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Abstract

Random forests is a popular nonparametric tree ensemble procedure with broad applications to 

data analysis. While RF’s widespread popularity stems from its prediction performance, an 

equally important feature is that it provides a fully nonparametric measure of variable importance 

(VIMP). A current limitation of VIMP however is that no systematic method exists for estimating 

its variance. As a solution, we propose a subsampling approach that can be used to estimate the 

variance of VIMP and for constructing confidence intervals. The method is general enough that it 

can be applied to many useful settings, including regression, classification, and survival problems. 

Using extensive simulations we demonstrate the effectiveness of the subsampling estimator and in 

particular find that the delete-d jackknife variance estimator, a close cousin, is especially effective 

under low subsampling rates due to its bias correction properties. These two estimators are highly 

competitive when compared to the .164 bootstrap estimator, a modified bootstrap procedure 

designed to deal with ties in out-of-sample data. Most importantly, subsampling is 

computationally fast, thus making it especially attractive for big data settings.
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1 | INTRODUCTION

Random forests (RF)1 is a popular tree-based learning method with broad applications to 

machine learning and data mining. RF was originally designed for regression and 

classification problems, but over time the methodology has been extended to other important 

settings. For example, random survival forests (RSF)2, 3 extends RF to right-censored 

survival and competing risk settings (see also Hothorn et al. 4 and Zhu and Kosorok5 for 

other tree-ensemble approaches to survival analysis). Two guiding principles are at the core 

of RF’s success. One is the use of deep trees. Another is injecting randomization into the 

tree growing process. First, trees are randomly grown by using a bootstrap sample of the 

data. Secondly, random feature selection is used when growing the tree. Thus, rather than 

splitting a node using all variables, the node is split using the best candidate from a 
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randomly selected subset of variables. The purpose of this two-step randomization is to 

decorrelate trees, which encourages low variance for the ensemble due to bagging.6 When 

combined with the strategy of using deep trees, which is a bias reduction technique, this 

reduces generalization error and results in superior performance for the ensemble.

While RF’s popularity stems from its prediction performance, an equally important feature 

is that it provides a fully non-parametric measure of variable importance (VIMP).1, 2, 7, 8, 9 

VIMP allows users to identify which variables play a key role in prediction, thus providing 

insight into the underlying mechanism for what otherwise might be considered a black-box. 

We note that the concept of variable importance is not specific to RF and has a long history. 

One of the earliest examples was CART, 10 which calculated variable importance by 

summing the reduction in node impurity due to a variable over all tree nodes. Another 

approach calculated importance using surrogate splitting (see Chapter 5.3 of Breiman et al.
10).

Early prototypes of RF software developed by Leo Breiman and his student Adele Cutler 

provided for various options for calculating VIMP.11 One procedure used for classification 

forests was to estimate VIMP using the forest averaged decrease in Gini impurity (somewhat 

akin to the node impurity approaches of CART). However, while Gini importance12 saw 

widespread initial use with RF, over time it has become less popular.8 By far, the most 

frequently used measure of importance was another measure provided by the Breiman-

Cutler software, called permutation importance (sometimes also referred to as Breiman-

Cutler importance). Unlike Gini importance which estimates importance using in-sample 

impurity, permutation importance adopts a prediction based approach by using prediction 

error attributable to the variable. A clever feature is that rather than using cross-validation, 

which is computationally expensive for forests, permutation importance estimates prediction 

error by making use of out-of-bootstrap cases. Recall that each tree is calculated from a 

bootstrap sample of the original data. The approximately 1 − .632 = .368 left from the 

bootstrap represents out-of-sample data which can be used for estimating prediction 

performance. This data is called out-of-bag (OOB) and prediction error obtained from it is 

called OOB error.13 Permutation importance permutes a variable’s OOB data and compares 

the resulting OOB prediction error to the original OOB prediction error—the motivation 

being that a large positive value indicates a variable with predictive importance.

Permutation (Breiman-Cutler) Importance

In the OOB cases for a tree, randomly permute all values of the jth variable. Put 

these new covariate values down the tree and compute a new internal error rate. 

The amount by which this new error exceeds the original OOB error is defined 

as the importance of the jth variable for the tree. Averaging over the forest yields 

VIMP.

— Measure 1 (Manual On Setting Up, Using, And 

Understanding Random Forests V3.1)

We focus on Breiman-Cutler permutation importance in this manuscript (for simplicity, 

hereafter simply refered to as VIMP). One of the tremendous advantages of VIMP is that it 
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removes the arbitrariness of having to select a cutoff value when determining the 

effectiveness of a variable. Regardless of the problem, a VIMP of zero always represents an 

appropriate cutoff, as it reflects the point at which a variable no longer contributes predictive 

power to the model. However, in practice one may observe values close to zero, and the 

meaning of what constitutes being zero becomes unclear. One way to resolve this is to 

calculate the variance of VIMP, but this is challenging due to the complex nature of RF. 

Unfortunately, while the empirical properties of VIMP are well documented,14, 15, 16 much 

less is known about VIMP’s theoretical properties outside of a few studies.7, 17

Given the difficulties of theoretical analysis, an alternative approach is to approximate the 

distribution of VIMP through some form of resampling. This has been the favored approach 

used for RF regression for assessing variability of RF predicted values. Methods that have 

been used include bootstrapping18 for estimating the variance, and the infinitesimal 

jackknife19 and infinite order U-statistics 20 for confidence intervals. These methods 

however only apply to RF predicted values and not to VIMP which involves prediction error. 

This greatly complicates matters and requires a more general approach.

For this reason, we base our approach on subsampling, 21 a general methodology for 

approximating the distribution of a complex statistic. Section 3 provides a description of of 

our subsampling procedure for estimating the variance. Notational framework and a formal 

definition of VIMP are provided in Section 2. Section 3 begins by introducing a bootstrap 

solution to be used as a comparison procedure. Interestingly, we find the bootstrap cannot be 

applied directly due to ties that occur in the OOB data. This is precisely due to the fact that 

VIMP is prediction error based. We propose a solution to this problem called the .164 

bootstrap estimator. The subsampling variance estimator and the delete-d jackknife variance 

estimator, 22 a close cousin, are described later in Section 3. Sections 4, 5, and 6 consider 

regression, classification, and survival settings and extensively evaluate performance of the 

two subsampling methods and the .164 bootstrap estimator. We also show how to construct 

confidence intervals for VIMP using the estimated variance. The results are very promising 

for the subsampling methods. Section 7 summarizes our findings and provides practical 

guidelines for use of the methodology. Some theoretical results for VIMP are provided in the 

Appendix.

2 | NOTATIONAL FRAMEWORK AND DEFINITION OF VIMP

2.1 | Notation

We assume Y ∈  is the response and X ∈  is the p-dimensional feature where Y can be 

continuous, binary, categorical, or survival, and X can be continuous or discrete. We assume 

the underlying problem involves a nonparametric regression framework where the goal is to 

estimate a functional h(x) of the response given X = x. Estimation is based on the learning 

data ℒ = {(X1, Y1), …, (Xn, Yn)}, where (Xi, Yi) are independently distributed with the 

same distribution ℙ as (X, Y).

Examples of h(x) are:

1. The conditional mean h(x) = [Y|X = x] in regression.
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2. The conditional class probabilities h(x) = (p1(x), …, pK(x)) in a K-multiclass 

problem, where pk(x) = ℙ{Y = k|X = x}.

3. The survival function h(x) = ℙ{To > t|X = x} in survival analysis. Here Y = (T, 

δ) represents the bivariate response comprised of the observed survival time T = 

min(To,Co) and censoring indicator δ = 1{To ≤ Co}, where (To,Co) are the 

unobserved event and censoring times.

2.2 | RF predictor

As in Breiman,1 we define a RF as a collection of randomized tree predictors {h(·,Θm,ℒ), m 
= 1, …, M}. Here h(x,Θm,ℒ) denotes the mth random tree predictor of h(x) and {Θm} are 

independent identically distributed random quantities encoding the randomization needed 

for constructing a tree. Note that Θm is selected prior to growing the tree and is independent 

of the learning data, ℒ.

