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Abstract

Background and aims: Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous disease 

with variable presentations and natural histories of disease. We hypothesized that different 

morphologic characteristics of PDAC tumors on diagnostic computed tomography (CT) scans 

would reflect their underlying biology.

Methods: We developed a quantitative method to categorize the PDAC morphology on pre-

therapy CT scans from multiple datasets of patients with resectable and metastatic disease, and 

correlated these patterns with clinical/pathologic measurements. We modeled macroscopic lesion 

growth computationally to test the effects of stroma on morphological patterns, hypothesizing that 

the balance of proliferation and local migration rates of the cancer cells would determine tumor 

morphology.

Results: In localized and metastatic PDAC, quantifying the change in enhancement on CT scans 

at the interface between tumor and parenchyma (delta) demonstrated that patients with 

conspicuous (high delta) tumors had significantly less stroma, higher likelihood of multiple 

common pathway mutations, more mesenchymal features, higher likelihood of early distant 

metastasis, and shorter survival times compared with those with inconspicuous (low delta) tumors. 

Pathological measurements of stromal and mesenchymal features of the tumors supported the 

mathematical model’s underlying theory for PDAC growth.

Conclusion: At baseline diagnosis, a visually striking and quantifiable CT imaging feature 

reflects the molecular and pathological heterogeneity of PDAC, and may be used to stratify 
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patients into distinct subtypes. Moreover, growth patterns of PDAC may be described using 

physical principles, enabling new insights into diagnosis and treatment of this deadly disease.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is associated with early distant metastasis (DM) 

and resistance to chemotherapy and radiation. However, this disease has substantial 

heterogeneity in biophysical features and in outcomes for patients (1–5). The identification 

of a biomarker that distinguishes patients with more aggressive disease from those with less 

aggressive disease would enable more rational therapeutic choices.

One such biomarker in PDAC may involve the stroma, elements of which have been linked 

with suppression of metastatic spread of the cancer cells (6–8). Notably, the stroma changes 

in response to therapy, and the nature of those changes may be associated with more 

aggressive cancer biology (9). The native and dynamic roles of the stroma remain areas of 

intense scientific investigation. Clarifying the role of stroma is thought to have important 

clinical implications that could affect patient survival.

We previously showed that the stroma may represent a physical barrier to drug delivery in 

PDAC (3). We further demonstrated that mass transport properties derived from CT scans 

correlated with the delivery of, response to, and outcome after gemcitabine-based therapies 

(2,3). These findings suggested that properties derived from CT scans could serve as 

biophysical markers of PDAC, although they could not provide insight a priori into the 

natural history of the disease or underlying physical and biological mechanisms related to 

patient outcomes.

Here, we hypothesized that morphologic characteristics of human PDAC tumors would 

indicate the aggressiveness of the disease, as with other cancers (10–17). We developed a 

method to quantify the morphology of PDAC, classifying patients based on this imaging-

based feature and correlating that classification with pathologic and clinical findings. We 

investigated the biophysical mechanisms related to our observations by using a mathematical 

theory of macroscopic PDAC tumor growth (18) that considered the stroma as a determinant 

of cancer cell proliferation and migration rates.

METHODS

Patients

All studies were conducted in accordance with U.S. Common Rule and with Institutional 

Review Board approval (PA14–0646), including waiver of informed consent. We reviewed 

patients in Supplementary Tables S1–4. Consort flow diagrams are shown in Supplementary 

Fig. S1. Only patients with pancreatic protocol CT scans prior to treatment were included.
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Patients who participated in a prospective trial to measure gemcitabine 
pharmacokinetics—We conducted studies using data from a group of patients who 

enrolled on a previously described intraoperative gemcitabine infusion clinical trial (3). 

Briefly, patients with untreated, resectable pancreatic cancer were eligible (NCT01276613, 

Supplementary Table S1).

Patients who underwent upfront surgery—We included patients who underwent 

resection of treatment-naïve, localized PDAC between 2001 and 2013 (Supplementary Table 

S2).

Patients who received neoadjuvant gemcitabine-based chemoradiation—
Patients who enrolled on two Phase II trials (19) of neoadjuvant therapy for resectable 

PDAC are described in Supplementary Table S3.

Patients with newly diagnosed stage IV PDAC—We included patients who presented 

between 2012 and 2014 with treatment-naïve stage IV PDAC, with metastatic disease either 

confirmed pathologically or radiographically (Supplementary Table S4).

