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It is well accepted that dysbiosis of microbiota is associated with disease; however, the biological mechanisms that promote
susceptibility or resilience to disease remain elusive. One of the major limitations of previousmicrobiome studies has been the lack
of complementarymetatranscriptomic (functional) data to complement the interpretation of metagenomics (bacterial abundance).
The purpose of this study was twofold, first to evaluate the bacterial diversity and differential gene expression of gut microbiota
using complementary shotgun metagenomics (MG) and metatranscriptomics (MT) from same fecal sample. Second, to compare
sequence data using different Illumina platforms and with different sequencing parameters as new sequencers are introduced,
and to determine if the data are comparable on different platforms. In this study, we perform ultradeep metatranscriptomic
shotgun sequencing for a sample that we previously analyzed with metagenomics shotgun sequencing. We performed sequencing
analysis using different Illumina platforms, with different sequencing and analysis parameters. Our results suggest that use of
different Illumina platform did not lead to detectable bias in the sequencing data. The analysis of the sample using MG and MT
approach shows that some species genes are highly represented in the MT than in the MG, indicating that some species are highly
metabolically active. Our analysis also shows that ∼52%of the genes in themetagenome are in the metatranscriptome and therefore
are robustly expressed.The functions of the low and rare abundance bacterial species remain poorly understood.Our observations
indicate that among the low abundant species analyzed in this study some were found to be more metabolically active compared
to others, and can contribute distinct profiles of biological functions that may modulate the host-microbiota and bacteria-bacteria
interactions.

1. Introduction

The human microbiota represents a complex community of
numerous and diverse microbes that is linked with our devel-
opment, metabolism, physiology, health, and functionally
comparable to an organ of the human body [1, 2]. Previous
studies have established that a healthy human microbiota is
associated with maintaining health, whereas dysbiosis has
been associated with various pathologies and diseases such
as obesity, inflammatory bowel disease, pulmonary diseases,
and urinary tract infection [3, 4]. Traditionally, identify-
ing microbes relied on culture based techniques. However,
the majority (>90–95 %) of microbial species cannot be

readily cultured using current laboratory techniques [5].
Advancements in culture- and cloning-independent molecu-
lar methods, coupled with high-throughput next-generation
DNA sequencing technologies have rapidly advanced our
understanding of the microbiota. Additionally, with the rate
of recent technological advancements, the DNA sequencing
ventures have been introducing new DNA sequencers with
versatile sequencing parameters. This has also complicated
the comparison of data within and among the samples.
Thus, there is a need to compare the sequencing data from
the same samples using different platforms. Many previous
studies employed targeted amplicon sequencing of the con-
served prokaryotic 16S ribosomal RNA (16S rRNA) gene
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[2, 6, 7]. This method identifies operational taxonomic units
(OTUs) and is correlated with bacterial taxa; however, the
assignment of taxa defined by OTUs is commonly limited to
the genus level due to low accuracy at the species level. In
contrast, metagenomics shotgun sequencing (MGS), which is
employed in our study, can determine taxonomic annotations
at the species level.

Although the association of multiple diseases with dys-
biosis of the microbiome has been established, the elucida-
tion of the underlying biologic mechanisms that promote
pathological phenotypes has been elusive in most cases. A
major limitation of both targeted amplicon and metagenome
shotgun sequencing is that bacterial functions are predicted
based on the genome sequence of the associated taxa. How-
ever, it is well established that there is differential bacterial
gene expression at the transcriptional level in response to
environmental and dietary exposures. For example, it has
been reported that there is a set of constitutively expressed
core genes that mediate core microbial functions as well as
a highly regulated subset of genes that respond to unique
environmental influences [8, 9]. In addition, some bacteria
may exist in an inert state or spore form and thus not
contribute to the biological response [10].Thus, an analysis of
bacterial gene expressionwithmetatranscriptomics approach
could provide additional insight into the biological functions
of specific microbiomes.

The gut microbiota is composed of highly abundant few
species and less abundant many rare bacterial species; thus
to understand the complex functions of the microbiota it
is essential to understand the functions of both the high-
and low-abundant bacterial species. Analyses of MG andMT
data are often challenged by the sequencing depth, param-
eters, and sequencing platforms, which limits the power of
functional classification and abundance estimation; this in
turn hampers the downstream data analyses of differentially
expressed genes.The unique feature of our study is that we are
comparing the sequencing reads at different depths, platform,
read length, read, and contig based comparison for MG
and MT for the same sample. To develop a comprehensive
understanding of the ecological functions of a microbiome,
it is essential to determine not only the metatranscriptome
but also to ascertain the functional contributions of both
abundant and rare species in a microbiome. To investigate
these questions, we analyzed both the metagenome and
the metatranscriptome using shotgun sequencing which can
determine the abundance of gene transcripts relative to
the abundance of the genome. This allowed us to identify
both over- and underexpressed transcripts. In this study, we
identified biological functions in both rare and abundant
bacterial species using metagenomic andmetatranscriptomic
methods.

2. Material and Methods

2.1. Subject Recruitment and Sample Collection. The study
was approved by the Institutional Review Board of the Uni-
versity of Illinois at Chicago, and the experimental methods
were performed in accordance with the approved guidelines.

A 33-year-old male subject without known medical condi-
tions provided the signed informed consent and self-collected
stool using the EasySampler Stool Collection kit (Alpco
Diagnostics). The fecal sample was immediately aliquoted
into sterile 1.5 ml Eppendorf safe-lock tubes and stored at -
80∘C untill further DNA and RNA isolations.

