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Abstract

Nitrated oleic acid (NO2-OA) was first identified in 2003, and after the characterization of its 

formation and thiol reactivity, it was used as a prototypical molecule to investigate the 

physiological actions of endogenous nitrated fatty acids (NO2-FA). Based on in vitro observations 

showing significant activation of cytoprotective and anti-inflammatory signaling responses by 

NO2-FA, experiments were designed to determine their pharmacological potential. Supported by 

strong intellectual protection and favorable pharmacokinetic and pharmacodynamic data, 10-NO2-

OA (CXA-10) underwent pharmaceutical development as a drug to treat fibrotic and inflammatory 

diseases. NO2-FA are at the intersection of three unconventional drug candidate classes that 

include 1) fatty acids, 2) metabolic intermediates and 3) electrophilic molecules. These three 

groups use different scaffolds for drug development, are characterized by broad activities and are 

individually gaining traction as alternatives to mono-target drug therapies. In particular, NO2-FA 

share key characteristics with currently approved pharmacological agents regarding reactivity, 

distribution, and mechanism of action. This review first presents the characteristics, liabilities, and 

opportunities that these different drug candidate classes display, and then discusses these issues in 

the context of current progress in the preclinical and clinical development of NO2-FA as drugs. 

Lessons learned from the novel approaches presented herein were considered early on during 

development to structurally define and improve NO2-FA and their disease targets.
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NO2-FA therapy at the intersection of other successful pharmacological 

approaches.

Three drug classes and their intrinsic pharmacological characteristics share commonalities 

with NO2-FA. Within this framework, the properties of CXA-10, a specific regioisomer of 

NO2-OA (10-nitro-octadec-9-enoic acid) is presently being clinically evaluated (Fig 1A) and 

is discussed herein.

1.1 Fatty acids as metabolic and anti-inflammatory drugs.

Fatty acid-based pharmacological approaches can be broadly divided into omega-3 fatty 

acids, modified fatty acids, and oxidized fatty acids.

Dietary omega-3 fatty acids as drugs.—Omega-3 fatty acid and fish oil 

supplementation have shown protective effects in some but not all large clinical trials related 

to cardiovascular disease (1–5), but were strongly associated with significant reductions in 

plasma triglyceride levels (6–9). While some trials have failed to demonstrate protective 

effects (10–14), pre-clinical and clinical data have still motivated pharmaceutical companies 

to develop treatments based on these molecules. Initially approved by the FDA in 2004, 

Lovaza (GSK, previously Omacor, Reliant Pharmaceuticals) and later Vascepa (Amarin 

Pharma) and Epanova (AstraZeneca) are effective at treating hypertriglyceridemic subjects 

(>500 mg/dL) (Fig 1B)(15,16). These pharmacological benefits are characterized by 

decreased de novo lipogenesis and increased fatty acid oxidation (17–21). However, it is 

important to note that large daily doses of omega-3 fatty acids are required, with 4 gr/day 

being the recommended treatment (16). In terms of delivery, these fatty acids were 

formulated either as ethyl esters (Lovaza and Vascepa) or as free acids (Epanova), a decision 

likely based more prominently on intellectual property than on pharmacokinetic reasons, as 

the absorption of ethyl ester derivatives is actually lower than that of the free acid precursors 

(22). Nevertheless, the effectiveness of omega-3-based therapies to control severe 

hypertriglyceridemia underscores the validity and appropriateness of the use of fatty acids as 

drugs. Perhaps the main liability of omega-3 based supplementation is the relatively high 

therapeutic dose. Although no major side effects are reported, these drugs are associated 

with increased incidence of diarrhea, nausea and abdominal discomfort, which greatly 

impacts treatment compliance.