CT analysis

The pancreatic protocol CT scan is a diagnostic test for pancreatic cancer, where iodine-

based contrast is injected intravenously at a fixed rate (20). The test usually consists of a pre-

contrast phase, an arterial phase (35–40 seconds after starting contrast infusion) and a portal-

venous phase (65–70 seconds after starting contrast infusion). We describe the use of each 

phase of the pancreatic protocol CT for our measurements below.

i) Delta measurement: The pre-operative CT images (2.5 mm slice thickness) were 

imported into Velocity AI (Varian Medical Systems, Palo Alto, CA) for image 

registration of the arterial phase and portal venous phase of the pancreatic 

protocol CT scan for each patient. After performing deformable registration of 

the different phases of the scan, the interface between the PDAC tumor and the 

surrounding pancreas parenchyma was characterized by volumetrically 

contouring both the tumor and pancreas at the border, while avoiding the 

pancreatic duct, the surrounding fat space of the pancreas, and metal artifacts. 

The mean value of the Hounsfield unit (HU) distribution within each contour 

was compared, providing a difference in HU called “delta” (Fig. 1A, B).

ii) Volumetric AUC (VAUC): The details of our original analysis method were 

described previously (2,3). We analyzed the same registered CT scans as 

described for the delta measurement.

Quantitative analysis of pancreatic cancer tissue

The histologic sections of pancreatic cancer tissue stained with H&E (test set: 12 cases, see 

Supplementary Table S1 for patients’ characteristics; validation set: 17 cases, part of cohort 

in Supplementary Table S2) were scanned using a Vectra slide scanner (PerkinElmer, 

Waltham, MA). We used identical exposure times for all slides. The whole slide was 

scanned at 4X, then 100 high power images within the tumor were scanned at 20X. All 
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scanned images were reviewed (Vectra Review 1.0.5, PerkinElmer, Waltham, MA). Images 

were excluded if they were out of focus or contained artifacts. To establish the spectral 

library of H&E, a representative digitized image was imported to Nuance (PerkinElmer). 

The spectral profiles of each of these single stains were used to unmix images that contain 

H&E to quantify each stain. Then, we established two different image analysis methods 

using inForm® (PerkinElmer).

1) Identification of stroma cells and lymphocytes in the tumor microenvironment:

inForm® software was used to segment the nuclei of cells in the slide and 

subsequently identify proportions of stroma cells and lymphocytes. The software 

provides pattern recognition machine learning algorithms as well as cell 

phenotyping algorithms, which are trained to segment subcellular compartments 

and identify specific types of cells, respectively. A pathologist (DC) provided 

annotation of 1950 cells (cancer cells: 563, stroma cells: 151, lymphocytes: 310, 

and normal pancreas cells [islet cells: 309, acinar cells: 382, ductal cells: 235]). 

We established two different cell type identification training methods. First, we 

used four cell type classifiers (4 types, 1: cancer cells; 2: stroma cells; 3: 

lymphocytes; 4: normal pancreas cells). This analysis system showed high 

accuracy of identification of stroma cells (97.2%) and lymphocytes (98.7%). 

However, the accurate identification of cancer cells and normal pancreas cells 

(e.g. acinar cells, ductal cells, islet cells) was limited, especially when normal 

pancreas cells were located around cancer cells. Cancer cells were correctly 

identified at 81.1%, and normal pancreas cells were identified correctly at 

57.4%. For comparison, we applied three cell type classifiers (3 types, 1: cancer/

normal pancreas cells, 2: stroma cells, 3: lymphocytes). Both methods (3 or 4 

cell type classifiers) identified the same total number of cells on each of the 

slides that we analyzed (range, 22,202 to 90,976 cells/slide) while maintaining a 

high degree of accuracy in identifying stroma cells and lymphocytes. Therefore, 

we used the algorithm with three classifiers to count stroma cells and 

lymphocytes in each slide and used the total number of cells to calculate the 

proportions of stroma cells and lymphocytes in each tumor.

2) Measurement of cellular features:

Specific images from each slide, which contained only cancer cells, stroma cells, 

and/or lymphocytes, were selected by a pathologist (DL). Then, the cell 

phenotyping algorithm with three classifiers, as described above, was applied to 

identify nuclei of pancreatic cancer cells (range, 1828 to 37966 cells/slide). The 

nucleus axis ratio was calculated as minor axis divided by major axis.

In addition to validation by a pathologist, we performed quality control measures 

(hematoxylin intensity of the nucleus, nucleus area, and major/minor axes of nucleus) to 

ensure that the cells were being identified correctly and that the measurements of the cell 

features were in line with expectation. ImageJ 1.48v (NIH, USA) was used to measure the 

major and minor axes of cells.
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PDAC primary cell lines and cell culture

MDA-PATC50, 66, 69, 102, and 118 cell lines were derived from our pancreatic xenograft 

program (21–23). The Institutional Review Board and the Institutional Animal Care and Use 

Committee at The University of Texas MD Anderson Cancer Center approved these studies. 

Details of cell isolation, fingerprinting, culture, and western blotting are in Supplementary 

Methods.

Exome sequencing and mutation profiling

Exome DNA was captured using the Agilent 50M capture kit and tumor/normal sample pairs 

were sequenced with 100 base pair paired-end reads on an Illumina HiSeq 4000 sequencer at 

a mean depth of 150× for normal samples and 300× for tumor samples. Reads were aligned 

with the Burrows-Wheeler Alignment software (BWA) to the reference human genome 

version hg19 (24). We processed aligned reads from these tumor/normal pairs using MuTect 

to call point mutations and small insertions and deletions (25).