2.2. RNA Isolation from Fecal Sample and mRNA Enrich-
ment. The objective of the study was to perform matched
metagenome and metatranscriptome studies of the same
fecal sample. We investigated the same fecal sample that
we had previously analyzed by metagenomics sequencing.
Total RNA was isolated using the PowerMicrobiome RNA
Isolation Kit (Catalog # 26000-50, MO BIO Laboratories,
Inc.) from a fecal sample. For efficient lysis of the microbes
in the sample, 200 𝜇L of Phenol/Chloroform/Isoamyl alco-
hol (25:24:1) (Catalogue #327115000, Acros Organics) was
added to the reagents provided with the kit. The contents
were vortexed for 1-2 min with a table top vortexer and
homogenized twice at speed 10 for 5 min with air-cooling
using the Bullet Blender Storm Homogenizer (Catalogue #
BBY24M, Next Advance Inc). Total RNA was isolated with
the manufacturer’s recommended procedure including the
on-column DNase treatment (to remove the potentially co-
isolated DNA). The RNA was eluted with 1×TE, pH 8.0,
and stored at -80∘C. The quality and quantity of the RNA
was assessed using a spectrophotometer (NanoPhotometer
Pearl, Denville Scientific, Inc), agarose gel electrophoresis,
fluorometer (Qubit RNA Broad Range assay, Life Technolo-
gies Corporation), and Agilent RNA 6000 Nano Kit on 2100
Bioanalyzer instrument (Agilent Technologies, Inc.). Total
RNA was enriched for mRNA by subtractive hybridization
using the MICROBExpress Bacterial mRNA Enrichment Kit
following manufacturer's recommended protocol (Ambion,
Life Technologies). ThemRNA enrichment and rRNA deple-
tion was analyzed using an Agilent RNA 6000 Nano Kit on
2100 Bioanalyzer instrument (Agilent Technologies, Inc.).

2.3. FecalMetatranscriptome Library Preparation and Shotgun
Sequencing. The enriched mRNA was mechanically frag-
mented to a size range of∼200 bpwith anultrasonicator using
the adaptive focused acoustics following the manufacturer
recommended protocols (Covaris S220 instrument, Covaris
Inc.).The fragmentation ofmRNAwas assessed usingAgilent
RNA 6000 Pico Kit on 2100 Bioanalyzer instrument (Agilent
Technologies, Inc.). The metatranscriptome libraries were
prepared using NEBNextUltra RNALibrary Prep Kit for Illu-
mina (NewEngland BioLabs Inc).The quality and quantity of
all the final libraries were analyzed with an Agilent DNA 1000
Kit on the 2100 Bioanalyzer Instrument and Qubit. The final
libraries were quantitated and validated by qPCR assay using
the PerfeCTa NGS Library Quantification Kit for Illumina
(Quanta Biosciences, Inc.) using the CFX Connect Real-
Time PCR Detection System (Bio-Rad Laboratories, Inc.).
Sequencing of one of the MT library was performed on a Illu-
mina HiSeq 2000 using the TruSeq SBS v3 reagent for paired-
end 100 read length (BGI Americas) (labeled as HS100), and
on Illumina MiSeq using v3-600 cycle kit for paired-end 301
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bases (labeled as MS301). Another set of twelve libraries was
sequenced on Illumina MiSeq using 151 paired end chemistry
(labeled as MS151). Manufacturer’s recommended protocol
was used for performing the sequencing reaction on both the
HiSeq and MiSeq platforms.

2.4. Data Analysis. The twelve individual libraries were
analyzed for taxonomic and functional annotation. Also
all 12 sequence files were combined in silico and were
labeled as (MS151)-Lib-All. The sequence files (HS100, 12(x)
MS151, and MS301) were combined in silico and labeled as
HS100+MS151+MS301. The sequence reads were processed
and analyzed using the CLC Genomics workbench version
7.5 (Qiagen, Aarhus, Denmark). Raw reads were trimmed
to a minimum Phred quality score of 20. Raw reads were
filtered by mapping against human reference genome to
remove human sequences. The non-human reads were de
novo assembled using the CLC assembler with a word size (k-
mer) of 50, minimum contig length 200bp, to construct the
de bruijn graphs. De novo assembly was used to map reads
back to the contigs (mismatch cost 2, insertion cost 3, deletion
cost 2, length fraction 0.8, similarity fraction 0.8). Taxonomic
and functional annotations of the reads and contigs were
obtained using the automated annotation pipeline at MG-
RAST web server using the default parameters (best hit
classification, maximum e-value 1e-5 cutoff, and minimum
60% identity cutoff) using M5NR and KEGG databases [12,
13]. The Linear Models for Microarray Data (limma) analysis
was used to identify species and KEGG functional pathways
that were differentially abundant between metagenome (MG)
and metatranscriptome (MT) [14]. Limma uses an empirical
Bayes method to test the differential expression based on
the fitting of each species/gene to a linear model [15].
This provides the rich features for complex experimental
designs and overcomes the small sample size problem, in
addition to providing enhanced biological interpretation for
co-regulated sets of genes [16].

In this study, we are comparing large datasets (MG
and MT) which fits the model analysis to compare the
DEGs/functions from small sample size. A p value cutoff of
0.05 aftermultiple testing correction based on the Benjamini-
Hochberg method [17], and a log

2
fold change ≥1 were used

to select the differentially abundant species and pathways.The
data files were visualized in MeV v 4.9.0 (TM4, Boston, MA,
USA) [18]. The metatranscriptome data was compared with
the previously reportedmetagenome data of the same sample
from our group [11].