Beta-oxidation protected fatty acids: Based on the aforementioned liabilities of 

omega-3 fatty acid approaches and the experience gathered by inhibitor studies of key 

enzymes participating in the lipogenic program, a second generation of drugs was 

developed. Unlike their omega-3 fatty acid predecessors, these derivatives are characterized 

by structural modifications that inhibit beta-oxidation, the main route for fatty acid 

catabolism. These modifications extended half-life and permitted the use of significantly 

lower doses. Two drugs that characterize this group are bempedoic acid and icosabutate (Fig 

1C-D). Bempedoic acid, a dicarboxylic fatty acid, recently finished a 12-week, global, 

pivotal, Phase 3 randomized, double-blind, placebo-controlled, multicenter study that 

evaluated its efficacy and safety as add-on therapy in patients at risk or with existing 

atherosclerotic cardiovascular disease. The study revealed a 23 % reduction in LDL-C from 
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baseline (23). Icosabutate, a structurally engineered omega-3 fatty acid resistant to both 

beta-oxidation and complex lipids incorporation, was developed by Pronova BioPharma and 

tested as a drug to treat hypertriglyceridemia (Fig 1B)(24–26). Clinical studies demonstrated 

a significant reduction in triglyceride and cholesterol levels. However, a prolongation of the 

QT interval observed in a 12-month dog study that ran in parallel to the clinical trial led the 

FDA to establish an exposure limit and consequently to the termination of the study by the 

sponsor (25). Nevertheless, both bempedoic and icosabutate (now being evaluated for non-

alcoholic steatohepatitis) are still in clinical trials and share a similar pharmacological 

strategy with regards to the introduction of chemical modifications to prevent fatty acid 

metabolism and increase their potency.

Oxidized fatty acids: Oxidized fatty acids such as prostaglandins, thromboxanes, 

leukotrienes, and prostacyclins are endogenously synthesized by lipoxygenases and 

cyclooxygenases and have important roles in physiology and pathology. For example, 

Prostaglandin E2 (dinoprostone) and its synthetic analog misoprostol are effective at dilating 

the cervix in pregnant women during labor (Fig 1D). Similarly, other prostaglandin analogs 

such as latanoprost, bimatoprost, misoprostol, and travoprost have shown promise for the 

treatment of open-angle glaucoma and high pressure in the eye (Fig 1D)(27). Vasoactive 

prostacyclin analogs, such as epoprostenol, treprostinil, and selexipag, administered as IV, 

subcutaneous, inhaled and oral formulations, have proven beneficial in the treatment of 

pulmonary arterial hypertension to reduce pulmonary vascular resistance (28,29). 

Unfortunately, side effects such as headaches, diarrhea, flushing and both muscle and joint 

pain can result in significant patient intolerability to the treatment (30,31). Other bioactive 

lipids, represented by the resolvin family, are proposed to modulate inflammation and 

adaptive repair mechanisms (32). These molecules have significant pharmacokinetic and 

development liabilities, including rapid metabolism, a consequent short half-life and a high 

cost of synthesis. Thus, Phase 1 clinical trials conducted by Resolvyx using the resolvin 

analog RX-10045 (Fig 1C) focused on dry eye syndrome as a target disease. This approach 

provided a favorable pharmacological opportunity based on the small doses required (topical 

eye drops), slower metabolism by this particular tissue compartment and the potent anti-

inflammatory properties of resolvins. Nevertheless, the trials were unsuccessful and both the 

approach and the lead compound were abandoned (33).

This overview of fatty acid-based drug strategies exemplifies the challenges and 

opportunities in this area, with rapid metabolism (omega-3 fatty acids, resolvins) and cost of 

synthesis (“resolvins” and prostaglandin analogs) being significant decision drivers. As a 

result, improved scaffolds have been designed that are now being tested in Phase 2 and 3 

clinical trials.

1.2 Use of metabolic intermediates as tissue-protective drugs.

Fumarate is a metabolite of the Krebs cycle, synthesized from succinate by succinate 

dehydrogenase and metabolized to malate by fumarase. Interestingly, cardiac-specific 

fumarase knock-out mice exhibit increased cardiac levels of fumarate, upregulated Nuclear 

Factor Erythroid 2-Related Factor 2 (Nrf2)-dependent gene expression and protection 

against ischemia/reperfusion injury (34). Nrf2 is stringently regulated by electrophilic 
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compounds and induces Phase 2 detoxification responses (35). Fumarates play an important 

role in intermediary metabolism and were recognized early on to have pharmacological 

value (36). A seminal observation in 1959 by a German pharmacist that suffered from 

psoriasis led to the development of a fumarate-based dermal treatment for this condition 

under the name of Fumaderm (37). The pharmacological success of dimethyl fumarate 