Mathematical Modeling

We use a multicomponent mixture modeling framework to simulate solid tumor progression 

(10,12,26–31). Tumor and host regions are described as a saturated medium, comprised of a 

mixture of viable and dead cells. Volume fractions, ϕV and ϕD, describe the relative amounts 

of these components respectively. The governing equations consist of mass and momentum 

balance equations for each component. The mass balance equations are

∂ϕi
∂t + ∇ ⋅ uiϕi = − ∇ ⋅ Ji + Si, i = V , D

where ui is the velocity, Ji is a flux, and Si is a source term that accounts for proliferation 

and death. The source terms are:

SV = ΛP σϕV ,

SD = λNH σN − σ ϕV − λLϕD,

where ΛP is the mitosis rate, λN is the death rate associated with cell necrosis, H is the 

Heaviside function, σ is the concentration of cell substrates, which models the combined 

effects of oxygen, glucose and growth factors, σN is the concentration of substrates needed 

for cell viability, and λL is the clearance rate of dead cells. Appealing to a generalized Fick’s 

law (27), the flux Ji = −Mϕi∇μ, where μ = f′(ϕT) − ε2∇2ϕT, with ϕT = ϕV + ϕD, is a chemical 

potential. We take f ϕT = 1
4ϕT

2 1 − ϕT
2 to be a double well potential, which reflects the 

tendency of the tumor cells to adhere to one another. The parameter ε models the range of 

cell-cell interactions and introduces a finite thickness (proportional to ε) of the tumor-host 

interface.

We assume that the mixture is tightly packed so that viable and dead cells move with the 

same velocity, which is taken to be a generalized Darcy’s law (27):
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ui = u = − ∇ p + ΛM ϕV ∇σ + Fa,

where p is the solid pressure, ΛM is a chemotaxis migration coefficient, σ is the 

concentration of life-sustaining cell substrates, which models the combined effects of 

oxygen, glucose and growth factors, and Fa = γ
ε μ∇ϕT is a cell-cell adhesion velocity where 

γ is a measure of cell-cell adhesion (27).

Assuming that the sum of the tumor and host volume fractions is constant, an equation for 

the pressure can be derived by summing the equations for the volume fractions (27):

∇ ⋅ u = ΛP σϕV − λLϕD .

Finally, the cell substrates are assumed to diffuse throughout the tissue and be supplied by an 

underlying vasculature:

0 = ∇ ⋅ D∇σ − λϕV + Sn,

Sn = pH σ* − σ ϕH,

where we have assumed that substrates diffuse sufficiently rapidly so as to enable a quasi-

steady approximation, D is the diffusion coefficient, λ is the uptake rate, Sn is the nutrient 

source, pH is the rate of substrate delivery, σ* is the effective level of substrates delivered 

and ϕH is the host volume fraction. Details of the mathematical simulations, and parameter 

values are in the Supplementary Methods (10,12,26–31). Here, we only discuss the 

estimation of the proliferation and migration parameters responsible for the morphological 

stability of the tumors.

Statistics

JMP Pro 11.2.0 (SAS, North Carolina, USA) was used to perform all statistical analyses. 

Mann-Whitney (Wilcoxon) test was used to compare distributions between groups. Survival 

curves were constructed using the Kaplan-Meier method. The Cox proportional-hazards 

model was used for univariate and multivariate survival analyses. Overall survival was 

defined from time of diagnosis to time of death or last follow up for all cohorts. Distant 

metastasis free survival was defined from time of diagnosis to time of first distant metastasis 

or last follow up for all cohorts. To build multivariate Cox proportional hazards models, we 

started with the potential covariates which demonstrated a p-value <0.2 in the univariate 

models, and backward model selection technique was used. C-index was also calculated for 

the multivariate models. We considered a P value less than 0.05 as significant.

RESULTS

Quantitative Characterization of the Tumor Interface and PDAC Morphology on CT Scans

We previously demonstrated (10,11,13,28), using a biophysical theory of tumor morphologic 

stability (12), that the features of the tumor at the microscopic scale were described by the 
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competition of mechanisms that oppose infiltrative growth (termed “relaxation 

mechanisms,” e.g., cell proliferation represented here by the mitosis rate ΛP) and those that 

promote infiltrative growth (e.g., cell migration, quantified by the chemotaxis migration 

coefficient ΛM). One prediction of this model is that the tumor interface may be used to 

differentiate tumors that have highly proliferative cancer cells from those that are more 

indolent. We tested this idea by characterizing the tumor interface of PDAC on CT scans.