3. Results

3.1. Ultra-Deep Metatranscriptomic Shotgun Sequencing
(MTS). In our previous study of ultra-deep metagenome
shotgun sequencing (MGS) we demonstrated effective
identification of abundant species (defined as >1% rela-
tive abundance) with as few as 500 reads; however, the
detection of low abundance or rare species required
high numbers of sequence reads. For example, with
a total of 163.7 million sequence reads generated by

metagenome shotgun sequencing (MGS), the rarefaction
curve did not show saturation for the identification of
additional species [11]. Based on the MGS data, current
study of the metatranscriptome we performed ultra-
deep MTS sequencing. We performed sequencing using
multiple Illumina sequencing platforms and analytic
strategies (Figure 1). High quality total RNA was isolated
(Supplementary Figure 1A), and the bacterial mRNA was
enriched from the total RNA using subtractive hybridization,
which depleted most of the rRNA (Supplementary Figure
1B). The enriched mRNA was mechanically fragmented
and libraries were constructed (Supplementary Figures 1C
and 1D). To evaluate technical repeatability, we constructed
12 unique indexed metatranscriptome libraries from a
single fecal sample. High quality libraries were prepared for
sequencing on Illumina’s MiSeq and HiSeq 2000 platforms
(Supplementary Figure 1E). We obtained from 3.6 to 5.4
million high quality sequence reads for the 12 replicate
libraries sequenced on MiSeq for 151 PE and 32.7 to 56.5
million reads on a HiSeq 2000 platform using 100 and 151 PE
sequencing parameters. In total, we obtained a total of 139.6
million sequence reads by combining the HiSeq and MiSeq
sequence data in silico (HS100+MS151+MS301) (Table 1).

3.2. Comparison of Analytic Strategies. In our previous analy-
sis of ultra-deepMGSdata, we observed a substantial increase
in the average length of the assembled contigs (904 bp)
compared with the average read length 170 bp and the average
N50 length of the contigs was 6,262 bp [11]. Therefore, we
compared the effect of analyzing the reads versus assembled
contigs in the metatranscriptome (MT) data. In the MT data,
the average contig length was 268 bp which was modestly
longer than the average read length of 136 bp (Table 1).
The short length of the assembled MT contigs compared to
the metagenomic (MG) contigs is likely due to the smaller
size of the microbial transcripts compared to the larger
size of the genomes. In terms of repeatability, we did not
detect significant differences between the number of reads or
assembled contigs among the 12 replicate libraries as analyzed
by Shapiro-Wilk normality test (data not shown). Thus, the
assembly of the contigs generated amodest increase in length
compared with average read length of the MT reads.

Next, we compared the bacterial taxonomic assignments
based on read and contig analyses. Analysis at the phyla, gen-
era and species levels all demonstrated the repeatability of the
replicate libraries, respectively (Supplementary Figures 2–4).
However, we detected differences in the relative abundance
of specific taxa in the read and contig based analyses. Thus,
the taxonomic identification was inconsistent between read
and contig based analysis at both phylum and genus level. For
example, we observed an increase in the Bacteroidetes and a
decrease in Firmicutes with the contig analysis. Differences in
relative abundance in the MT data were also observed at the
genus and species levels. There were 21 and 11 genera, and 22
and 19 species in the read and contig based analysis that were
above 1% abundance, respectively (Supplementary Figures 3
and 4, SupplementaryTables 1 and 2).We further analyzed the
bacterial diversity of combined MT datasets (HS100, MS151,
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Figure 1: Experimental strategy to compare the metatranscriptome and metagenome using multiple Illumina sequencing platforms
and data analysis. Schematic for metagenome and metatranscriptome sequence analysis by shotgun sequencing approach. The shotgun
sequencing was performed using Illumina HiSeq 2000 (100 paired-end) and IlluminaMiSeq (151 and 301 paired-end). The data was analyzed
by read and contig based approach using the MG-RAST. Note that the metagenome data has been published [11], represented in shaded box.

Table 1: Metatranscriptome sequence statistics.

Sample name

Read Contig

Number of PE
reads (M)

Average length
(bp) Total bases (Mb)

% of reads
assembled in

contig

Number of
contig

Average length
(bp)

MS151 library 1 4.8 145 690.5 98.4 7,253 207
MS151 library 2 4.8 143 690.2 98.2 7,517 209
MS151 library 3 5.4 143 765.2 98.4 8,291 202
MS151 library 4 4.5 143 649.9 98.4 7,364 209
MS151 library 5 4.8 144 686.8 98.0 7,072 212
MS151 library 6 4.3 145 625.0 98.0 6,183 213
MS151 library 7 4.9 143 696.9 98.4 7,635 204
MS151 library 8 3.6 147 525.9 97.3 5,889 222
MS151 library 9 4.9 146 707.4 97.9 7,875 208
MS151 library 10 4.5 145 653.9 98.4 6,779 215
MS151 library 11 4.8 145 698.7 98.1 7,117 211
MS151 library 12 5.3 145 768.9 98.0 8,249 212
HS100 50.4 100 5,039.2 98.6 11,713 203
MS151 (Lib-all) 56.5 144 8,159.3 99.3 56,491 208
MS301 32.7 178 5,837.7 98.3 108,905 314
HS100+MS151+MS301 139.6 136 19,036.1 99.1 216,712 268
HS100: HiSeq 2000 - 100 PE; MS151: MiSeq - 151 PE; MS151: MiSeq - 301 PE; M: million; bp; basepair; Mb: mega bases; PE: paired-end sequencing.
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Figure 2: Taxonomic analysis: Comparison of metagenome (MG) and Metatranscriptome (MT). The MG and MT sequence obtained
after sequencing using platforms (HS100, MS151, and MS301) were assembled into contig and were analyzed for taxonomic annotation. (a)
The total bacterial species in MG-HS100-MS151-MS301 andMT-HS100-MS151-MS301 data. (b) Bacterial species in MG-HS100-MS151-MS301
and MT-HS100-MS151-MS301 in different phyla. (c) The abundance of bacterial phyla in MG and MT with different sequencing parameters:
Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia.