The tree predictors are combined to form the finite forest estimator of h(x),

h(x, Θ1, …, ΘM, ℒ) = 1
M ∑

m = 1

M
h(x, Θm, ℒ) . (1)

The infinite forest estimator is obtained by taking the limit as M → ∞ and equals

h(x, ℒ) = 𝔼Θ [h(x, Θ, ℒ)] . (2)

2.3 | Loss function

Calculating VIMP assumes some well defined notion of prediction error. Therefore, we 

assume there is an appropriately prechosen loss function ℓ(Y, ĥ) ≥ 0 used to measure 

performance of a predictor ĥ in predicting h. Examples include:

1. Squared error loss ℓ(Y,ĥ) = (Y − ĥ)2 in regression problems.

2. For classification problems, widely used measures of performance are the 

misclassification error or the Brier score. For the latter, 

ℓ(Y , h) = (1/K)∑k = 1
K 1{Y = k} − pk

2, where p̂k is the estimator for the 

conditional probability pk.

3. For survival, the weighted Brier score23, 24 can be used. Section 6 provides 

further details.

The choice of ℓ can be very general and we do not impose any specific conditions on how it 

must be selected. As described later in Section 3, the conditions needed for our methodology 

to hold require only the existence of a limiting distribution for VIMP. Although such a limit 

may be satisfied by imposing specific conditions on ℓ, such as requiring the true function h to 
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yield the minimum value of [ℓ(Y, h)], we do not impose such assumptions so as to retain as 

general an approach as possible.

2.4 | Tree VIMP

Let ℒ*(Θm) be the mth bootstrap sample and let ℒ**(Θm) = ℒ\ℒ*(Θm) be the 

corresponding OOB data. Write X = (X(1), …, X(p)) where X(j) denotes the jth feature 

coordinate. The permuted value of the jth coordinate of X is denoted by X̃(j). Substituting 

this into the jth coordinate of X yields X̃
(j):

X∼( j) = (X(1), …, X( j − 1), X∼( j), X( j + 1), …, X(p)) .

VIMP is calculated by taking the difference in prediction error under the original X to 

prediction error under the perturbed X̃(j) over OOB data. More formally, let I(X(j),Θm,ℒ) 

denote the VIMP for X(j) for the mth tree. It follows that

I(X( j), Θm, ℒ) =
∑

i ∈ ℒ ∗ ∗(Θm)
ℓ(Y i, h(X∼i

( j), Θm, ℒ))

∑
i ∈ ℒ ∗ ∗(Θm)

1 −
∑

i ∈ ℒ ∗ ∗(Θm)
ℓ(Y i, h(Xi, Θm, ℒ))

∑
i ∈ ℒ ∗ ∗(Θm)

1 .

(3)

Note that in the first sum, we implicitly assume Θm embeds the additional randomization for 

permuting OOB data to define Xi
( j). Because this additional randomization only requires 

knowledge of OOB membership, and therefore can be parameterized in terms of Θ, we 

assume without loss of generality that Θ encodes both the randomization for growing a tree 

and for permuting OOB data.

Expression (3) can be written more compactly by noting that the denominator in each sum 

equals the OOB sample size. Let N(Θm) be this value. Then

I(X( j), Θm, ℒ) = 1
N(Θm) ∑

i ∈ ℒ ∗ ∗(Θm)
ℓ(Yi, h(X∼i

( j), Θm, ℒ)) − ℓ(Yi, h(Xi, Θm, ℒ)) .

2.5 | VIMP

Averaging tree VIMP over the forest yields VIMP:

I(X( j), Θ1, …, ΘM, ℒ) = 1
M ∑

m = 1

M
I(X( j), Θm, ℒ) . (4)
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An infinite forest estimator for VIMP can be defined analogously by taking the limit as M 
→ ∞,

I(X( j), ℒ) = 𝔼Θ [I(X( j), Θ, ℒ)] . (5)

It is worth noting that (4) and (5) do not explicitly make use of the forest predictors (1) or 

(2). This is a unique feature of permutation VIMP because it is a tree-based estimator of 

importance.

3 | SAMPLING APPROACHES FOR ESTIMATING VIMP VARIANCE

3.1 | The .164 bootstrap estimator

The bootstrap is a popular method that can be used for estimating the variance of an 

estimator. So why not use the bootstrap to estimate the standard error for VIMP? One 

problem is that running a bootstrap on a forest is computationally expensive. Another more 

serious problem, however, is that a direct application of the bootstrap will not work for 

VIMP. This is because RF trees already use bootstrap data and applying the bootstrap creates 

double-bootstrap data that affects the coherence of being OOB.

To explain what goes wrong, let’s simplify our previous notation by writing In, M
( j)  for the 

finite forest estimator (4). Let ℙn denote the empirical measure for ℒ. The bootstrap 

estimator of Var(In, M
( j) ) is

Var∗(In, M
( j) ) = Varℙn

(In, M
∗ ( j)) . (6)

To calculate (6), we must draw a sample from ℙn. Call this bootstrap sample ℒ*. Because 

ℒ* represents the learning data, we must draw a bootstrap sample from ℒ* to construct a RF 

tree. Let ℒ*(Θ*) denote this bootstrap sample where Θ* represents the tree growing 

instructions. This is a double-bootstrap draw. The problem is that if a specific case in ℒ* is 

duplicated l > 1 times there is no guarantee that all l cases appear in the bootstrap draw, 

ℒ*(Θ*). These remaining duplicated values are assigned to the OOB data but these values 

are not truly OOB which compromises the coherence of the OOB data.

Double bootstrap data lowers the probability of being truly OOB to a value much smaller 

than .368, which is the value expected for a true OOB sample. We can work out exactly how 

much smaller this probability is. Let ni be the number of occurrences of case i in ℒ*. Then,

Pr {i is truly OOB in ℒ∗(Θ∗)} = ∑
l = 1

n
Pr {i is truly OOB in ℒ∗(Θ∗) ∣ ni = l} Pr {ni = l} . (7)
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We have

(n1, …, nn) Multinomial(n, (1/n, …, 1/n))
ni Binomial(n, 1/n) ≍ Poisson(1) .

Hence, (7) can be seen to equal

∑
l = 1

n n − l
n

n
Pr {ni = l} ≍ ∑

l = 1

n n − l
n

n e−11l

l! = e−1 ∑
l = 1

n
1 − l

n
n 1

l! ≍ e−1 ∑
l = 1

n e−l

l! ≍ .1635.

Therefore, double bootstrap data has a OOB size of .164n.

The above discussion points to a simple solution to the problem which we call the .164 

bootstrap estimator. The .164 estimator is a bootstrap variance estimator but is careful to use 

only truly OOB data. Let ℒ* = {Z1 = (Xi1, Yi1), …, Zn = (Xin, Yin)} denote the bootstrap 

sample used for learning and let ℒ*(Θ*) = {Zi: i ∈ Θ*} be the bootstrap sample used to grow 

the tree. The OOB data for the double-bootstrap data is defined as {(Xil, Yil) ∉ ℒ*(Θ*)}. 

However, there is another subtle issue at play regarding duplicates in the OOB data. Even 

though {(Xil, Yil) ∉ ℒ*(Θ*)} are data points from ℒ* truly excluded from the double-

bootstrap sample, and therefore technically meet the criteria of being OOB, there is no 

guarantee they are all unique. This is because these values orginated from ℒ*, a bootstrap 

draw, and therefore could very well be duplicated. To ensure this does not happen we further 

process the OOB data to retain only the unique values.

The steps for implementing the .164 estimator can be summarized as follows.

.164 bootstrap estimator for Var(In, M
( j) )

1. Draw a bootstrap sample ℒ* = {Z1 = (Xi1, Yi1), …, Zn = (Xin, Yin)}.

2. Let ℒ*(Θ*) = {Zi: i ∈ Θ*} be a bootstrap draw from ℒ*. Use ℒ*(Θ*) to grow 

a tree predictor.

3. Define OOB data to be the unique values in {(Xil, Yil) ∉ ℒ*(Θ*)}.

4. Calculate the tree VIMP, I(X(j),Θ*,ℒ*), using OOB data of step 3.

5. Repeat steps 2–4 independently M times. Average the VIMP values to obtain 

θn
∗ ( j).

6. Repeat the entire procedure K > 1 times obtaining θn, 1
∗ ( j), …, θn, K

∗ ( j). Estimate 

Var(In, M
( j) ) by the bootstrap sample variance, 

(1/K)∑k = 1
K (θn, k

∗ ( j) − 1
K ∑k′ = 1

K θn, k′
∗ ( j))

2
.
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3.2 | Subsampling and the delete-d jackknife

A problem with the .164 bootstrap estimator is that its OOB data set is smaller than a typical 

OOB estimator. Truly OOB data from a double bootstrap can be be less than half the size of 

OOB data used in a standard VIMP calculation (16.4% versus 36.8%). Thus in a forest of 

1000 trees, the .164 estimator uses about 164 trees on average to calculate VIMP for a case 

compared with 368 trees used in a standard calculation. This can reduce efficiency of the .