We developed our method to characterize the tumor interface by using pretreatment CT 

images from 12 patients who underwent upfront resection of PDAC (Supplementary Table 

S1) (3). We quantified the “delta” measurement as the volumetric difference in the mean of 

the Hounsfield unit (HU) distributions for the observed PDAC tumor at the border and the 

surrounding pancreatic parenchyma (Fig. 1A, B).

Next, two radiologists (ET, PB) ranked the conspicuity of the PDAC interface on a 1-to-5 

scale (Supplementary Fig. S2) for these 12 patients (Supplementary Table S1). We found 

that a cutoff for the delta measurement of 40 HU distinguished conspicuous from 

inconspicuous lesions (Supplementary Fig. S2). We validated this result with pre-surgical 

CT scans of 101 patients who underwent upfront surgery for resectable PDAC 

(Supplementary Table S2). We performed receiver operating characteristic (ROC) area under 

the curve (AUC) analysis over a range of 35 to 45 HU, giving an AUC that ranged from 0.81 

to 0.95, and found that the cutoff of 40 performed best in both arterial and portal venous 

phases. Supplementary Fig. S3A shows the ROC curves for the different delta cut offs in the 

arterial phase that best distinguished conspicuity of the tumors read by both radiologists. In 

the portal venous phase, the delta cutoff of 40 also had the best AUC (0.88 for ET’s score 

and 0.83 for PB’s score). Thus, we used the cutoff of 40 to define high delta and low delta 

groups. There was high concordance for the delta classification in 40 patients from the 

cohort in Table S2 for whom pancreatic protocol CT scans were performed both outside and 

inside our institution (kappa=0.8, Supplementary Figs. S3E, S4).

Delta Measurement and Stroma in Tumors

The same 12 patients who provided the CT scans for developing the delta measurement 

(Supplementary Table S1) (3), also provided tissue samples that were scored by pathologists 

(HW and DC) for the amount of stroma in the resected tumors (Fig. 1C). We found a 

statistically significant association between the amount of stroma and the 40 HU cutoff for 

the delta measurement (Fig. 1D). We validated this association in another 33 patients who 

underwent upfront resection (Supplementary Fig. S5).

We then used a machine-learning algorithm (Supplementary Fig. S6) to identify different 

cellular populations on slides that were stained with hematoxylin and eosin. For the 12 

patients who underwent upfront resection (Supplementary Table S1), the quantitative 

pathology analysis demonstrated that high delta tumors had a lower percentage of stroma 

cells (26±10%) than did the low delta tumors (40±5%, Fig. 1E). The percentage of 

lymphocytes was also significantly different between low and high delta tumors (Fig. 1F). 

Immunohistochemistry staining showed high delta PDAC had a higher proportion of cells 

that co-expressed markers for T regulatory cells (Tregs) than low delta PDAC (Fig. 1G). We 

found the same associations for proportions of stroma cells and lymphocytes in a second 
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group of patients who underwent upfront surgery for localized PDAC (Supplementary Figs. 

S7 and S8, Supplementary Table S2).

Delta Measurement and Somatic Mutations Affecting Common Pathways

We reviewed 64 patients with PDAC who underwent genomic profiling (32). Fifty-two 

(81%) of these patients had a high delta pancreatic tumor. In the entire group, the most 

common somatic mutations were in KRAS (81%), TP53 (55%), SMAD4 (8%), and PIK3CA 

(4%). Notably, KRAS and TP53 mutations frequently occurred together (48%), followed by 

KRAS and SMAD4 (11%) and KRAS and PIK3CA (4%). Patients with high delta tumors 

were more likely to have co-occurring somatic mutations (60%) in these common genes than 

patients with low delta tumors (17%, Fisher’s exact test, P=0.01, Fig. 2A). We identified 15 

patient derived xenografts (PDX) from patients who underwent upfront resection of 

localized PDAC (23), from which we performed whole exome sequencing and mutation 

profiling. Considering missense and splice site mutations, of the 9 high delta PDAC samples, 

7 of them had both KRAS and TP53 mutations. Of the 6 low delta samples, only 1 of them 

had mutations in both KRAS and TP53. Harboring mutations in both KRAS and TP53 was 

associated with high delta PDAC (P=0.04), where such tumors had 13.6 times higher risk of 

being high delta (95% CI: 0.86 −934, Fig. 2B).

Biological and Physical Properties of PDAC Based on Delta

We isolated and characterized 5 PDAC cell lines from patients who underwent upfront 

surgery (23) (Fig. 3A, B). We applied the delta measurement to the preoperative CT scans 

from these patients. We took pictures of the cell lines at low passage in monolayer culture 

(less than P10), and used a membrane axis measurement to quantify cell morphology 

(defined as shortest axis measurement divided by longest axis measurement). We found that 

cancer cell lines derived from low delta tumors had significantly higher membrane axis 

ratios (i.e., were rounder) than those derived from high delta tumors (more elongated) (Fig. 

3C). We further observed higher expression of mesenchymal marker proteins in the cell lines 

derived from high delta tumors than in those from low delta tumors (Fig. 3D).