MS301 and HS100-MS151-MS301) to increase the sequencing
depth and coverage. We find similar observations in the
distribution of bacterial phyla (Supplementary Figure 5A).
We observe that the increase in number of reads resulted
in increase of depth of coverage, whereas no significant
increase in contig length was detected. In summary, we
previously showed that a contig based analysis is more
specific for species identification [11] in the MGS dataset;
however, these data suggest that a read based analysis is more
comprehensive for identification of both genera and species
in metatranscriptome data.

To determine if different numbers of reads were skewing
the analyses, we generated datasets that contained an equal
number of reads. We randomly sampled 30 million reads
from the HiSeq 100 PE, MiSeq 151 PE (MS151) and MiSeq 301
PE (MS301) data, and the reads were assembled into contigs.
More contigs were generated in MS301 (97,631) compared
to HS100 (8,253) and MS151 (42,153), most likely because
of a longer sequencing read length. However, there was no
substantial increase in the average length of contigs most
likely due to the limitation based on transcript length (Sup-
plementaryTable 3).Weobserved a similar abundance profile
of bacterial phyla, genera, and species as in the complete
datasets indicating that differences in read number were

not skewing the assignment of taxa in the contig analyses
(Supplementary Figure 5B, and Supplementary Table 4).

3.3. Comparison of theMetatranscriptomewith theMetagenome.
In total, we identified 1,888 and 1,291 bacterial species in the
metagenome (MG) [MG-HS100-MS151-MS301, [11]], and the
metatranscriptome (MT) (MT-HS100-MS151-MS301) data,
respectively (Figure 2(a)). 1245 bacterial species were shared
among the MG and MT (Figure 2(a)), representing the
metabolically active species, in the sample at this particular
time point. In the phylum Firmicutes, Bacteroidetes, Acti-
nobacteria, Proteobacteria, Fusobacteria, and Verrucomi-
crobia 356, 117, 138, 439, 23, and 6 species were shared,
respectively. This accounted for 60% to 92% of the species
shared between the MG and MT defined phyla (Figure 2(b)).
The detection of MG sequences lacking corresponding MT
reads suggests unexpressed genes or even dormant bacteria.
As expected, very few sequences were unique to the MT, and
they were present in extremely low abundance (< 0.001%)
presumably because transcripts are not expressed in the
absence of the genome, and likely these sequences were
not identified in MG because of relatively low abundance
(Supplementary Table 6). Most (50%) of the sequences
identified in the phylum proteobacteria were closely related
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Figure 3: Abundance of bacterial species in metagenome and metatranscriptome. Bacterial species above 1% (sorted high to low) are
shown in MT-HS100-MS151-MS301.

to uncultured bacterial sequences. To determine the relative
transcriptional activity of individual taxa and individual
genes, we compared the relative abundance in the combined
MT data (HS100-MS151-MS301) to our previously reported
MG data for the same sample [11]. Analysis of the MT at the
phyla level, we observed that the abundance of Bacteroidetes
transcripts were high, whereas the abundance of transcripts
representing Firmicutes, Actinobacteria, Fusobacteria, and
Verrucomicrobia were low. This was observed across all of
the sequencing platforms and read lengths (Figure 2(c)). The
abundance of the Fusobacteria and Verrucomicrobia was
approximately 100-fold lower than the other Phyla (note Y-
axis scale).

3.4. Analysis of Predicted Biological Functions. We analyzed
the functional profiles based on gene expression in the meta-
transcriptome using the MG-RAST KEGG annotation suite.
KEGG annotates functions from level 1 through 4 with level 1
containing the most general categories and level 4 the most
specific [13]. We analyzed the data for biological functions
at all four levels. Of note, a similar relative abundance of
the functions was detected at levels 1 to 4 among the both
read and contig based analysis, respectively (Supplementary
Figures 6–9), althoughminor differences were detected in the
abundances of some functions at levels 3 and 4. We observe
the similar distribution trends in the 30 million randomized
MT reads and the assembled contigs (Supplementary Figure
10). This implies that the identified functions are similar in
either the read or contig based analysis of the MT data with
slight variations.

We investigated the MG and MT data at the species
level. Interestingly, we observed that few of the species (for
example, Faecalibacterium prausnitzii, Bacteroides spp., B.
thetaiotaomicron, B. vulgatus, B. ovatus among others) had
a higher relative representation in MT than MG, indicating

that these species are highly transcriptionally active (Figure 3
and Supplementary Figure 11). However, the species B. fragilis
did not have increased transcriptional activity as compared
to other Bacteroides spp. As shown in a scatter plot, F.
prausnitzii, Bacteroides spp., and Alistipes putredinis were
highly transcriptionally active at a significant level (log fold
difference ≥3, p adj. <0.05) whereas Clostridium saccha-
rolyticum, Eubacterium rectale, andRuminococcus obeum (log
fold difference ≥-1, p adj. <0.05) were low in transcriptional
activity (Figure 4(a)).