164 estimator. Another problem is computational expense. The .164 estimator requires 

repeatedly fitting RF to bootstrap data which becomes expensive as n increases.

To avoid these problems, we propose a more efficient procedure based on subsampling 

theory.21 The idea rests on calculating VIMP over small i.i.d. subsets of the data. Because 

sampling is without replacement, this avoid ties in the OOB data that creates problems for 

the bootstrap. Also, because each calculation is fast, the procedure is computationally 

efficient, especially in big n settings.

3.2.1 | Subsampling theory—We begin by first reviewing some basic theory of 

subsampling. Let X1, …, Xn be i.i.d. random values with common distribution P. Let θ̂n = 

θ̂(X1, …, Xn) be some estimator for θ(P), an unknown real-valued parameter we wish to 

estimate. The bootstrap estimator for the variance of θ̂n is based on the following simple 

idea. Let Pn = (1/n)∑i = 1
n δXi

 be the empirical measure for the data. Let X1
∗, …, Xn

∗ be a 

bootstrap sample obtained by independently sampling n points from Pn. Because Pn 

converges to P, we should expect the moments of the bootstrap estimator θn
∗ = θ (X1

∗, …, Xn
∗)

to closely approximate those of θ̂. In particular, we should expect the bootstrap variance 

VarPn
(θn

∗) to closely approximate Var(θn). This is the rationale for the variance estimator (6) 

described earlier.

Subsampling21 employs the same strategy as the bootstrap but is based on sampling without 

replacement. For b:= b(n) such that b/n → 0, let Sb be the entire collection of subsets of {1, 

…, n} of size b. For each s = {i1, …, ib} ∈ Sb, let θ̂n,b,s = θ̂(Xi1, …, Xib) be the estimator 

evaluated using s. The goal is to estimate the sampling distribution of n1/2(θ̂n − θ(P)). It 

turns out that subsampling provides a consistent estimate of this distribution under fairly 

mild conditions. Let ℚn denote the distribution of n1/2(θ̂n − θ(P)). Assume ℚn converges 

weakly to a proper limiting distribution ℚ:

ℚn ⇝d ℚ . (8)

Then it follows 21 that the distribution function for the statistic n1/2(θ̂n − θ(P)) can be 

approximated by the subsampling estimator
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U∼n, b(x) = 1
Cb

∑
s ∈ Sb

1{b1/2 (θn, b, s − θn) ≤ x}, (9)

where Cb = n
b

 is the cardinality of Sb. More formally, assuming (8) and b/n → 0 for b → 

∞, then U∼n, b(x) →p F(x) = ℚ[ − ∞ , x] for each x that is a continuity point of the limiting 

cumulative distribution function F. The key to this argument is to recognize that due to (8) 

and b/n → 0, Ũn,b closely approximates

Un, b(x) = 1
Cb

∑
s ∈ Sb

1{b1/2 θn, b, s − θ(P) ≤ x},

which is a U-statistic25 of order b. See Politis and Romano21 for details.

The ability to approximate the distribution of θn̂ suggests, similar to the bootstrap, that we 

can approximate moments of θ̂n with those from the subsampled estimator; in particular, we 

should be able to approximate the variance. Unlike the bootstrap, however, subsampled 

statistics are calculated using a sample size b and not n. Therefore to estimate the variance of 

θ̂n we must apply a scaling factor to correct for sample size. The subsampled estimator for 

the variance is (see Radulović26 and Section 3.3.1 from Politis and Romano21)

υb = b/n
Cb

∑
s ∈ Sb

θn, b, s − 1
Cb

∑
s′ ∈ Sb

θn, b, s′

2

. (10)

The estimator (10) is closely related to the delete-d jackknife.22 The delete-d estimator 

works on subsets of size r = n − d and is defined as

υJ(d) = r /d
Cr

∑
s ∈ Sr

θn, r, s − θn
2 .

With a little bit or rearrangement, this can be rewritten as

υJ(d) = r /d
Cr

∑
s ∈ Sr

θn, r, s − 1
Cr

∑
s′ ∈ Sr

θn, r, s′

2
+ r

d
1

Cr
∑

s ∈ Sr

θn, r, s − θn

2
.

Setting d = n − b, we obtain
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υJ(d) = b/(n − b)
Cb

∑
s ∈ Sb

θn, b, s − 1
Cb

∑
s′ ∈ Sb

θn, b, s′

2

+ b
n − b

1
Cb

∑
s ∈ Sb

θn, b, s − θn

bias

2

. (11)

The first term closely approximates (10) since b/n → 0, while the second term is a bias 

estimate of the subsampled estimator. Thus, the delete-d estimator (11) can be seen to be a 

bias corrected version of (10). Furthermore this correction is always upwards because the 

bias term is squared and always positive.

3.2.2 | Subsampling and delete-d jackknife algorithms—We can now describe our 

subsampling estimator for the variance of VIMP. In the following we assume b is some 

integer much smaller than n such that b/n → 0.

b-subsampling estimator for Var(In, M
( j) )

1. Draw a subsampling set s ∈ Sb. Let ℒs be ℒ restricted to s.

2. Calculate In, M
( j) (ℒs), the finite forest estimator for VIMP using ℒs. Let θn, b, s

( j)

denote this value.

3. Repeat K > 1 times obtaining θn, b, s1
( j) , …, θn, b, sK

( j) . Estimate Var(In, M
( j) ) by 

[b/(nK)]∑k = 1
K (θn, b, sk

( j) − 1
K ∑k′ = 1

K θn, b, sk′
( j) )

2
.

The delete-d jackknife estimator is obtained by a slight modification to the above algorithm:

delete-d jackknife estimator (d = n − b) for Var(In, M
( j) )

1. Using the entire learning set ℒ, calculate the forest VIMP estimator In, M
( j) (ℒ). 

Let θn
( j) denote this value.

2. Run the b-subsampling estimator, but replace the estimator in step 3 with 

{b/[(n − b)K]}∑k = 1
K (θn, b, sk

( j) − θn
( j))

2
.

4 | RANDOM FOREST REGRESSION, RF-R

4.1 | Simulations

In the following sections (Sections 4, 5, and 6) we evaluate the performance of the .164 

bootstrap estimator, the b-subsampling estimator, and the delete-d jackknife variance 

estimator. We begin by looking at the regression setting. We used the following simulations 

to assess performance.
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1. y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε; {xj} ~ U(0, 1); ε~ N(0, 1).

2. y = (x1
2 + [x2x3 − (x2x4)−1]2)

1/2
+ ε; x1 ~ U(0, 100), x2 ~ U(40π, 560π), x3 ~ U(0, 

1), x4 ~ U(1, 11); ε ~ N(0, 1252).

3. y = tan−1([x2x3 − (x2x4)−1]/x1) + ε; x1 ~ U(0, 100), x2 ~ U(40π, 560π), x3 ~ 

U(0, 1), x4 ~ U(1, 11); ε ~ N(0, .12).

4. y = x1x2 + x3
2 − x4x7 + x8x10 − x6

2 + ε; {xj} ~ U(−1, 1); ε ~ N(0, .12).

5. y = 1{x1 > 0} + x2
3 + 1{x4 + x6 − x8 − x9 > 1 + x10} + exp ( − x2

2) + ε; {xj} ~ U(−1, 

1); ε ~ N(0, .12).

6. y = x1
2 + 3x2

2x3 exp ( − ∣ x4 ∣ ) + x6 − x8 + ε, {xj} ~ U(−1, 1); ε ~ N(0, .12).

7. y = 1{x1 + x4
3 + x9 + sin (x2x8) + ε > 0.38}; {xj} ~ U(−1, 1); ε ~ N(0, .12).

8. y = log (x1 + x2x3) − exp (x4x5
−1 − x6) + ε; {xj} ~ U(0.5, 1); ε ~ N(0, .12).

9. y = x1x2
2 ∣ x3 ∣1/2 + ⌊x4 − x5x6⌋ + ε; {xj} ~ U(−1, 1); ε ~ N(0, .12).

10. y = x3(x1 + 1)
∣ x2 ∣

− (x5
2[ ∣ x4 ∣ + ∣ x5 ∣ + ∣ x6 ∣ ]−1)1/2 + ε; {xj} ~ U(−1, 1); ε ~ 

N(0, .12).