Because nuclear morphology is directly associated with cellular shape (33), we further 

quantified cancer cell nuclear morphology by using the machine-learning algorithm on the 

pathology samples represented in Fig. 1. The nuclei of the cancer cells in the high delta 

tumors were more elongated than the cancer cells in low delta tumors, whose nuclei were 

rounder (Fig. 3E). This was also validated in another group of patients who underwent 

upfront surgery (Supplementary Fig. S7C).

We previously found that higher volumetric measurements of enhancement derived from CT 

scans (volumetric area under the enhancement curve, VAUC) were associated with longer 

survival outcomes (3). Here, analysis of 101 patients who underwent upfront resection for 

localized PDAC (Supplementary Table S2) and 106 patients who underwent neoadjuvant 

chemoradiation (Supplementary Table S3) demonstrated that patients with low delta tumors 

had significantly higher VAUC (0.61±0.21 and 0.65±0.22, respectively) than did patients 

with high delta tumors (0.40±0.20 and 0.37±0.15, respectively, P<0.0001 for both groups; 

Fig. 3F).
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We next measured tumors from the patients who underwent neoadjuvant chemoradiation 

(Supplementary Table S3). Analysis of the distributions of the tumor axis ratios 

demonstrated that the high delta tumors were more likely to be round, whereas the low delta 

tumors were less likely to be round (Fig. 3G).

Prevalence of High-Delta Tumors in Newly Diagnosed Metastatic PDACs

We analyzed 84 consecutive patients who presented with DM at diagnosis and received 

upfront chemotherapy (Supplementary Table S4). Notably, 65 (77%) of those 84 patients 

had a high delta in the primary pancreatic tumor (Fig. 4A, left). Survival results indicated 

prolonged overall survival (OS) for patients with low delta tumors (Supplementary Fig. S9A 

and Supplementary Table S5).

Imaging-Based Classification, Natural Disease History, and Patient Outcomes

We extended this imaging-based classification to the CT scans of 101 patients with early-

stage, resectable PDAC (Supplementary Table S2). In contrast to the patients with stage IV 

disease, a much higher percentage of patients in this early-stage PDAC group had low delta 

tumors (54%, Fig. 4A, right). Moreover, patients with high delta tumors had worse distant 

metastasis-free survival (DMFS) at 2 and 5 years (46% and 42%, respectively) than did 

patients with low delta tumors (66 and 44%, respectively, log-rank p=0.07, Fig. 4B, left). 

The earlier time to DM translated into poorer OS rates at 2 and 5 years for patients with high 

delta tumors (44% and 8%, respectively) than for patients with low delta tumors (61% and 

31%, log rank P=0.0013, Fig. 4C, left).

The imaging delta classification was independently significantly associated with OS in 

multiple regression analysis, and in comparison to CA19–9, the delta classification improved 

the model’s predictive power (c-index: 0.679 in model B vs. 0.667 in model C) 

(Supplementary Table S6). Exploratory analysis confined to patients with T3 disease, 

stratified by nodal disease, revealed a significant improvement in the c-index when the delta 

classification was included in the multivariate model (Supplementary Table S7). Similar 

analysis for CA19–9 revealed a lower c-index in the N0 group compared to the multivariate 

model using the delta classification (Supplementary Table S7). Sensitivity analyses of the 

delta measurement demonstrated significant differences in the outcomes of the patients with 

delta measurements in the range between 35 and 45 HU (Supplementary Fig. S10). The 

visual classification (i.e., scoring by radiologists; Supplementary Fig. S2) was also 

prognostic (Supplementary Fig. S11).

We performed a retrospective-prospective validation of the results in Fig. 4B (left) and 4C 

(left). The same correlations for actuarial outcomes were seen in a second dataset of 106 

patients with resectable pancreatic cancer who received neoadjuvant gemcitabine-based 

chemoradiation (19). The delta classification was highly associated with DMFS and OS 

(Fig. 4B and 4C, right). Further, after neoadjuvant therapy patients with high delta tumors 

(20/58) were more likely than those with low delta tumors (8/48) to have progressive disease 

by Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 (P=0.035), primarily due 

to distant progression. There was no difference in local progression between those with high 

delta tumors (8/58), compared to low delta (4/48, P=0.35). The delta classification was 
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independently highly associated with OS in multivariate analysis (Supplementary Table S8 

and S9) and again effectuated improved predictive power when compared with CA19–9.

Because we previously found VAUC to correlate with patient outcomes and identified a 

cutoff of 0.6 as a way to stratify patients in terms of outcome, we explored a combined 

classification based on the delta score and VAUC. This combined classification seemed to 

subdivide patients further into different prognostic groups (Supplementary Fig. S12).