We compared the abundance of KEGG functions detected
in theMT data to the predicted functions in theMGdata.The
analysis revealed that genes involved in translation, carbohy-
drate metabolism, and transcription were highly abundant in
MT (log

2
fold change >3, p< 0.05), compared to low abun-

dance of glycan biosynthesis and metabolism, metabolism
of cofactors and vitamins, replication and repair, membrane
transport and amino acid metabolism (log

2
fold change >-

2, p adj. < 0.05) (Figure 4(b)). Translation and amino acid
metabolism showed the largest differential expression with
a fold change of > ±5 (p adj. <0.05), respectively. We
observed similar patterns at the more specific levels 2, 3 and
4 (Supplementary Figures 12–15). In this fecal sample, in
total we detected 1916 functions at KEGG level 4 assignments
in MG, compared to 1067 in MT. The MG and MT data
shared 52% (1014) of the total functions, revealing the shared
functional genes involved in active physiological functions
of the gut microbiota which can be detected in MG and
MT in a given time point (Figure 5). In MT 53 genes
were identified representing the 2.7% of total functions from
various metabolic pathways are provided in Supplementary
Table 7. Our analysis indicated that MG and MT overlapping
genes are metabolically active genes. Genes which are only
detected in the MT are metabolically active at a given time
point. On the other hand, if genes were detected only in MG
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Figure 4: Differential abundant species and KEGG functional categories. The scatter plot for differential abundant bacterial species (a)
and differentially predicted and expressed KEGG functional categories (b) in the metagenome and metatranscriptome. A p value cutoff of
0.05 (after FDR correction based on Benjamini-Hochberg method) and a log fold change ≥1 were used to select the differentially abundant
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Figure 5: Comparison of the metabolic function of metagenome
(MG) and metatranscriptome (MT). Venn diagram for unique and
shared metabolic functions identified by KEGG at functional level 4
in the MG (MG-HS100-MS151-MS301) andMT (MT-HS100-MS151-
MS301).

and not in the MT, this may also suggest that genes may be
present but not active in a given time.

3.5. Contribution of Functions in the Metatranscriptome by
Individual Bacterial Phylum. We further explored the func-
tional contribution of the gut microbiota at the individual
phylum level comprising of Firmicutes, Bacteroidetes, Acti-
nobacteria, Proteobacteria, Fusobacteria, and Verrucomicro-
bia, as these are abundant in the gut.Therewere differences in
the expression of the genes in each phylum (Supplementary
Figures 16–18). At the KEGG Level 1 functional category, 50%
of the functions were related to metabolism in each phylum
(Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria,
Fusobacteria and Verrucomicrobia), followed by genetic and
environmental information processing functional categories.
Of note few functional categories related to the phylum
Fusobacteria and Verrucomicrobia were detected (Supple-
mentary Figure 16). We further focused our analysis on
Fusobacteria and Verrucomicrobia, as these phyla are present
in low abundance (<1% and <0.1% abundance, respectively)
and notwell characterized in the gutmicrobiota (Figure 2(c)).

In phyla, Firmicutes, Bacteroidetes, Actinobacteria,
and Proteobacteria, the genes involved in carbohydrate
metabolism were abundant, followed by amino acid
metabolism and translation. There were no translation
and/or transcription functions detected in Fusobacteria
and Verrucomicrobia (Supplementary Figure 17). However,
Fusobacteria and Verrucomicrobia contributed towards the
expression of specific genes involved in carbohydrate and
amino acid metabolism pathways compared to other phyla
(Figures 8 and 9, Supplementary Figure 18). For example,
the genes glgB (1,4-alpha-glucan branching enzyme), pgi
(glucose-6-phosphate isomerase) involved in starch, and
sucrose metabolism and glycolysis/gluconeogenesis were
highly expressed by Fusobacteria (Supplementary Figure 18).
Also, the genes involved in oxidative phosphorylation such
as atpD (F-type H+-transporting ATPase subunit beta), ppa
(inorganic pyrophosphatase) and nuoE (NADH-quinone
oxidoreductase subunit E) were also enriched in Fusobacteria
(Figure 6, and Supplementary Figure 18). On the other hand,
the phylumVerrucomicrobiawas enriched for genes invloved
in alanine, aspartate, and glutamate metabolism [gdhA:
glutamate dehydrogenase (NADP+), purB: adenylosuccinate
lyase], ABC transporters [msmX: maltose/maltodextrin
transport system ATP-binding protein] and amino sugar
and nucleotide sugar metabolism [npdA: NAD-dependent
deacetylase] (Figure 7 and Supplementary Figure 18). These
results show the high abundance of transcripts contributed
by the rare abundant bacterial species in the community may
contribute unique biological functions to the microbiome
that have the potential to affect the host physiology.

3.6. Diversity Analysis of Bacterial Species and Functions. The
Shannon diversity index for estimating the bacterial diversity
inMG(5.4± 0.1) andMT (4.9± 0.1) was significantly different
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Figure 6: Metatranscriptome analysis of phylum Fusobacteria. (a) Relative abundance of Fusobacteria genes compared to all other phyla.
(b) Heat-map representation of the genes. The color scheme represents the range of gene abundance values based on Spearman Rank
correlation. (c) Significant difference in log abundance of genes highly abundant in Fusobacteria compared to all other phyla. p<0.05,Mann-
WhitneyU test. Other phyla include Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Verrucomicrobia.

