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Abstract 

Background:  Epidemiological studies have demonstrated a relationship between cognitive function in youth and 
the future risk of death. Less is known regarding the relationship with diabetes related death. This study assessed the 
relationship between cognitive function in late adolescence and the risk for diabetes, cardiovascular- (CVD) and all-
cause mortality in adulthood.

Methods:  This retrospective study linked data from 2,277,188 16–19 year olds who had general intelligence tests 
(GIT) conducted during pre-military recruitment assessment with cause of death as coded by the Israel Central 
Bureau of Statistics. The associations between cognitive function and cause-specific mortality were assessed using 
Cox models.

Results:  There were 31,268 deaths that were recorded during 41,916,603 person-years of follow-up, with a median 
follow-up of 19.2 (IQR 10.7, 29.5) years. 3068, 1443, 514 and 457 deaths were attributed to CVD, CHD, stroke, and dia‑
betes, respectively. Individuals in the lowest GIT vs. highest GIT quintiles in unadjusted models had the highest risk for 
all-cause mortality (HR 1.84, 95% CI 1.78, 1.91), total CVD (HR 3.32, 95% CI 2.93, 3.75), CHD (HR 3.49 95% CI 2.92, 4.18), 
stroke (HR 3.96 95% CI 2.85, 5.5) and diabetes-related (HR 6.96 95% CI 4.68, 10.36) mortality. These HRs were attenu‑
ated following adjustment for age, sex, birth year, body-mass index, residential socioeconomic status, education and 
country of origin for all-cause (HR 1.23, 95% CI 1.17, 1.28), CVD (HR 1.76, 95% CI 1.52, 2.04), CHD (HR 1.7 95% CI 1.37, 
2.11), stroke (HR 2.03, 95% CI 1.39, 2.98) and diabetes-related (HR 3.14 95% CI 2.00, 4.94) mortality. Results persisted in 
a sensitivity analyses limited to participants with unimpaired health at baseline and that accounted competing risk.

Conclusions:  This analysis of over 2 million demonstrates a strong relationship between cognitive function at youth 
and the risk for diabetes, all-cause and CVD-related mortality independent of adolescent obesity.
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Introduction
Epidemiological studies have demonstrated a relation-
ship between cognitive function in youth and the future 
risk of death [1–3]. Such studies have shown that intel-
ligence quotient (IQ) measured in childhood is positively 
associated with age of death and cardiovascular death in 

adulthood [4–7]. Childhood IQ has also been shown to 
be associated with chronic conditions such as hyperten-
sion and coronary heart disease [8–11]. In older adults, 
studies have reported a relationship between adult cogni-
tive function and the risk of death [12], as well as with 
the incidence of cardiovascular disease (CVD) [13, 14] 
and diabetes [15]. Less is known regarding the relation-
ship between cognitive function in adolescence (as meas-
ured by tools that discriminate between cognitively intact 
individuals) and the subsequent risk for diabetes-related 
death.
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An unusual opportunity exists in Israel to assess the 
potential link between cognitive function in adoles-
cence and risk for diabetes and cardiovascular-related 
mortality, as all eligible citizens are required by law to 
undergo a pre-military examination that includes both 
medical and psycho-social assessments. Thus extensive 
neuropsychological evaluation data and sociodemo-
graphic information is routinely collected in addition to 
a detailed medical examination. Linkage of this informa-
tion with the Israel Central Bureau of Statistics officially 
coded cause of death database enables assessment of the 
relationship between cognitive function in late adoles-
cence and the risk for diabetes and CVD-related death in 
adulthood.

Materials and methods
This historical prospective cohort study linked data 
from a large unselected population who had pre-military 
health examination during late adolescence with their 
underlying cause of death as routinely coded by the Israel 
Central Bureau of Statistics. The relationships between 
cognitive function and all-cause mortality, CVD mor-
tality, and CHD-, stroke- and diabetes-related mortality 
were assessed.