11. y = cos (x1 − x2) + sin−1 (x1x3) − tan−1 (x2 − x3
2) + ε; {xj} ~ U(−1, 1); ε ~ N(0, .

12).

12. y = ε; ε ~ N(0, 1).

In all 12 simulations, the dimension of the feature space was set to p = 20. This was done by 

adding variables unrelated to y to the design matrix. We call these noise variables. In 

simulations 1–3, noise variables were U(0, 1); for simulations 4–11, noise variables were 

U(−1, 1); for simulation 12, noise variables were N(0, 1). All features (strong and noisy) 

were simulated independently. Simulations 1–3 are the well known Friedman 1, 2, 3 

simulations.27, 6 Simulations 4–11 were inspired from COBRA.28 Simulation 12 is a pure 

noise model.

The sample size was set at n = 250. Subsampling was set at a rate of b = n1/2, which in this 

case is b = 15.8. We can see that practically speaking this a very small sample size and 

allows subsampled VIMP to be rapidly computed. The value of d for the delete-d jackknife 

was always set to d = n − b. The number of bootstraps was set to 100 and the number of 

subsamples was set to 100. Note that this not a large number of bootstraps or subsampled 

replicates. However, they represent values practitioners are likely to use in practice, 

especially for big data, due to computational costs.

All RF calculations were implemented using the randomForestSRC R-package.29 The 

package runs in OpenMP parallel processing mode, which allows for parallel processing on 

user desktops, as well as large scale computing clusters. The package now includes a 
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dedicated function “ subsample” which implements the three methods studied here. The 

subsample function was used for all calculations. All RF calculations used 250 trees. Tree 

nodesize was set to 5 and p/3 random feature selection used (these are default settings for 

regression). Each simulation was repeated independently 250 times. RF parameters were 

kept fixed over simulations. All calculations related to prediction error and VIMP were 

based on squared error loss, ℓ(Y, ĥ) = (Y − ĥ)2.

4.2 | Estimating the true finite standard error and true finite VIMP

Each procedure provides an estimate of the Var(In, M
( j) ). We took the square root of this obtain 

an estimate for the standard error of VIMP, (Var(In, M
( j) ))1/2

. To assess performance in 

estimating the standard error we used the following strategy to approximate the uknown 

parameter Var(In, M
( j) ). For each simulation model, we drew 1000 independent copies of the 

data, and for each of these copies, we calculated the finite forest VIMP, In, M
( j) . The same 

sample size of n = 250 was used and all forest tuning parameters were kept the same as 

outlined above. We used the variance of these 1000 values to estimate Var(In, M
( j) ). We refer to 

the square root of this value as the true finite standard error. Additionally, we averaged the 

1000 values to estimate 𝔼[In, M
( j) ] = 𝔼[I(X( j), ℒ)] We call this the true finite VIMP.

4.3 | Results

Performance of methods was assessed by bias and standardized mean-squared-error 

(SMSE). The bias for a method was obtained by averaging its estimated standard error over 

the 250 replications and taking the difference between this and the true finite standard error. 

MSE was estimated by averaging the squared difference between a method’s estimated value 

for the standard error and the true finite standard error. SMSE was defined by dividing MSE 

by the true finite standard error. In evaluating these performance values, we realized it was 

important to take into account signal strength of a variable. In our simulations there are 

noisy variables with no signal. There are also variables with strong and moderately strong 

signal. Therefore, to better understand performance differences, results were stratified by 

size of a variable’s true finite VIMP. In total, there were 240 variables to be dealt with (12 

simulations, each with p = 20 variables). These 240 variables were stratified into 6 groups 

based on 10, 25, 50, 75, and 90th percentiles of true finite VIMP (standardized by the Y 
variance to make VIMP comparable across simulations). Bias and SMSE for the 6 groups 

are displayed in Figure 1.

All methods exhibit low bias for small VIMP. As VIMP increases, corresponding to stronger 

variables, bias for the subsampling estimator increases. Its bias is negative showing that it 

underestimates variance. The delete-d estimator does much better. This is due to the bias 

correction factor discussed earlier (see (11)) which kicks in when signal increases. The 

pattern seen for bias is reflected in the results for SMSE: the delete-d is similar to the 

subsampling estimator except for large VIMP where it does better. Overall, the .164 

estimator is the best of all three methods. On the other hand, it is hundreds of times slower.
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This shows that the delete-d estimator should be used when bias is an issue. However, bias 

of the subsampling estimator can be improved by increasing the subsampling rate. Figure 2 

reports the results from the same set of simulations but using an increased sampling rate b = 

n3/4 (b = 62.8). Both estimators improve overall but note the improvement in bias and SMSE 

for the subsampling estimator relative to the delete-d estimator. Also notice that both 

estimators now outperform the .164 bootstrap.

4.4 | Confidence intervals for VIMP

The subsampling distribution (9) discussed in Section 3 can also be used to calculate 

nonparametric confidence intervals.21 The general idea for constructing a confidence 

interval for a target parameter θ(P) is as follows. Define the 1 − α quantile for the 

subsampling distribution as cn,b(1 − α) = inf{x : Ũn,b(x) ≥ 1 − α}. Similarly, define the 1 − 

α quantile for the limiting distribution ℚ of n1/2(θ̂n − θ(P)) as c(1 − α) = inf{t : F(x) = 

ℚ[−∞, x] ≥ 1 − α}. Then, assuming (8) and b/n → 0, the interval

θn − n−1/2cn, b(1 − α), ∞ (12)

contains θ(P) with asymptotic probability 1 − α if c(1 − α) is a continuity point of F.

While (12) can be used to calculate a nonparametric confidence interval for VIMP, we have 

found that a more stable solution can be obtained if we are willing to strengthen our 

asssumptions to include asympotic normality. Let θn
( j) = In, M

( j)  denote the finite forest 

estimator for VIMP. We call the limit of θn
( j) as n, M → ∞ the true VIMP and denote this 

value by θ0
( j),

θ0
( j) = lim

n, M ∞ θn
( j): = lim

n, M ∞ In, M
( j) .

Let υn
( j) be an estimator for Var(In, M

( j) ). Assuming asymptotic normality,

θn
( j) − θ0

( j)

υn
( j) ⇝d N(0, 1), (13)

an asymptotic 100(1 − α) confidence region for θ0
( j), the true VIMP, can be defined as

θn
( j) ± zα/2 υn

( j),
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where zα/2 is the 1 − α/2-quantile from a standard normal, Pr{N(0, 1) ≤ zα/2} = 1 − α/2.

4.5 | Justification of normality

To provide justification for assumption (13), we re-ran our previous simulations 1000 times 

independently. For each Monte Carlo replication and each simulation model we calculated 

the finite forest VIMP for a variable and centered it by its mean value from the 1000 

simulations and divided this centered value by the standard deviation of the 1000 VIMP 

values. All experimental parameters were held at the same values as before except for the 

sample size which was increased to n = 2500. The left-hand side of Figure 3 displays normal 

quantile plots for standardized VIMP for each of the 12 simulation models. On the y-axis are 

the quantiles for the standardized VIMP while the x-axis are corresponding N(0, 1) 

quantiles. The right-hand side displays quantile bias defined as the difference between the 

quantile for standardized VIMP to the quantile for a standard normal. Values are displayed 

for 5,10,25,50,75,90,95 percentile values. The results generally confirm that (13) holds. 

Deviations from normality occur primarily in the tails but these are reasonable and expected 

in finite sample settings. For example, the median bias is about 0.02 for the 95th percentile. 

Thus the standardized VIMP quantile differs from the true standard normal value of 1.645 

by only a value of 0.02. Also, observe that overall mean bias is near zero (far right boxplot).

Coverage probabilities for 90% confidence intervals are provided in Figure 4. The left and 

right figures correspond to simulations of Figures 1 and 2 respectively (recall Figure 2 is 

based on a larger subsampling rate b = n3/4). Confidence intervals for the subsampling and 

delete-d estimators use asymptotic normality. For direct comparison, asymptotic normal 

bootstrap confidence intervals are also provided. All procedures tend to produce confidence 

intervals that are too large when VIMP is small (reflected by coverage probabilities 

exceeding the targeted 90% level). This is actually a good feature as it implies they tend to 

over-estimate confidence intervals for noisy variables, thereby making them less likely to be 

selected. For larger VIMP, in the left figure, the subsampling estimator tends to produce 

intervals that are too small. As mentioned earlier this is because it tends to underestimate the 

variance. The delete-d estimator performs much better. However, when the subsampling rate 

is increased (right figure), the subsampling estimator is generally superior to the delete-d 
estimator. Its overall mean coverage rate is 92 which is much better than the delete-d and 

bootstrap which achieve coverage rates of 97 which are too high.