(p<0.05), however no significant difference was observed in
species evenness (0.7 ± 0.0). Similarly, the index for diversity
of functional genes in MG (6.7 ± 0.0) and MT (6.0 ± 0.3)
was significantly different (p<0.05), and also a significant
difference was observed in functional evenness in MG (0.89
± 0.01) and MT (0.93 ± 0.01). The Shannon diversity index
analysis at both taxonomic and functional level indicated
that the MG was more diverse than the MT, most likely due

to unexpressed genes or dormant bacteria (Supplementary
Figure 19).

3.7. Mapping the Genomic and Transcriptomic KEGG Path-
ways. We mapped the predicted (MG) and expressed (MT)
functions onto pathways using KEGG Mapper suite. Almost
all (more than 99%) of the functions identified by MT were
also identified in MG (Figure 8 and Supplementary Figure
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Figure 7:Metatranscriptome analysis ofphylum Verrucomicrobia. (a) Relative abundance of Verrucomicrobia genes compared to all other
phyla. (b) Heat-map representation of the genes. The color scheme represents the range of gene abundance values based on Spearman Rank
correlation. (c) Significant difference in log abundance of genes highly abundant in Verrucomicrobia compared to all other phyla. p<0.05,
Mann-WhitneyU test. Other phyla include Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria.

20). However, some functions were identified only in the MG
dataset suggesting that not all of the predicted functions in the
metagenome are expressed, which supports the notion that
the metagenome may not be an accurate proxy of microbiota
function. The genes are in the (meta)genomes; they could be
expressed under different conditions; therefore, they define
the functional potential of the organisms. Linear regression
analysis was applied to the MT and MG data examined
from the perspective of species and function. The linear
regression analysis at the species level was correlated among
the MG and MT and 58% of the variation in the MT can be
explained by the species composition of the MG (Spearman’s
r = 0.83; r2=0.58=58%) (Figure 9(a)). A similar correlation
was observed at functional level 4 inMGandMT (Spearman’s
r = 0.76; r2=0.53=53%) (Figure 9(b)). In other words, more
than 50% of the variation in the microbial community MT
can be explained by MG composition at species level or con-
versely, approximately 50% of transcriptional activity is reg-
ulated and presumably dependent on host or environmental
factors.

4. Discussion

Dysbiosis of the microbiome has been associated with multi-
ple disease states including obesity, inflammatory bowel dis-
ease, asthma, urinary tract infection, cardiovascular disease
and cancer [4, 19, 20]. However, the biological mechanisms
that link the complex community of a microbiota with the
pathogenesis ofmost diseases remains elusive. One limitation
of many studies has been the use of targeted 16S rRNA
amplicon sequencing which is generally limited to the genus
and or OTU level of classification, thus, a more specific
classification at the species level is not available [21]. In con-
trast, MGS deep sequencing can accurately classify bacteria
at the species level and also facilitates the annotation and
identification of genes which predict putative biological func-
tions. Further, due to the transcriptional regulation of many
genes, MGS sequencing does not reveal gene expression
levels. To address both the challenges, in this project we have
optimized and evaluated the combination of metagenomic
and metatranscriptomic shotgun sequencing data to evaluate
methods to analyze the functional roles of both abundant
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Blue: Exclusive in metagenome; Red: Exclusive in metatranscriptome; Purple: Common

Figure 8: Differential metabolic gene expression. Metabolic pathway reconstructions in metagenome and metatranscriptome were
analyzed using the KEGG mapper. Functions identified in the metagenome (MG-HS100+MS151+MS301) and metatranscriptome (MT-
HS100+MS151+MS301). Blue: predicted functions exclusive in metagenome; purple: common in metagenome and metatranscriptome; red:
exclusive in metatranscriptome. Black arrow head represents the functions in MT. Functions in individual data are shown in Supplementary
Figure 20.
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Figure 9: Correlation between the metagenome and metatranscriptome. Linear regression analysis was applied to the MT and MG data
examined from the perspective of species and function. Spearman’s rank correlation between MG and MT. (a) Bacterial species and (b)
functions at KEGG Level 4.

and rare species in the microbiota. We generated 139.6
million metatranscriptomic reads which we compared to our
previously reported metagenome shotgun sequencing data
on the same sample that included 163.7 million reads [11].
One of the limitations of this study is sample size, as is it
focused on n-of-1, and these findings may not be observed
in different biological samples. However, with the advent
of personalized medicine and clinical translational studies,
there has been a surge of n-of-1 studies. Many of clinical cases
possess unique features that may not be identified by classical
studies involving large number of samples (Nikles et al., 2010;
Lillie et al., 2011; Schork, 2015).

First, our study shows that the different Illumina plat-
forms do not contribute detectable bias in our analyses

(Figure 2). To validate the technical repeatability of the
sequencing and data analysis methods, we generated 12
replicates of a single sample that generated a similar number
of reads, total bases and assembled contigs (Table 1). In
addition, our analysis identified a repeatable number of
both phyla and species (Supplementary Figures 2 and 4,
respectively). Furthermore, the functional analysis identified
similar abundance of KEGG annotations at all functional
levels from 1-4 (see Supplementary Figures 6–9). Our investi-
gation of the effect of contig assembly showed that assembly
only modestly increased length, presumably due to the short
length of the mRNA transcripts. A similar observation has
also been reported in a forest floor community metatran-
scriptomics [22]. This suggests that emerging technologies
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that produce longer read lengths, particularly in view of
their increased error rates, although useful for metage-
nomics studies, may not be preferable formetatranscriptomic
studies.