Study population
One year prior to mandatory military service, at the age 
of 16–19  years (mean age 17.3 ± 0.4  years), all eligible 
Israeli adolescents are required to undergo medical and 
psychosocial assessment. Arab citizens, Druze women 
and orthodox/ultraorthodox religious Jewish women are 
exempt from military service and largely do not undergo 
this compulsory assessment. Information regarding 
country of origin, education and residential socioeco-
nomic status (SES) is collected in addition to an extensive 
neuropsychological/cognitive assessment. This analysis 
pertains to 2,277,188 individuals who underwent pre-
recruitment evaluation between the years 1967 and 2010, 
irrespective of whether they served or not. Excluded from 
this analysis are 81,213 individuals for whom cognitive 
data or BMI was unavailable, 92,301 members of non-
Jewish minorities that were largely unrepresentative of 
their source populations and 3991 deaths that occurred 
from 1967 to 1980 for which the cause of death was not 
available. Of these, 3188 deaths were attributed to causes 
related to military service, and a simulation indicated that 
only 19 cardiovascular deaths were expected to be missed 
from analysis due to their young age [16, 17], thereby 
suggesting a negligible possible effect on the results.

Evaluation of cognitive function at baseline
The general intelligence test (GIT), conducted as part 
of the pre-military recruitment assessment, has been 

used extensively as an investigative tool, as previously 
described [15, 18, 19]. It includes evaluation of language 
ability and intellectual performance, and comprises four 
sub-tests: the Otis-R which is a measure of the ability 
to understand and carry out verbal instructions; Sim-
ilarities-R which assesses verbal abstraction and cat-
egorization; Arithmetic-R which assesses mathematical 
reasoning, concentration and concept manipulation; and 
Raven’s Progressive Matrices-R, which measures non-
verbal abstract reasoning and visual-spatial problem 
solving abilities [20]. The sum of the scores of the 4 tests 
forms a validated measure of general intelligence (IQ) 
scored on a 9-point scale [21] that is adjusted from time 
to time. The GIT is administered by experienced person-
nel who undergo a 4-month training course.

Mortality outcomes and documentation of cause of death
Study outcomes were deaths that had occurred by June 
30, 2011, officially coded from death notifications by 
the Israel Central Bureau of Statistics according to the 
International Classification of Disease (ICD) 9 revision 
(1981–1997) and ICD-10 revision (1998–2011). The offi-
cial cause of death was unavailable before the year 1981. 
Deaths among Israel Defense Forces personnel have 
been computer-recorded since 1967 with a notation as 
to whether the death was service related. Outcomes ana-
lyzed were deaths attributed to all cardiovascular causes 
(ICD-9: 390–459; ICD-10: 100–99), to coronary heart 
disease (CHD) (ICD-9: 410–414; ICD-10: 120–125), 
stroke (ICD-9: 430–434, 436–438; ICD-10: 160–169) and 
diabetes (all types; ICD-9: 250; ICD-10: E08-13) as the 
underlying cause of death (see Fig. 1). Additionally, infor-
mation regarding deaths from non-cardiovascular causes 
and all causes was also collected.

Covariates
Weight and height were measured at baseline by trained 
medics [22]. BMI was calculated as weight (kg) divided by 
the squared height (m2). A general physical examination 
was conducted by military physicians who also reviewed 
the participants’ medical records and recorded standard 
diagnostic codes when relevant [23, 24]. Additional data 
regarding country of origin, education (divided into 4 cat-
egories: less than 9 years, 10 years, 11 years or 12 years) 
and residential SES were collected as detailed elsewhere 
[15, 25]. Place of origin was defined as the birthplace of 
the father or grandfather (if the father was born in Israel) 
and categorized according to country of origin [26, 27].

Statistical analysis
Continuous variables were summarized using means and 
SD, and counts with percentages were used for binary 
variables. The GIT score was converted into annual 
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sex-specific z scores based on all those that underwent 
GIT assessment in each specific calendar year and was 
grouped into five groups using quintiles. The distribution 
of baseline variables across the 5 groups was computed. 
Cox proportional hazard models were used to estimate 
the hazard ratios (HR) and 95% confidence intervals (CI) 
for time to first event for all cardiovascular mortality, for 
coronary heart disease (CHD), stroke, diabetes, non-car-
diovascular-non-diabetes-related mortality and all-cause 
mortality comparing the highest quintile to the lower 
quintiles as well as for a unit change in the GIT z-score. 