5 | RANDOM FOREST CLASSIFICATION, RF-C

5.1 | Simulations

The following simulations were used to study performance of methods in the classification 

problem.

1. Threenorm simulation using mlbench.threenorm from the mlbench R-

package.30

2. Two class simulation using twoClassSim from the caret R-package31 with 2 

factors, 5 linear and 3 non-linear variables.

3. Same as 2, but with a ρ = .75 exchangeable correlation.
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4. Same as 2, but with 15 linear variables.

5. Same as 2, but with 15 linear variables and a ρ = .75 exchangeable correlation.

6. RF-R simulation 6 with y discretized into two classes based on its median.

7. RF-R simulation 8 with y discretized into two classes based on its median.

8. RF-R simulation 9 with y discretized into three classes based on its 20 and 75th 

quantiles.

9. RF-R simulation 10 with y discretized into three classes based on its 20 and 75th 

quantiles.

10. RF-R simulation 11 with y discretized into three classes based on its 20 and 75th 

quantiles.

In simulation 1, the feature space dimension was p = 20. Simulations 2–4 added d = 10 noise 

variables (see the caret package for details). Simulations 6–10 added d = 10 noise variables 

from a U[−1, 1] distribution. Experimental parameters were set as in RF-R simulations: n = 

250; b = {n1/2, n3/4}; 100 bootstrap samples; 100 subsample draws. Parameters for 

randomForestSRC were set as in RF-R except for random feature selection which used p1/2 

random features (default setting). The entire procedure was repeated 250 times.

5.2 | Brier score

Error performance was assessed using the normalized Brier score. Let Y ∈ {1, …, K} be the 

response. If 0 ≤ p̂k ≤ 1 denotes the predicted probability that Y equals class k, k = 1, …, K, 

the normalized Brier score is defined as

BS∗ = 100K
K − 1 ∑

k = 1

K
1{Y = k} − pk

2 .

Note that the normalizing constant 100K/(K − 1) used here is different than the value 1/K 
typically used for the Brier score. We multiply the traditional Brier score by 100K2/(K − 1) 

because we have noticed that the value for the Brier score under random guessing depends 

on the number of classes, K. If K increases, the Brier score under random guessing 

converges to 1. The normalizing constant used here resolves this problem and yields a value 

of 100 for random guessing, regardless of K. Thus, anything below 100 signifies a classifier 

that is better than pure guessing. A perfect classifier has value 0.

Although misclassification error is the commonly used performance measure in 

classification problems, it cannot be overstated how much stabler the Brier score is. This 

stability will naturally lend itself to stabler estimates of VIMP which is why we have chosen 

to use it. As a simple illustration of this, consider Figure 5 which displays the OOB 

misclassification rate and OOB normalized Brier score for the Wisconsin breast cancer data 

from the mlbench R-package. Observe that misclassification error remains unstable even 

with M = 20, 000 trees.
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5.3 | Results

Figure 6 displays the results from the RF-C simulations. Values are displayed as in RF-R. 

Left and right hand side figures are based on subsampling rates b = n1/2 and b = n3/4. The 

top and middle figures show bias and standardized MSE for estimating the standard error. 

The bottom figures are coverage probabilities for 90% confidence intervals. VIMP 

confidence intervals were calculated using asymptotic normality as in RF-R (see the 

Appendix for justification of normality). The conclusions from Figure 6 are similar to those 

for RF-R. The delete-d jackknife is more accurate in estimating the standard error for strong 

variables when the subsampling rate is small, but as b increases, the subsampling estimator 

improves. Both estimators generally improve with increased b. Note unlike RF-R, coverage 

probability for the delete-d jackknife is better than the subsampling estimator. This is 

probably because there are more variables with moderate signal in these simulations.

6 | RANDOM SURVIVAL FORESTS, RSF

Now we consider the survival setting. We begin by first defining the survival framework 

using the notation of Section 2. Following this we discuss two different methods that can be 

used for measuring prediction error in survival settings. Following this are illustrative 

examples.

6.1 | Notation

We assume a traditional right-censoring framework. The response is Y = (T, δ), where T = 

min(To, Co) is the observed survival time and δ = 1{To ≤ Co} is the right-censoring 

indicator. Here (To, Co) denote the unobserved event and censoring times. Thus δ = 1 

denotes an event such as death, while δ = 0 denotes a right-censored case. The target 

function h is the conditional survival function h(x) = ℙ{To > t|X = x}, where t is some 

selected time point.

6.2 | Weighted Brier score

Let ĥ be an estimator of h. One method for measuring performance of ĥ is the weighted 

Brier score, 23, 24 defined as

wBS(t) = 1{T > t} − h 2w(t, Y , G),

where w(t, Y, G) is the weight defined by

w(t, Y , G) = 1{T ≤ t}δ
G(T − ) + 1{T > t}

G(t) ,

and G(t) = ℙ{Co > t} is the survival function of the censoring variable Co. Using the 

notation of Section 2, the loss function ℓ under the weighted Brier score can be written as
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ℓ(Y , h) = 1{T > t} − h 2w(t, Y , G) .

This assumes G is a known function, but in practice G must be estimated.23, 24 Thus if Ĝ is 

an estimator of G, w(t, Y, G) is replaced by w(t, Y, Ĝ).

6.3 | Concordance index

Harrell’s concordance index32 is another measure of prediction performance that can be 

used in survival settings. The concordance index estimates the accuracy of the predictor ĥ in 

ranking two individuals in terms of their survival. A value of 1 represents an estimator that 

has perfect discrimination, whereas a value of 0.5 indicates performance on par with a 

random coin toss. This intuitive interpretation of performance has made Harrell’s 

concordance index very popular and for this reason we will base our analysis on it. Note that 

because the concordance index is calculated by comparing discordant pairs to concordant 

pairs, and therefore is very complex, it is not possible to express it in terms of the ℓ-loss 

function of Section 2. However, this just means that VIMP based on Harrell’s concordance 

index is not easily described notationally in terms of a formal loss, but this does not pose any 

problems to the application of our methodology. Permutation VIMP based on Harrell’s 

concordance index is well defined and can be readily calculated.2

6.4 | Systolic heart failure

For our first illustration we consider a survival data set of n = 2231 cardiovascular patients. 

All patients suffered from systolic heart failure and all underwent cardiopulmonary stress 

testing. The outcome was defined as all cause mortality. Over a mean follow-up of 5 years, 

742 of the patients died. Patient variables included baseline characteristics and exercise 

stress test results (p = 39). More detailed information regarding the data can be found in 

Hsich et al.33

A RSF analysis was run on the data. A total of 250 survival trees were grown using a 

nodesize value of 30 with all other parameters set to default values used by RSF in 

randomForestSRC software. Performance was measured using the C-index defined as one 

minus the Harrell concordance index.2 The delete-d jackknife estimator was calculated using 

1000 subsampled values using a b = n1/2 subsampling rate (b = 47.2). We preferred to use 

the delete-d jackknife rather than the subsampling estimator because of the low subsampling 

rate. Also, we did not use the .164 estimator because it was too slow.

The 95% asymptotic normal confidence intervals are given in Figure 7. VIMP values have 

been multiplied by 100 for convenient interpretation as percentage. BUN (blood urea 

nitrogen), exercise time, and peak VO2 have the largest VIMP with confidence intervals well 

bounded away from zero. All three variables are known to be highly predictive of heart 

failure and these findings are not surprising. More interesting, however, are several variables 

with moderate sized VIMP which have confidence regions bounded away from zero. Some 

examples are creatinine clearance, sex, LVEF (left ventricular ejection fraction) and use of 

beta-blockers. The finding for sex is especially interesting because sex is often under 

appreciated for predicting heart failure.
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6.5 | Survival simulations

Next we study peformance using simulations. We use the three survival simulation models 

described by Breiman in his 2002 Wald lectures.34 Let h(t, x) be the hazard function for 

covariate x at time t. Simulations are as follows.

1. h(t, x) = exp(x1 − 2x4 + 2x5).

