC cohorts (Table 1). The
tumor differentiation signature reproducibly stratifies overall
survival in these cohorts, with the basal subtype associated
with a statistically significantly worse overall survival (P ¼ .009,
P ¼ .01, P ¼ .001) (Figure 3, B and C; Supplementary Figure 4A,
available online). The other three signatures demonstrated a
trend in stratifying overall survival, and there were instances
where some signatures demonstrated statistical significance
(Figure 3, E and F, H and I, and K–L; Supplementary Figures 2A
and 4A, available online). Taken together, these results demon-
strated the statistical robustness and consistency of the tumor
differentiation signature in stratifying overall survival across
multiple data sets. Moreover, as the general perception was that
TCGA Cluster I/II and Cluster III/IV tumors resemble differenti-
ated (or luminal) and basal tumors, respectively, we performed
additional survival analysis by combining Cluster I/II and
Cluster III/IV tumors (Supplementary Figure 3, A–D). The results

revealed that the basal and differentiated tumors defined by the
tumor differentiation signature are considerably different from
combining Cluster III/IV and Cluster I/II, respectively.
Combination of Cluster I/II tumors is not consistent in stratify-
ing patient survival from Cluster III/IV tumors.

Comparison of MIBC Subtype Assignments by Different
Gene Signatures

While in reviewed literature, basal and luminal (or differenti-
ated) subtypes of MIBCs stratified by different signatures corre-
spond well (29); raw data supporting such claims have not been
available, and therefore warrant careful evaluation.

Figure 4 summarizes the relative cancer subtype assign-
ments by each of the four gene signatures evaluated in the cur-
rent study and illustrates how they relate to their counterparts
in other studies. For every subtype or cluster, we determined
the proportion of specimens that would be stratified as basal or
differentiated subtypes based on the tumor differentiation sig-
nature. These data demonstrate that the TCGA cluster III and IV
tumors correspond well with the basal cancer subtypes classi-
fied by MDA, UNC, and the tumor differentiation signature
(Figure 4A; Supplementary Figures 2B and 4B, available online).
In the TCGA and MDA discovery cohorts, we found that most of
the Cluster III and IV tumors had a gene signature that was con-
sidered basal (Figure 4D; Supplementary Figures 2C and 4C,
available online).

Within the MDA discovery and validation cohorts, the tumor
differentiation signature classified specimens to basal or differ-
entiated, which highly overlap with the basal and luminal sub-
types assigned by the MDA group, respectively; however, the
“p53-like tumors” were divided between basal and differenti-
ated subtypes (Figure 4, A–C). While earlier reports suggested
that p53-like tumors were mainly luminal, these findings fur-
ther corroborate recent studies recognizing that the “p53-like”
subtype is composed of both luminal and basal tumors (30).
More than 50.0% of the “p53-like tumors” were classified as
basal tumors by the UNC signature within the MDA validation
cohort (Figure 4C); 73.2% of the TCGA Cluster I tumors and 83.3%
of the TCGA Cluster II tumors had a gene signature that was
considered “differentiated” by the tumor differentiation signa-
ture (Figure 4, A and D; Supplementary Figures 2, B and C, and 4,
B and C, available online). These results are insightful in laying
out the variability among subtype assignments by different sig-
natures in different patient cohorts.

Tumor Differentiation Signature as a Predictor of PFS in
NMIBC

NMIBCs have a favorable prognosis. However, 15.0% to 20.0% of
NMIBCs eventually progress to aggressive MIBCs (20,31).
Predicting NMIBC progression and the underlying molecular
pathways involved has been an overarching goal. Here, we ex-
amined the power of the tumor differentiation signature to pre-
dict disease progression in NMIBC patients using a published
data set of 460 NMIBC patients (20). The tumor differentiation
gene signature stratified patients into basal and differentiated
groups (Figure 5A), with 83.3% (383/460) of NMIBC patients clus-
tered into the differentiated group. The basal tumors were
strongly associated with worse progression-free survival (P ¼
.008) (Figure 5B) and progression to T2 stage ( basal: 12.9%, 95%
CI ¼ 7.1% to 22.1%; vs differentiated: 5.1%, 95% CI ¼ 3.1% to 7.9%;
P ¼ .009) (Figure 5C). The distributions of the NMIBC patients
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Figure 3. Comparison of tumor differentiation signature to other existing signatures in stratifying overall survival of muscle-invasive bladder cancer (MIBC) patients.