The unadjusted analyses were repeated after adjustment 
for age, birth year and sex (Model 1); these and BMI 
(Model 2); Model 2 variables and residential SES (Model 
3); and Model 3 variables and education and country of 
origin (Model 4). The analysis were also repeated after 
(a) accounting for the competing risk of death from 
other causes [28] (b) including only those individuals 
who were classified at their pre-military assessment to 
be of unimpaired health (i.e. no indication of any medi-
cal diagnosis in the pre-recruitment medical evaluation 
that would limit combat service) to minimize residual 

2,277,188 par�cipants studied

Pre-recruitment evalua�on between 1967-2010 (n=2,454,693)

Medical assessment
• Review of health summary by par�cipant’s primary care provider
Detailed medical interview and physical examina�on by a physician
• Anthropometric measurements
Sociodemographic assessment
• Educa�on 
• Country of origin
• Socio-economic status

Excluded
• Missing BMI or cogni�ve performance data (n=81,213)
• Deaths between 1967 and 1981 (n=3,991)
• Non-Jewish minori�es  that were unrepresenta�ve of 
their source popula�on  (n=92,301) 

31,268 deaths (1981-2011)

MOH-reported cause-specific death
• Coronary heart disease (n=1,443)
(ICD-9: 410-414; ICD-10 I20-I25)
• Stroke (n=514)
(ICD-9: 430-434, 436-438; ICD-10: I60-I69)
• All Cardiovascular causes (n=3,068)
(ICD-9: 390-459 ; ICD-10: I00-199)
• Diabetes Mellitus (n=457)
(ICD-9: 250; ICD-10: E08-13)
*Missing cause of death (n=1,662)

Fig. 1  Flow diagram of study sample
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confounding as reported previously [16, 17, 27, 29, 30]. 
Analyses were performed with SPSS statistical software, 
version 23.0.

Results
Between the years 1981 to 2011, 31,268 deaths were 
recorded during 41,916,603 person-years of follow-up, 
with a median follow-up of 19.2 (IQR 10.7, 29.5) years. 
Of these, 3068 deaths were attributed to all cardiovascu-
lar causes (CVD), 1443 to CHD, 514 to stroke, and 457 to 
diabetes (Fig. 1).

Baseline characteristics
Table 1 depicts the baseline characteristics of the cohort 
distributed according to quintiles of GIT. Individuals 
in the highest quintile compared to the lowest quintile 
were more likely to have completed high school educa-
tion, to be designated as having unimpaired health, to 
be taller, and to be of European or former USSR origin 
but less likely to be of Asian or African origin. They were 
also more likely to reside in a higher SES locality, and less 
likely to be either overweight or underweight.

GIT score and both all‑cause and cause‑specific mortality
Table 2a shows the distribution of mortality and its per-
son-years incidence by cause across GIT quintiles. As can 
be seen, individuals in the lowest GIT quintile had the 
highest total mortality with a graded decrease towards 
the higher GIS quintiles. CVD-, CHD-, stroke-, diabetes- 
and non-CVD/non-diabetes-related mortality exhibited 
similar patterns.

Multivariable‑adjusted relationship between GIT score 
and both all‑cause and cause‑specific mortality
The hazard ratios for total mortality and mortality due 
to cardiovascular disease, CHD, stroke and diabetes for 
the highest GIT quintile in comparison to other quintiles 
without adjustment and after adjustment for age, sex, 
birth year, BMI, SES, education and country of origin are 
presented in Fig.  2 and Table  2b. Overall, the lower the 
GIT the higher the hazard or all-cause and cause-specific 
mortality. As evident in Table 2b, individuals in the low-
est GIT quintile vs. highest GIT quintile in the unad-
justed models had the highest risk for all-cause mortality 
(HR 1.84, 95% CI 1.78, 1.91), and total CVD (HR 3.32, 
95% CI 2.93, 3.75), CHD (HR 3.49 95% CI 2.92, 4.18), 
stroke (HR 3.96 95% CI 2.85, 5.5) and diabetes-related 
(HR 6.96 95% CI 4.68, 10.36) mortality. These HRs were 
attenuated following adjustment for Model 4 variables 
for all-cause mortality (HR 1.23, 95% CI 1.17, 1.28), total 
CVD (HR 1.76, 95% CI 1.52, 2.04), CHD (HR 1.7 95% 
CI 1.37, 2.11), stroke (HR 2.03, 95% CI 1.39, 2.98) and 
diabetes-related (HR 3.14 95% CI 2.00, 4.94) mortality, 