2. If x1 ≤ .5, h(t, x) = exp(x2)1{t ∉ [.5, 2.5]}. If x1 > .5, h(t, x) = exp(x3)1{t ∉ [2.5, 

4.5]}.

3. h(t, x) = (1 + z2t) exp(z1 + z2t), where z1 = .5x1 and z2 = x4 + x5.

In all simulations, covariates were independently sampled from a U[0, 1] distribution. Noise 

variables were added to increase the dimension to p = 10. Simulation 1 corresponds to a Cox 

model. Simulations 2 and 3 are non-proportional hazards. Censoring was simulated 

independently of time in all simulations. Censoring rates were 19%, 15%, and 29% 

respectively.

RSF was fit using randomForestSRC using the same tuning values as in RF-C simulations 

(nodesize: 5, random feature selection: p1/2) Experimental parameters were kept the same as 

previous simulations. Experiments were repeated 250 times. Results are displayed using the 

same format as RF-R and RF-C and are provided in Figure 8. The results generally mirror 

our earlier findings: bias for the subsampling estimator improves relative to the delete-d 
jackknife with increasing subsampling rate.

6.6 | Competing risk simulations

Here we study performance of the methods in a competing risk setting. For our analysis we 

use the competing risk simulations from Ishwaran et al.3 Simulations were based on a Cox-

exponential hazards model with two competing events. Covariates had differing effects on 

the hazards. Models included covariates common to both hazards as well as covariates 

unique to only one hazard. We considered three of the simulations from Section 6.1 of 

Ishwaran et al.3

1. Linear model. All p covariate effects are linear.

2. Quadratic model. A subset of the p covariate effects are quadratic.

3. Interaction model. Same as 1, but interactions between certain p variables were 

included.

The feature dimension was p = 12 for simulations 1 and 2, and p = 17 for simulation 3 (i.e. 5 

interaction terms were added). Covariates were sampled from both continuous and discrete 

distributions. Performance was measured using the time truncated concordanace index.3 

Without loss of generality we record performance for variables related to event 1 only. RSF 

competing risk trees were constructed using log-rank splitting with weight 1 on event 1 and 

weight 0 on event 2 (this ensures VIMP identifies only those variables affecting the event 1 

cause). RSF parameters and experimental parameters were identical to the previous 

simulations. For brevity, results are given in the Appendix in Figure 11. The results mirror 

our previous findings.
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7 | DISCUSSION

7.1 | Summary

One widely used tool for peering inside the RF “black box” is variable importance (VIMP). 

But analyzing VIMP is difficult because of the complex nature of RF. Given the difficulties 

of theoretical analysis, our strategy was to approximate the distribution of VIMP through the 

use of subsampling, a general methodology for approximating distributions of complex 

statistics. We described a general procedure for estimating the variance of VIMP and for 

constructing confidence intervals.

We compared our subsampling estimator, and also the closely related delete-d jackknife, 22 

to the .164 bootstrap estimator, a modified bootstrap procedure designed to address ties in 

OOB data. Using extensive simulations involving regression, classification, and survival 

data, a consistent pattern of performance emerged for the three estimators. All procedures 

tended to under estimate variance for strong variables and over estimate variance for weak 

variables. This was especially problematic for the subsamping estimator in low subsampling 

rate scenarios. The delete-d jackknife did much better in this case due to its bias correction. 

Both of these methods improved with increasing subsampling rate, eventually outperforming 

the .164 bootstrap.

7.2 | Computational speed

Overall, we generally prefer the delete-d jackknife because of its better peformance under 

low subsampling rates, which we feel will be the bulk of applications due to the 

computational complexity of VIMP. Consider survival with concordance error rates, the 

most computationally expensive setting for VIMP. The concordance index measures 

concordance and discordance over pairs of points, a O(n2) operation. With M trees, the 

number of computations is O(n2M) for a method like the .164 bootstrap. On the other hand, 

employing a subsampling rate of b = n1/2 reduces this to O(nM), a factor of n times smaller. 

The resulting increase in speed will be of tremendous advantage in big data settings.

7.3 | Practical Guidelines

One of the major applications of our methodolgy will be variable selection. Below we 

provide some practical guidelines for this setting:

1. Use asymptotic normal confidence intervals derived from the delete-d jackknife 

variance estimator.

2. A good default subsampling rate is b = n1/2. As mentioned, this will substantially 

reduce computational costs in big n problems. In small n problems, while this 

might seem overly aggressive leading to small subsamples, our results have 

shown solid performance even when n = 250.

3. The α value for the confidence region should be chosen using typical values such 

as α = .1 or α = .05. Outside of extreme settings such as high-dimensional 

problems, our experience suggests this should work well.
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The above guidelines are only meant to be starting points for the analyst and obviously there 

will be exceptions to the rules. However, as way of support for these recommendations we 

did the following variable selection experiment. We re-ran the RF-R simulations of Section 

4. Variables were selected using 100(1 − α)% delete-d jackknife asymptotic normal 

confidence intervals. The true positive rate (TPR) and true negative rate (TNR) was 

calculated for each simulation and results averaged over 250 independent runs. TPR was 

defined as the fraction of true signal variables identified. TNR was the fraction of noisy 

signal variables identified.

Figure 9 displays the averaged TPR and TNR for each of the 12 simulation experiments 

under levels of significance α = .25, .1, .01, .001. The top panel was calculated under a 

subsampling rate b = n1/2, while the bottom panel used b = n3/4. A similar pattern for TPR 

and TNR values is generally observed for both sampling rates: TPR decreases with 

increasing α; TNR increases with α. For b = n3/4, TNR rates are slightly better, however for 

b = n1/2, TPR rates are slightly better. Thus if the goal is finding true signal the edge goes to 

b = n1/2.

Focusing on the top panel corresponding to the recommended n1/2 subsampling rate, a 

striking pattern for TPR is that while TPR decreases with α, the decline is fairly slow. This 

is interesting given the wide range of α values from 25% to 0.1%. These values are extreme 

and unlikely to be used in practice and yet TPR results remain quite robust. Values for TNR 

are also fairly robust to α, although TNR values appear relatively too small when α = .25. 

The value α = .25 is too extreme and creates overly narrow confidence regions causing noisy 

variables to be misclassified as signal variables. Generally, however, values α = .1, .05, .01 

perform very well under both TNR and TPR.

7.4 | Theoretical considerations

The key assumption underlying subsampling is the existence of a limiting distribution (8) for 

the estimator. However, as discussed earlier, theoretical results for VIMP are difficult to 

come by and establishing a result like (8) for something as complicated as permuation 

importance is not easy. As a token, we would like to offer some partial insight into VIMP for 

the regression case (RF-R), perhaps pointing the way for more work in this area. As shown 

in the Appendix (see Theorem 1), assuming an additive model h(X) = ∑ j = 1
p h j(Xi

( j)), the 

population mean for VIMP equals

𝔼 [I(X( j), Θ, ℒ)] = 𝔼 (h j(X
∼( j)) − h j(X

( j)))
2

+ 2σ2(1 − ρ j) + o(1),

where ρj is a correlation coefficient and hj is the additive expansion of h attributed to X(j). 

For noisy variables, hj = 0 and ρj = 1; thus VIMP will converge to zero. For strong variables, 

hj ≠ 0. Our theory suggests that the value of ρj will be the same for all strong variables. 

Therefore for strong variables, except for some constant, VIMP equals the amount that hj 

changes when X(j) is permuted, thus showing that VIMP correctly isolates the effect of X(j) 

in the model.
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The technical assumptions required by Theorem 1 are provided in the Appendix, however 

there are two key conditions worth briefly mentioning. One is the use of deep trees in which 

terminal nodes contain exactly one unique value (replicated values due to bootstrapping are 

allowed). A second condition is that the forest predictor is L2-consistent for h. As discussed 

in the Appendix, this latter assumption is reasonable in our setting and has been proven by 

Scornet et al.35

It is interesting that the above property for VIMP is tied to the consistency of the forest. We 

believe in general that properties for VIMP, such as its limiting distribution, will rely on 

analogous results for the RF predictor. Hopefully in the future these results for VIMP will be 

proven. At least in the case of RF-R we know that distributional results exist for the 

predictor. Wager 19 established asymptotic normality of the infinite forest predictor 

(assuming one observation per terminal node). Mentch and Hooker 20 established a similar 

result for the finite forest predictor. See Biau and Scornet 36 for a comprehensive discussion 

of known theoretical results for RF.
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8 | APPENDIX

8.1 | Assessing normality for classification, survival, and competing risk

We applied the same strategy as in RF-R simulations to assess normality of VIMP for RF-C, 

RSF, and RSF competing risk simulations. Specifically, for each setting we ran simulations 

1000 times independently. Experimental parameters were set as before with n = 2500. The 

finite forest VIMP for a variable was centered by its averaged value from the 1000 

simulations. This centered value was then divided by the standard deviation of the 1000 

VIMP values. Quantile bias was calculated by taking the difference between the quantile for 

Ishwaran and Lu Page 22

Stat Med. Author manuscript; available in PMC 2019 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cran.r-project.org/web/packages/random-ForestSRC
https://cran.r-project.org/web/packages/mlbench
https://cran.r-project.org/web/packages/caret
https://cran.r-project.org/web/packages/caret


standardized VIMP to that of a standard normal quantile. Quantile bias is displayed in 

Figure 10 for the three families.