Our investigation of the effects of contig assembly showed
that the relative abundance of some taxa was modified by
assembly. For example, analysis of assembled reads resulted
in greater abundance of Bacteroidetes and lesser abundance
of Firmicutes, Actinobacteria, and Proteobacteria (Supple-
mentary Figure 5). Similar differences were also observed at
the level of genus and species. Interestingly, we also observed
similar changes in relative abundance of Bacteroidetes and
Firmicutes in our previous analysis of taxa assignment in
our metagenomics data [11]. Our results also show that the
assembly of reads into contigs can decrease the detection
of taxa. Overall, the results suggest that reads are the most
comprehensive, and contigs are more specific, method to
annotate taxa.

Most previous microbiota studies have not been per-
formed with matched metagenome and metatranscriptome
datasets of the same sample, thus there is huge knowledge
gap in understanding the role of gene expression of the
microbiota in human health and diseases. Our comparison
of the predicted functions in the metagenome in this sample,
with the expressed functions inmetatranscriptome, identified
more than 1000 functions, which included carbohydrate
metabolism, nucleotide metabolism, amino acid metabolism,
translation etc., (Figure 5).The diversity analysis also suggest
that the actual metabolically active bacterial species and
functions are in fact less diverse compared to predicted
metagenome diversity (both taxonomic and functional)
(Supplementary Figure 19).

It is well established that the diverse community of bacte-
ria in a microbiome is composed of a small number of abun-
dant species plus a large number of low or rare abundance
species [11]; however, the functional role of the abundant
versus rare species is not well understood. Our comparison
of the metatranscriptome with the metagenome data sug-
gests that both the abundant and the rare bacteria may be
actively engaged in the gut ecosystem. For instance, bacterial
transcripts representing phyla Firmicutes (F. prausnitzii), and
Bacteroidetes (Bacteroides spp. and B. uniformis) were highly
abundant inMT (Figure 3). Bacterial phyla, Fusobacteria and
Verrucomicrobia, are relatively less abundant in human gut,
but are known to play an important role in gut physiology
[23, 24]. For instance, in our sample, both these phyla actively
contributed in expression of specific genes involved in car-
bohydrate and amino acid metabolism pathways (Figures 6
and 7). For example, genes such as glgB (1,4-alpha-glucan
branching enzyme) and pgi (glucose-6-phosphate isomerase)
involved in starch and sucrose metabolism and gluconeoge-
nesis/glycolysis were highly expressed by Fusobacteria. These
data suggest that the low abundant bacterial species are
not just mere bystanders but active contributers to the gut
ecology. A similar study using the matched metagenomics
and metatranscriptomics of the same sample have observed
comparable findings that microbial and metabolic potential
vary and are not concordant with their taxonomic abundance
[10]. The functional potential of the more and less abundant

bacterial species remains poorly understood. However, our
observations indicate that the less abundant species are also
metabolically active and may play unique roles in host-
bacteria and bacteria-bacteria interactions and may actively
contribute to the gut microbiota and physiology.
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Supplementary Materials

Supplementary Figure 1. Fecal metatranscriptome library
preparation. High-quality total RNA from a fecal sample
was isolated and analyzed by agarose gel electrophoresis
and Bioanalyzer (A); total RNA was enriched for mRNA
by depleting the rRNA by subtractive hybridization method
(B); the enriched mRNA was fragmented by Covaris (C);
a library was prepared using Illumina compatible adaptor
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(D); in addition, 12 libraries from the same mRNA were
prepared for multiplexing (E). The quality of RNA, mRNA,
and the libraries was analyzed on 2100 Bioanalyzer Instru-
ment. Supplementary Figure 2. Phylum level analysis of
multiplexed libraries using read and contig based analysis.
The twelve metatranscriptome libraries were sequenced on
IlluminaMiSeq (151 PE) and analyzed for bacterial taxonomic
assignment at phylum level using sequence read (A) and
assembled contigs (B). Also, all the twelve libraries were
combined in silico and called Lib-all. Supplementary Figure
3. Genus level analysis of multiplexed libraries using read

and contig based analysis. The twelve metatranscriptome
libraries were sequenced on Illumina MiSeq (151 PE) and
analyzed for bacterial taxonomic assignment at genus level
using sequence read (A) and assembled contigs (B). Also,
all the twelve libraries were combined in silico and called
Lib-all, and top 1% genus are shown (data sorted high
to low abundance in Lib-all). Supplementary Figure 4.
Species level analysis of multiplexed libraries using read
and contig based analysis. The twelve metatranscriptome
libraries were sequenced on Illumina MiSeq (151 PE) and
analyzed for bacterial taxonomic assignment at species level
using sequence read (A) and assembled contigs (B). Also,
all the twelve libraries were combined in silico and called
Lib-all, and top 1% bacterial species are shown (data sorted
high to low abundance in Lib-all). Supplementary Figure
5. Taxonomic analysis of the metatranscriptome. The read
and contig based analysis of HS100, MS151, MS301, and
HS100-MS151-MS301 (A). (B) The MT for each sequencing
strategy (HS100, MS151, and MS301) was sampled for 30M
reads. The reads were assembled into contigs and analyzed
for taxonomic annotations based on read and contig. Data is
sorted high to low on MS301 read dataset. Supplementary
Figure 6. Functional analysis ofmetatranscriptome at level
1 ofmultiplexed libraries using read and contig based anal-
ysis. The twelve metatranscriptome libraries were sequenced
on Illumina MiSeq (151 PE) and analyzed for functional
assignment at Level 1 using MGRAST KEGG module using
sequence read (A) and assembled contigs (B). Also, all the
twelve libraries were combined in silico and called Lib-all,
and all the six Level 1 functions are shown. Supplementary
Figure 7. Functional analysis ofmetatranscriptome at level
2 ofmultiplexed libraries using read and contigbased anal-
ysis. The twelve metatranscriptome libraries were sequenced
on Illumina MiSeq (151 PE) and analyzed for functional
assignment at Level 2 using MGRAST KEGG module using
sequence read (A) and assembled contigs (B). Also, all the
twelve libraries were combined in silico and called Lib-all,
and top 10 Level 2 functions are shown. The data is sorted
high to low on Lib1. Supplementary Figure 8. Functional
analysis of metatranscriptome at level 3 of multiplexed
libraries using read and contig based analysis. The twelve
metatranscriptome libraries were sequenced on Illumina
MiSeq (151 PE) and analyzed for functional assignment at
Level 3 using MGRAST KEGG module using sequence read
(A) and assembled contigs (B). Also, all the twelve libraries
were combined in silico and called Lib1-12, and top 10 Level
3 functions are shown. The data is sorted high to low on
Lib1. Supplementary Figure 9. Functional analysis of