i.e. reduced by 72.6%, 67.2%, 71.9%, 65.2%, and 64.1%, 
respectively. Figure 3 depicts the relationship between a 
1 unit lower GIT z-score on an interval scale and the risk 
for cause-specific mortality. As can be seen, serial adjust-
ments for the various covariates attenuated the relation-
ship modestly in Models 1, 2 and 3, but strongly in Model 
4 which also adjusted for education, residential SES and 
origin, although the associations remained statistically 
significant. An additional analysis accounting for the 
competing risk of death from other causes yielded similar 
results (Additional file  1: Table  S1). A sensitivity analy-
sis that included only those individuals with unimpaired 
health at baseline (N = 1,656,827) tended to attenuate 
the associations which, however, remained graded across 
quintiles of GIT and statistically significant (Additional 
file 1: Table S2).

Discussion
This analysis of 2,277,188 adolescents followed for a 
median of 19.2  years demonstrates an inverse associa-
tion between cognitive scores at the age of ~ 17 years and 
the risk for all-cause death, cardiovascular mortality, and 
CHD, stroke and diabetes-related death. The strongest 
relationship observed was for the cognitive function and 
diabetes mortality. For example, there was a ~ 1.8-fold 
greater multivariable-adjusted hazard for total cardiovas-
cular disease mortality in those who were in the lowest 
vs. the highest GIT score category, while for diabetes-
related death a ~ threefold greater hazard was observed. 
The associations, although substantially diminished after 
serial adjustments for variables that are known to be 
associated with both cognitive function and mortality 
(such as SES, education, origin and BMI), remained sta-
tistically significant.

This analysis is supported by data from previous stud-
ies conducted in children and in older individuals. An 
analysis of ~ 31,000 individuals with previous CVD 
reported a relationship between the Mini Mental State 
Examination Score (MMSE, a screening instrument 
for dementia) and incident cardiovascular events after 
adjustment for demographic and cardiovascular risk fac-
tors [14]. In an analysis of 11,140 individuals with type 2 
diabetes who were followed for a median of 5 years there 
was also an inverse relationship between the MMSE 
score at baseline and incident CVD events that persisted 
after multivariate adjustment for sociodemographic vari-
ables [31]. In a study of 9204 individuals participating in 
the English Longitudinal study of Ageing, cognition was 
inversely associated with death from cancer, cardiovas-
cular disease, respiratory illness and other causes [32]. 
These association were attenuated after adjustment for 
demographic and SES variables but remained signifi-
cant. There have been several studies in young adults. An 
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Table 1  Baseline characteristics of the study participants according to quintiles of general intelligence test scores

* Exponential trend p < 0.001

Q1 Q2 Q3 Q4 Q5 Total p value 
for linear 
trend

N of participants 445,492 480,543 439,974 471,624 439,555 2,277,188

Female % 31 43 44 44 40 40

Age ± SD 17.4 ± 0.5 17.3 ± 0.4 17.3 ± 0.4 17.3 ± 0.4 17.3 ± 0.4 17.3 ± 0.4 0.158

BMI ± SD (kg/
m2)

21.7 ± 3.6 21.7 ± 3.4 21.7 ± 3.3 21.6 ± 3.2 21.6 ± 3.1 21.6 ± 3.4 0.071

Underweight % 8.7 6.9 6.0 5.7 5.4 6.5 0.024

Overweight % 8.9 8.8 8.6 8.4 7.8 8.5 0.016

Obese % 4.9 4.0 3.5 3.3 3.0 3.7 0.011

Height  ±  SD 
(males)

171.8 ± 6.8 173.1 ± 6.8 173.6 ± 6.7 174.4 ± 6.7 175.1 ± 6.7 173.6 ± 6.8 0.001

Height ± SD 
(females)

160.9 ± 6.2 161.7 ± 6.1 162.0 ± 6.1 162.6 ± 6.0 163.1 ± 6.0 162.1 ± 6.1 0.001

Completed high 
school educa‑
tion (%)