A–C) Application of the tumor differentiation signature in The Cancer Genome Atlas consortium (TCGA), MD Anderson Cancer Center (MDA) discovery, and MDA vali-

dation cohorts of MIBC patients in direct comparison with the TCGA (D–F), MDA (G–I), and University of North Carolina at Chapel Hill (J–L) signatures in stratifying

overall survival of MIBC patients. P values are two-sided, log-rank test. MDA ¼ MD Anderson Cancer Center; MIBC ¼ muscle-invasive bladder cancer; TCGA ¼ The

Cancer Genome Atlas consortium; UNC ¼ University of North Carolina at Chapel Hill.
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Figure 4. Muscle-invasive bladder cancer (MIBC) subtype assignments by different gene signatures. A–C) Colorimetric chart demonstrating the distribution of MIBC

patients assigned by The Cancer Genome Atlas consortium (TGCA)/MD Anderson Cancer Center (MDA)/University of North Carolina at Chapel Hill (UNC), and the tu-

mor differentiation signatures and their relation to other signatures. D–F) The percentage of basal and differentiated MIBCs assigned by the tumor differentiation sig-
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who progressed to T2 (20) in the basal and differential subtypes
are shown in Figure 5D. Collectively, these results indicate that
the tumor differentiation status of NMIBCs is one determining
factor that influences tumor progression, but clearly not the
sole factor.

Pathways Associated With Basal and Differentiated
Subtypes Defined by the Tumor Differentiation
Signature

As the basal and differentiated MIBC subtypes were associated
with overall survival, we further investigated the molecular
pathways associated with each subtype. Gene functional term
enrichment analysis of upregulated genes revealed many over-
laps of the top 10 pathways enriched in the basal subtype of
MIBCs and NMIBCs (Figure 6, A–E). These results indicate that
common pathways, such as those related to epidermis develop-
ment, cell adhesion, and inflammatory, immune, and defense

responses, are activated in the basal subtype. Gene set enrich-
ment analysis (GSEA) identified members of cytokines and the
cytokine receptor family, as well as toll-like receptors (TLRs)
and the chemokine (CXCL) family, as elevated in basal MIBCs
(Figure 6F, Table 2), indicating an inflammatory and immune-
infiltrating microenvironment (32). This is further supported by
co-expression of genes corresponding to various T-cell subsets,
as well as a master regulator of cancer inflammation—STAT3
(Figure 6G) (33). While further analysis and functional experi-
ments are needed to determine the pro- or antitumoral roles of
these immune infiltrates, we found that basal MIBCs also highly
expressed genes encoding cytotoxic T-lymphocyte-associated
protein 4 (CTLA4) and programmed death–ligand 1 (PD-L1 or
CD274) with established roles in immunosuppression, as well as
other genes with immune regulatory roles (Figure 6, G and H;
Supplementary Figure 5, available online) (34–36).

For the differentiated subtype of MIBCs, among the most sta-
tistically significant pathways are fatty acid metabolism, drug
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color indicates low to high gene expression. B) Kaplan-Meyer analysis of progression-free survival (PFS) in the NMIBC cohort (P ¼ .008 , log-rank test, two-

sided). C) Percentage of patients progressing to T2 (basal: 12.9%, 95% confidence interval [CI] ¼ 7.1% to 22.1%; differentiated: 5.1%, 95% CI¼3.1% to 7.9%; P ¼
.009, Fisher exact test, two-sided). D) Percentage of basal and differentiated subtypes in the NMIBC patients that progressed to T2.
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Figure 6. Summary of gene functional terms and gene set enrichment analysis (GSEA). A–D) The top 10 most statistically significantly represented biologic processes

within the basal subtype of muscle-invasive bladder cancers (MIBCs) and non-MIBCs (NMIBCs) (E) from each of the data sets analyzed (The Cancer Genome Atlas

[TCGA]/MD Anderson Cancer Center [MDA] discovery/MDA validation/Lund, NMIBC). F) Immune gene enrichment analysis in the TCGA and NMIBC cohorts. The P val-

ues are two-sided, GSEA test. G) Heatmap of immune cell–specific gene clusters in the TCGA cohort (a gene can belong to different gene clusters). H) Pathway analysis

summarizing the interacting regulatory role for a panel of upregulated genes with CTLA4 within the “immune response” and “inflammatory response” groups. Lund ¼
University of Lund; MDA ¼ MD Anderson Cancer Center; MIBC ¼ muscle-invasive bladder cancer; NR ¼ negative regulation; PR ¼ positive regulation; R ¼ regulation;