(DMF, Fig 1E) in treating psoriasis, together with its favorable safety profile, led 

investigators to evaluate this molecule in other conditions characterized by exacerbated 

immune responses (38). DMF showed significant protection in experimental autoimmune 

encephalomyelitis (EAE) a preclinical animal model of multiple sclerosis (39,40), 

prompting the execution of large multi-center phase II and III studies of relapsing-remitting 

multiple sclerosis (41–43). It is important to recognize that DMF is an electrophilic 

molecule that exerts many of its pharmacological actions through Michael addition with 

thiols and activation of Nrf2-dependent gene expression (39). Nevertheless, it has recently 

been shown that monomethyl fumarate (MMF) also activates the hydroxycarboxylic acid 

receptor 2 (HCA2, GPR109A, also known as niacin receptor 1 [NIACR1]), a member of the 

nicotinic acid receptor family. In this regard, MMF is ten times less potent than niacin at 

activating this receptor, but several orders of magnitude stronger than DMF (44). 

Importantly, whereas oral administration of DMF protects against EAE, this protection was 

lost in mice lacking HCA2 expression (45). Moreover, DMF was equally protective against 

EAE in both wild-type and Nrf2−/− mice, suggesting that the observed beneficial effects of 

DMF in MS are independent of Nrf2 activation (46).

1.3 Electrophilic small molecules as drugs.

Electrophilicity is the main characteristic of the third class of molecules sharing 

pharmacological properties with NO2-FA. This is a broad group of structures composed of 

naturally occurring compounds and their synthetic derivatives containing one or more 

electron-deficient carbons. Chalcone, flavonoid, isothiocyanate, α−β unsaturated carbonyl 

and polyphenol-containing molecules all activate Nrf2-dependent gene expression and exert 

protective effects both in vitro and in preclinical models of disease (Fig 1E)(47–49). Despite 

protective effects in preclinical model systems, the pharmacological development of 

naturally-occurring electrophiles and their synthetic homologs is hampered by difficulty in 

obtaining intellectual property protection. In this regard, the development of bardoxolone-

methyl (bardoxolone-me) is a notable exception to these limitations. In this case, the 

addition of two electrophilic groups to a triterpenoid molecule with otherwise modest Nrf2 

activating properties resulted in the generation of a much more potent electrophile (50,51). 

More specifically, the presence of the cyanoenone moiety allows bardoxolone-me to activate 

the expression of Nrf2-dependent genes at nanomolar concentrations, with the reactivity of 

the electrophilic group being a key factor in the potency of engineered triterpenoids. 

Moreover, small mono, di, and tricyclic structures have been created that retain much of the 

potency of bardoxolone-me (Fig 1E)(52,53). In this regard, the tricyclic bis(cyano enone) 

TBE-31 is a strong Nrf2 activator that yielded promising results in preclinical animal models 

but is yet to be tested in human trials (53).

Despite positive results in a Phase II clinical trial, bardoxolone-me failed a Phase III study 

aimed at improving renal function in patients with type 2 diabetes and stage 4 chronic 
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kidney disease, with the trial being terminated due to a higher rate of adverse cardiovascular 

events in the bardoxolone-me group (54). Nonetheless, Reata Pharmaceuticals reported that 

post-hoc analysis of the trial data demonstrated preservation of kidney function (55). In 

addition, preliminary data from the follow-up TSUBAKI study showed improved renal 

function as assessed by inulin clearance (56). As a result, the development strategy for 

bardoxolone-me has been redirected, with new clinical trials testing efficacy towards the 

treatment of connective tissue disease-associated pulmonary arterial hypertension (Phase III) 

and Alport syndrome (Phase II/III) that are now in progress. .

Whereas bardoxolone-me was chemically engineered to strongly increase its electrophilicity, 

plant-derived sulforaphane is a less reactive electrophile obtained from broccoli sprouts 

upon enzymatic hydrolysis of glucoraphanin by the enzyme myrosinase (57). Large clinical 

trials have shown that sulforaphane is a promising therapy for preventing liver 

carcinogenesis induced by aflatoxin in endemic areas of the province of Qidong in China 

(58). Aflatoxin is activated in the liver and alkylates cellular components, inducing 

mutations and cancer development (59). Electrophilic drugs targeting activation of Nrf2 

induce the expression of over 100 Phase 2 genes, thus allowing for more efficient 

detoxification of aflatoxin and protection against carcinogenesis (60,61). In this regard, 

Evgen Pharma has now successfully stabilized sulforaphane using an α-cyclodextrin-based 

formulation, a key step towards the evaluation of sulforaphane in clinical trials.