Factors Affecting Cancer Cell Proliferation and Migration and Macroscopic Morphologic 
Characteristics

Motivated by recent studies suggesting that the stroma acts to restrict the metastatic spread 

of PDAC (7,8), we hypothesized that our mathematical theory of tumor growth could be 

scaled up from the microscopic level to the macroscopic tissue level by considering the 

stroma as a global relaxation mechanism that strongly influenced gross tumor morphology 

(described in Methods).

We introduce a key, dimensionless model parameter (Λ = mitosis rate ΛP / chemotaxis 

migration coefficient ΛM) that describes the stability of the tumor interface and represents a 

ratio of biological factors that influence proliferation and migration. We performed 

parametric analyses of this key model parameter to ascertain its effect on gross morphology 

of the tumor (Fig. 5). When the proliferation rate is slower than the migration rate (i.e., a low 

Λ < 1), then the model predicts that the cancer cell clusters will intermingle with the stroma, 

resulting in an indistinct interface for the tumor (Fig. 5A, right inset; Λ=0.2) and generating 

what have been described as “low mode” interface instabilities (12). Conversely, when the 

proliferation rate is higher than the migration rate (i.e., a high Λ greater than the critical 
value of unity), the model predicts that the tumor cells will grow with a distinct interface, as 

proliferation overcomes any attempts of isolated migrating cells to separate from and leave 

the main tumor bulk (Fig. 5B, right inset; Λ=1.5). Representative movies of these 

simulations are provided in Supplementary Materials. Representative movies of these 

simulations are provided in Supplementary Materials (supp_info_3.avi represents low delta 

PDAC with lambda=0.2; supp_info_4.avi represents high delta PDAC with lambda=1.5). 

These simulations show direct analogy to the macroscopic features of PDAC tumors on 

patient CT scans (Fig. 5C and 5D).

Growth Model Parameters and Tumor Biology Measurements

Our measurements of the pathologic specimens produce surrogates for the determinants of 

the stability parameter (Λ) from our model of tumor growth. To illustrate, we used the 

average stromal content in high delta (25±10% and 30±18%, Fig. 1D and Supplementary 

Fig. S5) and low-delta tumors (46±17% and 59±17%, Fig. 1D and Supplementary Fig. S5) 

and calculated a low-delta to high-delta stromal ratio of ~2. This ratio in stromal content 

would be inversely correlated with cell proliferation rates according to the model 

assumptions, which provides an estimate for the ratio of proliferation rates ΛP between high 

and low delta tumors. Similarly, the ratio of membrane axis ratios of cancer cells derived 

from low and high delta tumors is ~ 3, indicating that cancer cells from high delta tumors are 
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more elongated and have a mesenchymal-like phenotype (Fig. 3A-E). This number thus 

provides a surrogate for the ratio in migration rates ΛM between high- and low-delta tumors.

Therefore, the estimated ratio of stability parameters (i.e., Λhigh-delta/ Λlow-delta) is 

approximately 2/3, which suggests that these parameters have similar values across the two 

phenotypes. Accordingly, the range of the stability parameter used in the computer 

simulations was narrowly centered around the critical value of unity (Fig. 5 used Λ= 1.5 and 

Λ= 0.2). Notably, the computer simulations correctly predict the observed, different 

phenotypes around the critical value of unity.

DISCUSSION

The current clinical practice for PDAC largely involves a one-size-fits-all approach. 

Although genetic subtypes have been identified (34,35), clinicians continue to lack 

reproducible, biologically meaningful, and clinically relevant biomarkers to stratify patients 

into prognostic groups at initial diagnosis. We have focused on the pancreatic protocol CT 

scan, which is a ubiquitous, standard-of-care test, to identify such a biomarker. We 

developed a classification of PDAC based on the conspicuity of the tumors on CT. This 

resulted in pathological, genetic, cellular, and clinical correlations that consistently indicate 

that high delta tumors are more aggressive than low delta tumors. Furthermore, our data 

support a mathematical theory that describes tumor morphological patterns as a balance 

between tumor cell proliferation and migration, providing mechanistic insight into the 

observed phenomena.

The advantages of this imaging-based classification of PDAC are that it can be done at the 

point of care before treatment, and applies to both localized and metastatic PDAC. 

Molecular classifications of PDAC can be challenging because they require direct pathologic 

sampling of the tumor (34,35). Our approach complements molecular characterizations by 

providing a noninvasive metric of tumor behavior. We anticipate that our imaging-defined 

high delta group (median survival time 13 months in resected PDAC) largely comprises the 

“squamous” subtype of PDAC (median survival time 13.3 months) (36), whereas the low 

delta group (median survival time 24 months) is a mix of molecular subtypes with better 

prognosis (median survival times 23.7−30 months). Our results support a molecular basis of 

the imaging-defined subtypes, as high delta tumors were more likely than low delta tumors 

to harbor multiple poor prognosis mutations in combination with KRAS, such as p53, 

SMAD4, and PIK3CA (Fig. 2).