TCGA ¼ The Cancer Genome Atlas consortium; UNC ¼ University of North Carolina at Chapel Hill.
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metabolism, and peroxisome proliferator activated receptor
gamma (PPARG) pathways (Table 2). Drug-induced activation of
PPARG has been previously reported to promote cellular differ-
entiation in normal human urothelial cells, demonstrated by
upregulation of differentiation markers such as UPKs and
KRT20 (7,37,38). Such a phenotype is reminiscent of the differ-
entiated subtype of MIBCs, which express high levels of differ-
entiated genes, for example, UPKs and KRT20 (Figure 2B).

Discussion

Molecular classification of human epithelial cancers (eg, breast
cancer) into distinct molecular subtypes has opened an avenue
to personalized medicine, for example, herceptin for human
epidermal growth factor receptor 2 (HER2)–positive breast can-
cer patients (39). Such clinical advances brought enthusiasm to
genomic profiling of other cancer types. Until recently, bladder
urothelial carcinomas lagged behind in terms of molecular sub-
typing. TCGA and multiple groups have published molecular
signatures that classify bladder cancers into distinct subgroups
(8–13). Each of these signatures has their own validity, as they
were either geared toward a specific clinical outcome or utilized

a conventional unsupervised hierarchical clustering strategy
without necessarily considering cancer biology during data
analysis. Our study is unique in that it shows that differentia-
tion state can be used to classify MIBC tumors into biologically
meaningful subtypes: namely “basal” and “differentiated” sub-
types. When applied to multiple published data sets, this
biology-based gene signature is highly consistent in stratifying
patient overall survival.

An important goal of subtyping is the identification of mo-
lecular pathways deregulated within each cancer subtype,
which provides opportunities for precision medicine. Our path-
way analysis of basal and differentiated tumor subtypes
revealed FDA-approved drug targets for basal MIBCs (eg, CTLA-4
and PD-L1), as well as master transcriptional regulators of cellu-
lar differentiation that associate with each subtype (eg, Stat3 for
basal subtype and PPARG for differentiated subtype), supporting
our conception that bladder cancer is a disease of aberrant cel-
lular differentiation (7). In fact, a mouse model overexpressing
active Stat3 in urothelial basal cells demonstrated features of
human basal bladder cancers (27).

While anti-CTLA4 and anti-PD-L1 immunotherapies are
highly effective in certain patient subpopulations, a major clini-
cal challenge is the lack of predictive markers available to

Table 2. KEGG pathway enrichment analysis of basal and differentiated MIBCs from the TCGA cohort with 408 samples*

Name Size NES FDR

KEGG pathways enriched in basal subtype
CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 264 2.63 <0.001
GRAFT_VERSUS_HOST_DISEASE 37 2.58 <0.001
LEISHMANIA_INFECTION 70 2.54 <0.001
HEMATOPOIETIC_CELL_LINEAGE 84 2.51 <0.001
NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 132 2.47 <0.001
ALLOGRAFT_REJECTION 35 2.45 <0.001
AUTOIMMUNE_THYROID_DISEASE 50 2.45 <0.001
ANTIGEN_PROCESSING_AND_PRESENTATION 81 2.41 <0.001
TYPE_I_DIABETES_MELLITUS 41 2.33 <0.001
NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 62 2.33 <0.001
JAK_STAT_SIGNALING_PATHWAY 155 2.30 <0.001
TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 102 2.28 <0.001
ASTHMA 28 2.17 <0.001
INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 46 2.15 <0.001
CHEMOKINE_SIGNALING_PATHWAY 188 2.09 <0.001
PRIMARY_IMMUNODEFICIENCY 35 2.07 <0.001
ECM_RECEPTOR_INTERACTION 83 2.06 <0.001
CYTOSOLIC_DNA_SENSING_PATHWAY 55 2.06 <0.001