2 Development of nitrated fatty acid as drugs.

Nitrated fatty acids share many of the characteristics of the aforementioned molecules, while 

at the same time representing a new approach to treat inflammatory and fibrotic diseases. 

Although NO2-OA is a minor component of the endogenous nitrolipidome, this species 

offers key advantages for testing in preclinical models. Regarding synthesis, equimolar 

mixtures of the positional isomers 9- and 10-NO2-OA (NO2-OA) can be obtained by a 

relatively simple nitroselenylation strategy. In addition, the synthesis of specific 

regioisomers can be performed by nitro-aldol condensation followed by acetylation and 

elimination steps. As a result, NO2-OA and the specific isomer CXA-10 were synthesized in 

sufficiently large quantities to perform pharmacokinetic, metabolic and preclinical 

experiments. The protective effects obtained in a wide variety of preclinical models of 

disease propelled the development of nitrated fatty acids as anti-inflammatory and anti-

fibrotic drug candidates.

2.1 NO2-FA metabolism as a determinant of pharmacological potency

Consistent with their scaffold, NO2-FA undergo many of the same metabolic 

transformations as non-nitrated fatty acids. In this regard, studies performed in both rodents 

and humans demonstrated that NO2-FAs are substrates for omega- and beta-oxidation, as 

well as for esterification into complex lipids (62–65). Interestingly, many of the products 

obtained from these reactions retain electrophilic reactivity suggesting that a given NO2-FA 

can give rise to the formation of an array of secondary species with potentially different 

compartmentalization and pharmacokinetic profiles. In the case of esterification into 

complex lipids, the incorporation of electrophilic NO2-FAs into the non-polar environment 
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of a membrane or a lipid droplet prevents these species from reacting with both protein and 

low molecular weight thiols, thus effectively creating an intracellular NO2-FA reservoir. 

Furthermore, gut incorporation of orally administered NO2-FAs into lipoproteins could 

represent a major pathway for their tissue distribution. Although there is ample evidence 

supporting NO2-FA incorporation into complex lipids in vitro and in vivo, the actual 

contributions of this stabilized pool to the biological actions of these molecules remain to be 

established. In contrast to esterification, beta-oxidation of NO2-FA gives rise to the 

formation of a series of shorter and progressively more polar electrophilic derivatives which, 

in the case of NO2-OA, can be as short as eight carbons long. In principle, the generation of 

shorter NO2-FA derivatives should facilitate their reaction with targets in more polar 

compartments, and thus it is possible that these active metabolites might be responsible for 

some of the effects ascribed to NO2-OA. In this regard, and although specific NO2-OA beta-

oxidation products have not been studied, recent evidence indicates that changes in both the 

fatty acyl chain length and the position of the nitroalkene group have profound effects on 

biological activity with shorter alpha chains correlating with stronger Nrf2 induction and 

shorter omega chains leading to more potent NF-κB inhibition (66).

Besides processing of the fatty acyl chain, NO2-FAs are also subject to phase II metabolism. 

NO2-FA reduction to corresponding non-electrophilic nitroalkane derivatives by 

prostaglandin reductase-1 (PtGR-1) is the main pathway for the termination of 

electrophilicity and downstream signaling actions (67). Notably, PtGR-1 itself is a Nrf2-

regulated gene that can be induced by NO2-OA, thus suggesting that chronic administration 

of this molecule might be faced with increasingly more efficient inactivation reactions. In 

addition, given the role of PtGR-1 in prostaglandin synthesis, it is possible for NO2-FAs to 

indirectly modulate eicosanoid-mediated signaling events. In addition to irreversible 

inhibition by PtGR-1, intracellular NO2-FAs are also conjugated to glutathione and excreted 

via multidrug resistance-associated proteins (MRPs), which upon further processing by 

endopeptidases give rise to the formation of cysteine- and N-acetylcysteine adducts (68). 

Notably, the reversibility of the nitroalkene-thiol adduct allows for the regeneration of free 

NO2-FA in urine, most likely as a result of the low levels of free thiols in this compartment.