Notably, mutant KRAS (37), p53 (38,39), SMAD4 (40), and PIK3CA (41,42) have been 

linked to immunosuppressive states through immunomodulation and recruitment of T 

regulatory cells. Here, we found that high delta tumors had a lower degree of stromal cell 

infiltrate than did low delta tumors (Fig. 1). Our findings also showed differences in the 

proportions of lymphocytes in high and low delta tumors. Notably, our data indicated that 

high delta tumors have higher proportions of Tregs in the microenvironment compared to 

low delta tumors. Tregs suppress immune activity and have been associated with poor 

outcomes in multiple cancer types, including PDAC (43). This finding agrees with our 

observation that patients with high delta tumors have poorer outcomes and may lead to 
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rational methods to stratify and select patients for stromal-modifying therapies and 

immunotherapy. Further, the findings in this work support the idea that the multiscale 

properties of cancer are intimately related to the underlying biology, which is central to the 

concept of oncophysics (4,44).

In addition to differing immunologic and stromal properties, we noted variability in the 

enhancement properties of these tumors based on the imaging. This work builds directly on 

our previous imaging studies of PDAC (2,3). While this study supports that low delta PDAC 

has a better prognosis than high delta PDAC, our previous work on radiographic changes has 

shown heterogeneity in responses with regard to baseline conspicuity on CT (45). A 

classification approach of the VAUC and delta measurements at baseline, combined with the 

tumor’s radiographic response to therapy may further stratify patients (Supplementary Fig. 

S12). The heterogeneity of responses indicates differing sensitivities within each delta 

subtype, and in vitro drug testing may help clarify the molecular determinants related to the 

observed heterogeneity (46). Since low and high delta PDAC exhibit heterogeneity in 

responses to neoadjuvant therapy in the primary tumor, the difference in prognosis in these 

groups is likely due to differences in development of distant metastasis. Indeed, our genetic, 

cellular, and pathological data indicate that high delta tumors have more aggressive biology 

leading to a higher propensity for distant metastasis, compared to low delta PDAC.

We acknowledge that this study represents a mixture of retrospective and prospective 

datasets, which were not specifically designed to investigate the imaging characteristics of 

PDAC. Furthermore, the method of CT acquisition evolved during the study period. 

However, the key aspect that enables reproducible measurements of the delta is our approach 

to push the contrast bolus during the pancreatic protocol CT scan (Methods). This has not 

significantly changed during the study period, and all the scans were reviewed with our 

radiologists to ensure a uniform quality of scans. A future direction for this work is 

prospective validation of our findings in a phase II study for borderline resectable PDAC 

(NCT01560949), SWOG S1505 (NCT02562716), and Alliance A021501 (NCT02839343). 

These trials may provide further evidence that the delta classification may help predict 

benefit from neoadjuvant therapy.

In summary, we identified a physical feature on pre-therapy, standard-of-care CT images—

the presence or absence of a distinct border between PDAC tumors and the surrounding 

parenchyma—that associates with cellular, pathological, biological, physical, and clinical 

characteristics. Each of these correlations indicates that patients with high delta tumors 

generally have more aggressive disease and poorer outcomes than do patients with low delta 

tumors (Table). These results can be used in basic and translational studies to identify how 

cancer/host interactions may be regulated and manipulated to alter the natural course of 

disease. Further, our imaging-defined subtypes can be incorporated into ongoing and future 

clinical trials—as well as reviews of past “failed” therapies—to identify methods to 

personalize and improve the care of patients with this lethal disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of translational relevance

There are currently limited methods to stratify patients with pancreatic ductal 

adenocarcinoma (PDAC) into prognostic groups based on disease biology. We focused on 

the morphological features of the disease on computed tomography (CT) scans and 

correlated these features with genomic, pathological, and clinical data. We found that 

tumors with a distinct interface in relation to the surrounding parenchyma (called high 

delta tumors) had more aggressive biological features than tumors without a distinct 

interface (called low delta tumors). Patients with high delta tumors were more likely to 

develop early distant metastasis and die faster than those with low delta tumors. 

Mathematical modeling suggested that stromal elements strongly influenced the 

morphological patterns seen on CT scans. These findings indicate that a universally 

available diagnostic test can be used to interrogate the biology of this deadly disease, 

providing a means to stratify patients at diagnosis and aiding the design of future clinical 

trials.
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Fig 1. 
Quantification of the interface between the pancreatic tumor and surrounding normal 

pancreas. (A) The “delta” method to characterize the interface of pancreatic ductal 

adenocarcinoma (PDAC) involves contouring the tumor at the border and the normal 

pancreas at the border. The Hounsfield unit (HU) distribution within each contour can be 

compared, providing a difference in mean HU. (B) Representative CT scans with contouring 

of the tumor at the border (orange) and the normal pancreas at the border (green) and the 

corresponding HU histogram. (C) Representative images and corresponding histology of 
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low- and high-delta tumors. H&E, hematoxylin and eosin. (D) Association of stroma and 

delta measurement in 12 patients on a trial of intraoperative gemcitabine infusion 