KEGG pathways enriched in differentiated subtype
METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 69 –2.31 <0.001
DRUG_METABOLISM_CYTOCHROME_P450 71 –2.20 <0.001
RETINOL_METABOLISM 63 –2.16 <0.001
STEROID_HORMONE_BIOSYNTHESIS 54 –2.13 <0.001
PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS 27 –2.08 <0.001
LINOLEIC_ACID_METABOLISM 28 –1.97 <0.001
PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 40 –1.91 0.0016
ASCORBATE_AND_ALDARATE_METABOLISM 24 –1.90 0.0015
FATTY_ACID_METABOLISM 40 –1.83 0.0042
TYROSINE_METABOLISM 42 –1.72 0.015
KEGG_STARCH_AND_SUCROSE_METABOLISM 49 –1.72 0.014
KEGG_ALPHA_LINOLENIC_ACID_METABOLISM 18 –1.69 0.017
KEGG_ARACHIDONIC_ACID_METABOLISM 57 –1.68 0.019
PPAR_SIGNALING_PATHWAY 69 –1.56 0.057

*FDR ¼ false discovery rate; KEGG ¼ Kyoto Encyclopedia of Genes and Genomes; MIBC ¼ muscle-invasive bladder cancers; TCGA ¼ The Cancer Genome Atlas; NES ¼
normalized enrichment score.
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stratify responders and nonresponders. Our findings indicate
that patients with basal MIBC are candidates for immune check-
point therapies, as they express high levels of CTLA-4 and PD-
L1, with other genes implicating heavy immune infiltration.
Recent clinical trials testing Atezolizumab (anti-PD-L1 antibody)
in chemotherapy-refractory (16) and cisplatin-ineligible MIBC
patients (18) revealed partial support. Greater response to
Atezolizumab was seen among patients classified as TCGA
Cluster II (within differentiated/luminal) and Cluster III (within
basal) (16,18). These results suggest that there are MIBC patient
populations within basal and differentiated subtypes that re-
spond differently to Atezolizumab. Our data also led us to spec-
ulate that the differentiated and basal subtypes may be further
divided into subgroups. For instance, certain patients within the
differentiated subtype revealed a considerable expression of
stem/basal cell genes, for example, Thy-1, CD44, and ITGA6
(6,40), and genes indicative of immune infiltration, which might
correspond to Cluster II responders to Atezolizumab. These
observations raise the notion that an interplay between stem/
basal cancer cells and tumor-infiltrating immune cells may
modulate response to immune checkpoint therapies. It will be
important to analyze gene expression data from these check-
point inhibition clinical trials to validate our hypothesis.
Additional findings from the Atezolizumab trials revealed that
Cluster III/basal tumors responded to immunotherapy.
However, they are not necessarily the best responders, posing
an urgent need to identify additional uncharacterized immuno-
suppressive mechanisms in basal MIBC patients.

Recently, another meticulous study performed an integrated
analysis across 12 cancer types and found that certain cancer sub-
types are closely related to their tissue of origin (41). In their objec-
tive and comparative analysis, bladder cancer was found to be
one of the most diverse cancer types, with specimens clustered
into seven out of 11 major subtypes (41). Here, by employing a
biology-based clustering method, we could define such a molecu-
larly diverse cancer type (41) into two biologically distinct subtypes
that statistically associated with clinical prognosis. Importantly,
this tumor differentiation gene signature outperforms the TCGA
signature in predicting patient survival. This concept is further
supported by recent studies in other cancer types, for example,
acute myeloid leukemia (42) and prostate cancer (43), where stem
cell genes were successfully used to stratify patients into groups
with differential survival outcome (42) or to identify patients asso-
ciated with pathologically aggressive cancers (43), respectively.
With further identification and characterization of study models
that recapitulate the bladder cancer subtypes (as in [44–46]), pre-
clinical studies can be designed to reveal valid drug targets (47,48),
which can impact patient care for bladder urothelial carcinomas.

Our study has its limitations. We utilized published data
sets, which renders our study design retrospective. Therefore, it
is essential to validate our findings in prospective studies of
treatment-naı̈ve MIBC patients. Another limitation is that the
analysis is primarily based on treatment-naı̈ve MIBC patient
cohorts. Classification of patient cohorts treated with different
regimens (eg, chemotherapy or immunotherapy) using the tu-
mor differentiation signature will provide important informa-
tion for understanding its usefulness in selecting patients that
might benefit from the given therapies.
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