Metabolism is an important determinant of the bioactivity and potency of electrophilic drugs 

and has been a significant differentiation factor for CXA-10. For example, while DMF is 

significantly more electrophilic than its proximal metabolite MMF, the former is rapidly 

degraded in the gastrointestinal tract, with native DMF undetectable in plasma after oral 

administration (69). Electrophiles are expected to covalently interact with blood protein 

thiols, adding complexity to PK studies. Sulforaphane derivatives have been shown to react 

with hemoglobin and albumin, which led to the development of a novel methodological 

approach to assess isothiocyanate exposure in humans (70). Cysteine 34 (Cys34) in human 

albumin is the most abundant nucleophile in plasma, with other plasma thiols significantly 

lower in concentration. Thus, for sulforaphane, blood protein thiols represent a sink and 

inactivation mechanism. In contrast, CXA-10 follows distribution mechanisms common to 

fatty acids, associating non-covalently with albumin. This interaction does not involve a 

reaction with Cys34 but rather a binding to hydrophobic pockets in the protein, thus 

effectively shielding CXA-10 from inactivation by adventitious thiol reactions in plasma 

(71). Taken together, it is clear that these so-called “non-specific” reactions and degradation 
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pathways affect drug availability and provide differentiation between classes of electrophilic 

pharmacological agents.

2.2 Preclinical development of NO2-OA

The preclinical disease model responses to NO2-FA administration has been addressed in the 

other reviews of this series, thus we will briefly discuss NO2-FA administration and dosing. 

NO2-OA is an oily substance at room temperature and insoluble in water. Therefore, initial 

murine model studies utilized intraperitoneal (i.p.) injections of NO2-FA solvated in DMSO 

and subcutaneous administration via osmotic mini-pumps. While daily i.p. injections posed 

minimal problems, formulation of NO2-OA for mini-pump delivery was more challenging. 

To this end, a polyethylene glycol-400 (PEG-400) formulation was devised and used in 14-

day mini-pumps, achieving NO2-OA steady-state concentrations of 8–30 nM when 8 

mg/kg/day doses were used. In addition, oil-based stabilization of CXA-10 led to the 

successful development of oral administration schemes later used to redefine dosing in 

preclinical animal models, pharmacokinetic and pharmacodynamic studies, and 

toxicological evaluations.

2.3 Clinical development of CXA-10 as a drug candidate

Intellectual property related to NO2-FA composition of matter and methods of use has been 

licensed by Complexa Inc. (https://www.complexarx.com/) as part of their mission to 

develop NO2-FA as tissue protective, anti-fibrotic and anti-inflammatory drug candidates. 

The lead compound for development in acute and chronic settings is CXA-10 (10-NO2-OA, 

a specific positional isomer of NO2-OA). Although initially focused on acute kidney injury 

with particular interest in contrast-induced nephropathy, the primary pharmacological targets 

were later changed to focal segmental glomerulosclerosis and pulmonary arterial 

hypertension based on promising preclinical studies (72,73).

Intravenous formulation: Complexa Inc. successfully developed a formulation for 

intravenous CXA-10 administration that proved effective in treating acute kidney injury 

related to ischemia/reperfusion in animal models. The favorable preclinical ADME and 

toxicological data supported an IND submission for Phase Ia and Phase Ib clinical trials. 

From these trials, it was learned that the IV formulation is well tolerated in humans and that 

it engaged signaling pathways previously identified in academic studies (74). More 

specifically, CXA-10 increased Nrf2- and heat shock-dependent gene expression in 

peripheral blood mononuclear cells, which correlated with kidney-derived urinary exosome 

biomarkers measured in patients with chronic renal failure (75).

Oral formulation: Based on the promising pharmacokinetics and bioavailability observed 

in Phase 1 studies of oral CXA-10, a program was started that focused on the treatment of 

chronic diseases via the more practical administration of an oral formulation. Radioactive 

tracing studies using [14C]-CXA-10 given orally to rats showed at least 35% absorption. 