8.2 | Performance results from competing risk simulations

Competing risk simulations from Ishwaran et al.3 were used to assess performance of the 

subsampling, delete-d jackknife, and .164 bootstrap estimators. Performance was measured 

using the time truncated concordanace index.3 Analysis focused on variables affecting cause 

1 event. RSF competing risk trees were constructed using log-rank splitting with weight 1 on 

event 1 and weight 0 on event 2. This ensured VIMP identified only those variables affecting 

event 1. Results are displayed in Figure 11.

FIGURE 10. 
Assessing asymptotic normality of VIMP from RF-C, RSF, and RSF competing risk 

simulations. Figure displays bias of standardized VIMP quantiles compared to standard 

normal quantiles. Values are displayed for 5,10,25,50,75,90,95 percentile values.

8.3 | Some theoretical results for VIMP in RF-R

Let θn
( j) = I(X( j), ℒ) be the infinite forest estimator for VIMP (5). We assume the following 

additive regression model holds

Y i = ∑
j = 1

p
h j(Xi

( j)) + εi, i = 1, …, n, (14)

where (Xi, εi) are i.i.d. with distribution ℙ such that Xi and εi are independent and (εi) = 0, 

Var(εi) = σ2 < ∞. Notice (14) implies that the target function h has an additive expansion 

h(X) = ∑ j = 1
p h j(X

( j)). This is a useful assumption because it will allow us to isolate the 

effect of VIMP. Also, there are known consistency results for RF in additive models35 which 

we will use later in establishing our results. Assuming squared error loss, ℓ(Y, ĥ) = (Y − ĥ)2, 

we have
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θn
( j) = 𝔼Θ

1
N(Θ) ∑

i ∈ ℒ ∗ ∗(Θ)
(Yi − h(X∼i

( j), Θ, ℒ))
2

− (Yi − h(Xi, Θ, ℒ))2 .

We will assume the number of OOB cases N(Θ) is always fixed at Round(ne−1), where 

Round(·) is the nearest integer function. Write Nn for N(Θ). Because this is a fixed value,

θn
( j) = 1

Nn
𝔼Θ ∑

i ∈ ℒ ∗ ∗(Θ)
(Yi − h(X∼i

( j), Θ, ℒ))
2

− (Yi − h(Xi, Θ, ℒ))2 .

To study θn
( j) we will evaluate its mean θn, 0

( j) = 𝔼ℒ[θn
( j)]. For ease of notation, write hn,i = 

h(Xi, Θ, ℒ) and h
∼

n, i = h(X∼i
( j), Θ, ℒ). Likewise, let hn = h(X, Θ, ℒ) and h̃n = h(X̃(j), Θ, ℒ). 

We have

θn, 0
( j) = 1

Nn
𝔼 ∑

i ∈ ℒ ∗ ∗(Θ)
(Yi − h

∼
n, i)

2 − (Yi − hn, i)
2 = 𝔼 (Y − h

∼
n)2 − (Y − hn)2 ,

where the right hand side follows because (X, Y , hn, h
∼

n) =d (Xi, Y i, hn, i, h
∼

n, i) if i is OOB (i.e., 

because the tree does not use information about (Xi, Yi) in its construction, we can replace 

(Xi, Yi) with (X, Y)). Now making using of the representation Y = h(X) + ε, which holds by 

the assumed regression model (14), and writing h for h(X) and Δ̃
n = h̃n − hn,

θn, 0
( j) = 𝔼 (Y − h

∼
n)2 − (Y − hn)2 = 𝔼 −2εΔ∼n + Δ∼n

2 + 2Δ∼n(hn − h) = 𝔼 Δ∼n
2 + 2𝔼

Δ∼n(hn − h) ,

(15)

where in the last line we have used (ε) = 0 and that ε is independent of {Δ̃
n, hn, h}.
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FIGURE 11. 
Results from competing risk simulations showing performance of subsampling, delete-d 
jackknife, and .164 bootstrap. Left and right hand side figures are based on subsampling 

rates b = n1/2 and b = n3/4. Top and middle figures display bias and standardized MSE for 

estimating VIMP standard error. Bottom figure displays coverage for VIMP 90% asymptotic 

normal confidence intervals. Results have been stratified into 6 groups based on 10, 25, 50, 

75, and 90th percentiles of true finite VIMP.

We can see that (15) is driven by the two terms: Δ̃n and hn − h. Define integer values ni := 

ni(Θ) ≥ 0 recording the bootstrap frequency of case i = 1, …, n in ℒ*(Θ) (notice that ni = 0 

implies case i is OOB). By the definition of a RF-R tree, we have

hn = h(X, Θ, ℒ) = ∑
i = 1

n
Wi(X, Θ)Yi

where {W i(X, Θ)}1
n are the forest weights defined as
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Wi(X, Θ) =
ni1{Xi ∈ R(X, Θ)}

∣ R(X, Θ) ∣

where R(X, Θ) is the tree terminal node containing X and |R(X, Θ)| is the cardinality equal 

to the number of bootstrap cases in R(X, Θ). Notice that the weights are convex since 0 ≤ 

Wi(X, Θ) ≤ 1 and

∑
i = 1

n
Wi(X, Θ) = ∑

i = 1

n ni1{Xi ∈ R(X, Θ)}
∣ R(X, Θ) ∣ = ∑

i = 1

n ni1{Xi ∈ R(X, Θ)}

∑i′ = 1
n ni′1{Xi′ ∈ R(X, Θ)}

= 1.

Similarly, we have

h
∼

n = h(X∼( j), Θ, ℒ) = ∑
i = 1

n
Wi(X

∼( j), Θ)Yi, where Wi(X
∼( j), Θ) =

ni1{Xi ∈ R(X∼( j), Θ)}

∣ R(X∼( j), Θ) ∣
.

Therefore,

Δ∼n(X) = h(X∼( j), Θ, ℒ) − h(X, Θ, ℒ) = ∑
i = 1

n
Wi(X

∼( j), Θ)Yi − ∑
i = 1

n
Wi(X, Θ)Yi .

In order to study Δ̃
n in more detail we will assume deep trees containing one unique case per 

terminal node.

Assumption 1

We assume each terminal node contains exactly one unique value. That is, each terminal 

node contains the bootstrap copies of a unique data point.

Assumption 1 results in the following useful simplification. For notational ease, write R̃ = 

R(X̃(j), Θ) and R = R(X, Θ). Then

Δ∼n(X) = 1
∣ R ∣ ∑

i ∈ R∼
niYi − 1

∣ R ∣ ∑
i ∈ R

niYi

= 1
∣ R∼ ∣

∑
i ∈ R∼

nih(Xi) − 1
∣ R ∣ ∑

i ∈ R
nih(Xi) + 1

∣ R∼ ∣
∑

i ∈ R∼
niεi − 1

∣ R ∣ ∑
i ∈ R

niεi

= h(X
i(R∼)

) − h(Xi(R)) + ε
i(R∼)

− εi(R),

where i(R̃) and i(R) identify the index for the bootstrap case in R̃ = R(X̃(j), Θ) and R = R(X, 

Θ) respectively (note that i(R̃) and i(R) are functions of X and j but this is suppressed for 

notational simplicity). We can see that the information in the target function h is captured by 
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the first two terms in the last line and therefore will be crucial to understanding VIMP. 

Notice that if h(Xi(R̃)) ≍ h(X̃(j)) and h(Xi(R)) ≍ h(X), which is what we would expect 

asymptotically with a deep tree, then

h(X
i(R∼)

) − h(Xi(R)) ≍ h(X∼( j)) − h(X) = h j(X
∼( j)) − h j(X

( j)),

where the right-hand side follows by our assumption of an additive model (14). This shows 

that VIMP for X(j) is assessed by how much its contribution to the additive expansion, hj, 

changes when X(j) is permuted. This motivates the following assumption.