(Supplementary Table S1, also see Supplementary Fig. S5 for validation cohort). (E) The 

proportions of cellular subtypes from pathology specimens from 12 patients on a trial of 

intraoperative gemcitabine infusion (Supplementary Table S1) are shown for stroma cells 

(E) and lymphocytes (F). For validation, the same algorithm was applied to 17 more patients 

who underwent upfront resection (i.e., no neoadjuvant therapy) (see Supplementary Fig. S7, 

S8). (G) Association of high and low delta classification with T regulatory cell markers, 

normalized by CD4 positive cells.
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Fig 2. 
(A) Proportions of low- and high-delta tumors in patients with co-occurring mutations, 

including KRAS & TP53, KRAS & PIK3CA, or KRAS & SMAD4 (Fisher’s exact test, 

P=0.01). (B) Next generation sequencing data of 15 patient derived xenografts, classified 

according to the delta on baseline CT. High delta PDAC were more likely to harbor 

mutations in both KRAS and TP53 than low delta PDAC (P=0.04).
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Fig 3. 
Distinct morphologic properties of cancer cells in low and high delta tumors. (A) CT scans 

of 5 patients who underwent upfront surgery. (B) Cancer cell lines from the 5 patients in (A) 

(MDA-PATC50, −69, −66, −102, and −118). (C) The membrane axis ratio, stratified by the 

delta measurement (Wilcoxon test; n.s., not significant, ****P<0.0001). A high membrane 

axis ratio indicates a rounder shape. (D) Western blots of the 5 cell lines for markers of the 

epithelial-to-mesenchymal transition. (E) Nuclear morphology, measured from segmentation 

on histology. Left panel, nucleus axis ratio was measured from H&E-stained slides of 12 
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patients in a prospective protocol of intraoperative gemcitabine infusion during PDAC 

resection (Supplementary Table S1); (F) Physical properties of PDAC stratified by delta 

measurement, as measured by Volumetric AUC (VAUC) for patients in Supplementary Table 

S2 (left) and Supplementary Table S3 (right), and (G) by tumor axis ratio from CT scans 

with orthogonal measurements on a single axial slice at greatest tumor size for patients in 

Supplementary Table S3 (Wilcoxon test, P<0.0001).
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Fig 4. 
Clinical outcomes associated with low and high delta tumors. (A) (Left) Proportions of low 

and high delta tumors in patients with metastatic PDAC at presentation (Fisher’s exact test, 

P=0.03; patient characteristics shown in Supplementary Table S4). (Right) Proportions of 

low and high delta tumors in patients with early-stage, localized PDAC (patient 

characteristics in Supplementary Table S2). (B) (Left) Distant metastasis-free survival 

(DMFS) stratified by delta measurement for patients in Supplementary Table S2. (Right) 

DMFS stratified by delta measurement for patients in Supplementary Table S3. (C) (Left) 

Overall survival (OS) stratified by delta measurement for patients in Supplementary Table 

S2. (Right) OS stratified by delta measurement for patients in Supplementary Table S3.

Koay et al. Page 24

Clin Cancer Res. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 5. 
Computer simulations of tumor interface morphology during growth. (A, left panel) and (B, 

left panel) represent perfusion fields predicted by the simulations, rescaled with the 

perfusion value in the stroma away from the tumor. The predicted change in perfusion from 

surrounding parenchyma to tumor is more homogeneous in tumors with relatively low 

cancer cell proliferation rate (Λ=0.2) (A), whereas the perfusion gradient is steeper and 

deeper for tumors where the cancer cell proliferation rate is high (Λ =1.5) (B). (A, right 

panel) and (B, right panel) represent morphology of tumors from the same two simulations. 

The morphology of the simulated tumors with low stability parameter Λ shows 

intermingling of tumor and stroma (characterized by low-mode instabilities manifesting as 

large “fingers” of cell clusters (A, right inset). In contrast, for high Λ ((B, right inset), the 

simulation reveals a distinct interface between tumor and stroma. Representative surface 

profiles (HU) generated by ImageJ of the CT images are shown in the left panels of C and D 

with the corresponding CT images on the right. The tumor in the CT images is circled in red.
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Table.

Summary of differences between high- and low-delta pancreatic ductal adenocarcinomas

High Delta Low Delta

Radiologist ranking (1-to-5 scale) Conspicuous (4, 5) Inconspicuous (1, 2, 3)

Quantitative analysis delta ≥40 HU delta <40 HU

Tumor shape More likely to be round Less likely to be round

Stroma score (by pathologist) Less stroma More stroma

Cancer cell shape Elongated Round

Multiple common mutations More likely Less likely

Patient outcome Earlier DM, shorter OS Later DM, longer OS

Abbreviations: DM, distant metastasis; OS, overall survival; HU, Hounsfield Units
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