These studies revealed a biodistribution profile of CXA-10 consistent with lipoprotein-

dependent tissue delivery, with CXA-10 and its metabolites predominantly distributed in 

liver, heart, kidney and adipose tissue. This is of relevance when deciding disease targets, as 

CXA-10 appears to be the only electrophilic drug candidate in development that is delivered 
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to organs that are characterized by high metabolic rates. Importantly, these tissues are 

normally exposed to higher levels of respiration-derived oxidants and therefore would likely 

benefit from increased expression of Nrf2-dependent Phase II genes. In this regard, the high 

metabolic rates of liver, heart, kidney and adipose tissue point to a central role of 

mitochondria in the etiology of several pathogenic conditions in these tissues. Of relevance, 

CXA-10 and NO2-OA are tissue-protective during ischemia and reperfusion in part because 

of specific interactions with mitochondrial proteins and respiratory complexes, resulting in 

the regulation of mitochondrial function (76,77).

Biomarkers of CXA-110 signaling pathway engagement in Phase 1 trials of 
oral formulations: CXA-10 is being developed as a treatment for chronic inflammatory 

and metabolic-related diseases such as focal segmental glomerulosclerosis and pulmonary 

arterial hypertension. Therefore, it was important to demonstrate bioavailability, acceptable 

pharmacokinetics and pathway engagement in a relevant human population. Two-week 

dosing of obese individuals with oral CXA-10 formulation not only decreased serum 

inflammatory biomarkers [monocyte chemotactic protein-1 (MCP-1) and interleukin-6 

(IL-6)] but also improved other indices of metabolic dysfunction, by decreasing serum 

leptin, triglyceride, and cholesterol levels (75). These results are consistent with the 

observation that Nrf2 plays an important role in metabolic regulation and in particular, lipid 

metabolism (78). In this regard, pharmacological activation of Nrf2 by TBE-31 resulted in 

significant protection in non-alcoholic liver steatosis models, an effect that was absent in 

Nrf2−/− mice (79). Moreover, Nrf2 deletion results in a marked exacerbation of liver 

steatosis in animals challenged with a methionine- and choline-deficient diet (80). The 

successful outcomes in a variety of models are rationalized through the pleiotropy of effects 

that NO2-OA and CXA-10 have exerted in the different models.

Conclusions—Historically considered as liabilities, electrophilic compounds are gaining 

traction as viable candidates for drug development (81). In fact, in 2011 three out of the ten 

top drugs by sales volume and about 30 % of drugs in the market were covalent inhibitors 

that modify their target proteins (82–84). As such, the translation of CXA-10 into clinical 

therapeutics is based on the protective effects observed in several animal models of 

inflammatory and metabolic stress studied by different laboratories over the past 15 years. 

Both the structure and reactivity play a role in the beneficial outcomes and lack of adverse 

effects reported for CXA-10. With regards to these characteristics, similarities are shared 

among different classes of pharmacological agents. A unique quality of CXA-10, as opposed 

to other electrophilic species currently in the drug development pipeline is that CXA-10 

gains access to remote tissues after incorporation into lipoproteins as glycerol esters. This 

protected hydrophobic compartment provides an ability to transport the active drug to target 

tissues while limiting Michael addition reactions with adventitious nucleophiles in the 

vascular compartment. The activation of Nrf2 and heat shock factor-regulated gene 

expression and the inhibition of NF-κB-dependent expression of pro-inflammatory 

cytokines after CXA-10 oral administration reinforces the potential value of CXA-10 as a 

treatment for chronic inflammatory/fibrotic diseases. These are often areas with clear unmet 

clinical needs in which traditional approaches have failed to deliver improvement (75). Data 
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supporting this vision should become available within the next two years as data from 

ongoing Phase 2 trials becomes available.
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Highlights

• Nitrated fatty acids (NO2-FA) share structural and signaling features with 

other clinically used drugs

• Systemic NO2-FA tissue delivery as triglycerides and non-covalently bound 

albumin complexes provides chemical stabilization

• Private development of the lead compound CXA-10 (10-NO2-OA) was based 

on solid academic biochemical and preclinical work.

• Oral and intravenous formulations were developed for human use by 

Complexa Inc.

• Formulations demonstrated tolerability, safety and predicted pathway 

engagement in relevant populations.

• Ongoing Phase II clinical trials will determine the therapeutic potential of 

CXA-10 in areas of pulmonary and renal disease
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Fig. 1. 
Chemical structures of CXA-10 and other related, clinically used, drugs that share 

functional, structural and signaling features.
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