Assumption 2

Assuming a deep tree with one unique value in a terminal node,

h(X∼( j)) = h(X
i(R∼)

) + ξ
∼

n(X), h(X) = h(Xi(R)) + ζn(X),

where 𝔼(ζ∼n
2) = o(1)and 𝔼(ζn

2) = o(1).

This deals with the first two terms in the expansion of Δñ(X). We also need to deal with the 

remaining term involving the measurement errors, εi(R̃) − εi(R). For this we will rely on a 

fairly mild exchangeability assumption.

Assumption 3

εi(R̃), εi(R) is a finite exchangeable sequence with variance σ2.

Finally, a further assumption we will need is consistency of the forest predictor.

Assumption 4

The forest predictor is L2-consistent,  [(hn − h)2] → 0 where [h2] < ∞.

Putting all of the above together, we can now state our main result.

Theorem 1

If Assumptions 1, 2, 3, and 4 hold, then

θn, 0
( j) = 𝔼 (h j(X

∼( j)) − h j(X
( j)))

2
+ 2σ2(1 − ρ j) + o(1),

where ρj = corr(εi(R̃), εi(R)).

Note that the asymptotic limit will be heavily dependent on the strength of the variable. 

Consider when X(j) is a noisy variable. Ideally this means the tree is split without ever using 

Ishwaran and Lu Page 27

Stat Med. Author manuscript; available in PMC 2019 February 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



X(j). Therefore, if we drop X and X̃(j) down the tree they will occupy the same terminal 

node. Hence, R̃ = R and εi(R̃) = εi(R) and therefore ρj = 1. Furthermore, because hj must be 

zero for a noisy variable, it follows that θn, 0
( j) = o(1) . Thus, the limit is zero for a noisy 

variable. Obviously, this is much different than the limit of a strong variable which must be 

strictly positive because hj ≠ 0 and ρj < 1 for strong variables.

Proof—By (15), we have θn, 0
( j) = 𝔼[Δ∼n

2] + 2𝔼[Δ∼n(hn − h)]. We start by dealing with the second 

term, [Δ̃
n(hn − h)]. By the Cauchy-Schwartz inequality,

𝔼 Δ∼n(hn − h) ≤ 𝔼 ∣ Δ∼n ∣ ∣ hn − h ∣ ≤ 𝔼 Δ∼n
2 𝔼 (hn − h)2 .

By Assumption 4, the right-hand side converges to zero if 𝔼[Δ∼n
2] remains bounded. By 

Assumption 2, and the assumption of an additive model (14),

Δ∼n(X) = h j(X
∼( j)) − h j(X

( j)) − ζn(X) + ζn(X) + ε
i(R∼)

− εi(R) .

Assumption 4 implies h (and therefore hj) is square-integrable. Assumption 3 implies that 

εi(R̃), εi(R) have finite second moment and are square-integrable. Therefore squaring and 

taking expectations, and using 𝔼(ζ∼n
2) = o(1) and 𝔼(ζn

2) = o(1), deduce that

𝔼[Δ∼n(X)2] = 𝔼 (h j(X
∼( j)) − h j(X

( j)))
2

+ 2𝔼 (h j(X
∼( j)) − h j(X

( j)))(ε
i(R∼)

− εi(R)) + 𝔼 (ε
i(R∼)

− εi(R))
2 + o(1) .

By exchangeability, [g(X)εi(R̃)] = [g(X)εi(R)] for any function g(X). Hence,

0 = 𝔼 (h j(X
∼( j)) − h j(X

( j)))ε
i(R∼)

− 𝔼 (h j(X
∼( j)) − h j(X

( j)))εi(R) = 𝔼 (h j(X
∼( j)) − h j(X

( j)))(ε
i(R∼)

− εi(R)) .

Appealing to exchangeability once more, we have

𝔼[(ε
i(R∼)

− εi(R))
2] = 𝔼[ε

i(R∼)
2 ] + 𝔼[ε

i(R∼)
2 ] − 2𝔼[ε

i(R∼)
εi(R)] = 2σ2(1 − ρ j),

where ρj = corr(εi(R̃), εi(R)). Therefore we have shown

𝔼[Δ∼n(X)2] = 𝔼 (h j(X
∼( j)) − h j(X

( j)))
2

+ 2σ2(1 − ρ j) + o(1),
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which verifies boundedness of 𝔼[Δ∼n
2] and that θn, 0

( j) = 𝔼[Δ∼n
2] + o(1).

The conditions needed to establish Theorem 1 are fairly reasonable. Assumption 2 can be 

viewed as a type of continuity condition for h. However, it is also an assertion about the 

approximating behavior of the forest predictor hn. It asserts that all features X within a 

terminal node have h(X) values close to one another, which can be seen as an indirect way of 

asserting good local prediction behavior for the tree. Thus, Assumption 2 is very similar to 

Assumption 4. The latter assumption of consistency is reasonable for deep trees under an 

additive model assumption. Scornet et al.35 established L2-consistency of RF-R for additive 

models allowing for the number of terminal nodes to grow at rate of n (see Theorem 2 of 

their paper). For technical reasons their proof replaced bootstrapping with subsampling and 

required X to be uniformly distributed, but other than this their result can be seen as strong 

support for our assumptions.
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FIGURE 1. 
Bias and standardized mean-squared-error (SMSE) performance for estimating VIMP 

standard error from RF-R (RF-regression) simulations. In total there are 240 variables (12 

simulations, p = 20 variables in each simulation). These 240 variables have been stratified 

into 6 groups based on 10, 25, 50, 75, and 90th percentiles of true finite VIMP. Extreme 

right boxplots labeled “ALL” display performance for all 240 variables simultaneously.
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FIGURE 2. 
Results from RF-R simulations but with increased subsampling rate b = n3/4. Notice the 

improvement in bias and SMSE for the subsampling estimator.
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FIGURE 3. 
Assessing asymptotic normality of VIMP from RF-R simulations. Left-hand figure displays 

normal quantile plots for standardized VIMP for each of the 12 simulations. Right-hand 

figure displays bias of VIMP quantiles compared to standard normal quantiles for all 240 

variables from all 12 simulations.
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FIGURE 4. 
Coverage of VIMP 90% asymptotic normal confidence intervals from RF-R simulations. 

Left and right hand side figures based on subsampling rates b = n1/2 and b = n3/4 

respectively. Confidence regions for the 240 variables from the 12 simulation experiments 

have been stratified into 6 groups based on 10, 25, 50, 75, and 90th percentiles of true finite 

VIMP values.
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FIGURE 5. 
OOB misclassification error rate versus OOB normalized Brier score for Wisconsin breast 

cancer data (obtained from the mlbench R-package). Note the fluctuations in 

misclassification error even after 20,000 trees in contrast to the stable behavior of the Brier 

score.
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FIGURE 6. 
Results from RF-C (RF-classification) simulations showing performance of subsampling, 

delete-d jackknife, and .164 bootstrap. Left and right hand side figures are based on 

subsampling rates b = n1/2 and b = n3/4. Top and middle figures display bias and 

standardized MSE for estimating VIMP standard error. Bottom figure displays coverage for 

VIMP 90% asymptotic normal confidence intervals. Results have been stratified into 6 

groups based on 10, 25, 50, 75, and 90th percentiles of true finite VIMP.
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FIGURE 7. 
Delete-d jackknife 95% asymptotic normal confidence intervals from RSF analysis of 

systolic heart failure data.
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FIGURE 8. 
Results from RSF simulations showing performance of subsampling, delete-d jackknife, 

and .164 bootstrap. Left and right hand side figures are based on subsampling rates b = n1/2 

and b = n3/4. Top and middle figures display bias and standardized MSE for estimating 

VIMP standard error. Bottom figure displays coverage for VIMP 90% asymptotic normal 

confidence intervals. Results have been stratified into 6 groups based on 10, 25, 50, 75, and 

90th percentiles of true finite VIMP.
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FIGURE 9. 
Results from variable selection experiment using RF-R simulations of Section 4. Displayed 

are the true positive rate (TPR) and true negative rate (TNR) for variables selected using 

100(1 − α)% delete-d jackknife confidence regions where α = .25, .1, .01, .001. Top and 

bottom figures are based on subsampling rates b = n1/2 and b = n3/4.
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