metatranscriptome at functional level 4 of multiplexed
libraries using read and contig based analysis. The twelve
metatranscriptome libraries were sequenced on Illumina
MiSeq (151 PE) and analyzed for functional assignment at
Level 4 using MGRAST KEGG module using sequence read
(A) and assembled contigs (B). Also, all the twelve libraries
were combined in silico and called Lib1-12, and top 1% Level
4 functions are shown. The data is sorted high to low on
Lib1. Supplementary Figure 10. Functional analysis of
metatranscriptome based on read and contig. (A) Level
1, (B) Level 2, (C) Level 3, and (4) Functional. The MT
for each sequencing strategy (HS100, MS151, and MS301)
was sampled for 30M reads. The reads were assembled into
contigs and analyzed for taxonomic annotations based on
read and contig. Data is sorted high to low on MS301 read
dataset. For Level 1 all functional categories are shown; for
Levels 2-4, only top 10 functions are shown. Supplementary
Figure 11. Abundance of bacterial species in different
phyla in MG and MT. Abundance of bacterial species in
different phyla: Firmicutes, Bacteroidetes, Actinobacteria,
Proteobacteria, Fusobacteria, and Verrucomicrobia. Note the
higher abundance percentage in metatranscriptome com-
pared to metagenome data, indicating that some species are
more metabolically active. Only top 10 species are shown
for MT-HS100-MS151-MS301 and MG-HS100-MS151-MS301
(data sorted on MT-HS100-MS151-MS301). Supplementary
Figure 12. Functional analysis at level 1. Percent abundance
of the predicted (based on metagenome) and expressed
(metatranscriptome) function. Data is sorted high to low
on MT-HS100+MS151+MS301. Supplementary Figure 13.
Functional analysis at Level 2: Percent abundance of the
predicted (based on metagenome) and expressed (meta-
transcriptome) function. Functions are sorted high to low
on MT-HS100+MS151+MS301 and above 1% are reported.
Supplementary Figure 14. Functional analysis at Level 3.
Percent abundance of the predicted (based on metagenome)
and expressed (metatranscriptome) function. Data is sorted
high to low on MT HS100+MS151+MS301, and top 10 func-
tions and above 1% are reported. Supplementary Fig-
ure 15. Functional analysis at functional level. Percent
abundance of the predicted (based on metagenome) and
expressed (metatranscriptome) function. Functions is sorted
high to low on MT HS100+MS151+MS301 and top 10 func-
tions are reported. Supplementary Figure 16. Functional
analysis at level 1 in individual phylum. The functions
in individual phylum were analyzed in the metatranscrip-
tome (MT-HS100+MS151+MS301) data. Supplementary
Figure 17. Functional analysis at level 2 in individual
phylum. The functions in individual phylum were ana-
lyzed in the metatranscriptome (MT-HS100+MS151+MS301)
data. Supplementary Figure 18. Functional analysis at
level 3 in individual phylum. The functions in individ-
ual phylum were analyzed in the metatranscriptome (MT-
HS100+MS151+MS301) data and sorted high to low on
Firmicutes and above 1% functions are shown. Supple-
mentary Figure 19. Diversity indices for bacterial species
(A) and functions (B), in MG and MT. The Shannon
diversity and evenness are calculated for MG using the
contig assembly of data MG-HS100, MG-MS151, MG-MS301
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and MG-HS100+MS151+MS301, and MT using the contig
assembly of data MT-HS100, MT-MS151, MT-MS301, and
MT-HS100+MS151+MS301. Supplementary Figure 20.
KEGG metabolic pathway in metagenome and meta-
transcriptome. Functions identified in the metagenome
(MG-HS100+MS151+MS301) and metatranscriptome (MT-
HS100+MS151+MS301). Blue: predicted functions exclusive
in metagenome; red: exclusive in metatranscriptome. Sup-
plementary Table 1. List of bacterial species identified based
on read based analysis. Only above 1% are mentioned and
sorted high to low on Lib1. Supplementary Table 2. List
of bacterial species identified based on contig based analysis.
Only above 1% are mentioned and sorted high to low on
Lib1. Supplementary Table 3. Random sampling of the
metatranscriptome sequence read and de-novo assembly of
contigs. Supplementary Table 4: Abundance of bacterial
species in metatranscriptome data based on read and contig
analysis. Supplementary Table 5. List of accession numbers.
Supplementary Table 6. List of bacterial species/sequences
identified in the metatranscriptomics data. Supplementary
Table 7. List of genes (Level 4 function) identified in MT
dataset. (Supplementary Materials)
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