56.9 76.3 82.1 91.0 96.0 80.5 < 0.001

Low SES % 33 26 23 20 19 24 0.001

Unimpaired 
health

77.6 80.3 81.9 82.6 80.3 81.2 0.069

Country of origin (%)

 Israel 4.6 5.0 5.7 6.4 7.6 5.8 0.003

 USSR 9.0 10.9 11.8 14.7 16.1 12.5 0.001

 Asia 30.6 29.5 26.6 21.9 16.0 25.0 0.007

 Africa 38.1 30.8 24.5 17.8 11.8 24.7 < 0.001

 Europe 13.7 22.6 30.9 39.0 48.4 30.8 < 0.001

 Ethiopia 4.0 1.3 0.5 0.2 0.1 1.2 0.057*

Systolic/dias‑
tolic BP ± SD 
(mmHg)

116.5 ± 12.2/ 
71.8 ± 8.3

115.9 ± 12.2/71.8 ± 8.2 116.3 ± 12.3/71.6 ± 8.2 116.3 ± 12.2/71.7 ± 8.2 117.1 ± 12.3/71.7 ± 8.2 116.4 ± 12.2/71.7 ± 8.2 0.110/0.319

Follow-up 
(mean ± SD) 
(years)

19.0 ± 9.8 19.2 ± 8.9 20.0 ± 10.2 19.0 ± 9.7 18.9 ± 10.3 19.2 ± 9.8 0.821

Median follow-
up (25th; 
75th) (years)

18.8 (10.3, 28.7) 18.9 (13.2, 27.0) 19.7 (10.6, 32.0) 18.9 (11.0, 29.3) 19.9 (9.3, 30.1) 19.2 (10.7, 29.5) 0.759

Cumulative 
follow-up 
(person-years)

8,064,856 8,840,363 8,453,920 8,577,783 7,979,682 41,916,603 0.414

Age at end of 
follow-up 
(± SD)

37.0 ± 12.1 37.0 ± 11.0 38.4 ± 12.7 36.9 ± 11.9 36.9 ± 12.5 37.2 ± 12.0 0.907

inverse relationship between cognitive scores measured 
as part of military conscription in Denmark and risk for 
diabetes and for cardiovascular death was reported; the 
relationship was attenuated after adjustment for educa-
tion but remained significant [12]. We have previously 
reported an inverse relationship between cognitive scores 
determined in adolescence and the subsequent risk of 
diabetes and dysglycemia [15, 33]. The findings of our 
study strengthen the results of these studies and further 
suggest that sensitive measures of cognitive function can 
discriminate between younger individuals with a higher/
lower risk for diabetes and CVD related death.

There are several explanations for the relationship 
observed between cognitive function at age ~ 17 and 
the risk for diabetes and CVD-diabetes related death. 
First, as cognitive function is associated with educa-
tion and SES, it may be that the relationship observed 
is a reflection of the already recognized relationship 
between these variables (and their possibly inadequate 
adjustment) and the subsequent risk for CVD death 
[34–38]. A limited number of socio-demographic vari-
ables were available for adjustment in our study; thus 
it may well be that unmeasured or insufficiently dis-
criminating socio-demographic factors, especially in 
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the early years of the study, that affect the GIT account 
for the relationship. The strong reduction in the haz-
ard ratios on multivariable adjustment, particularly 

for education, residential SES and origin (ie., model 
4 adjustment), supports this explanation. Education 
is an increasingly non-discriminating variable in our 

Table 2  The association between fifths of GIT scores and cause-specific mortality

The association between fifths of GIT scores (in comparison to highest quintile) and cause of death was determined using unadjusted and after adjustment for age, 
sex, birth year, body mass index (BMI), residential socioeconomic status, education and country of origin

HR Hazard ratio, CI confidence interval, CHD coronary heart disease, CVD cardiovascular

Mortality cause Q1 Q2 Q3 Q4 Q5 Total

a. Cause-specific death according to GIT quintiles

All-cause, N (%) 8765
(1.97%)

6306
(1.31%)

6188
(1.41%)

5221
(1.11%)

4788
(1.09%)

31,268

 Incidence (event/105 person-years) 108.7 71.3 73.2 60.9 60.0 74.6

Total cardiovascular, N (%) 1075
(0.24%)

641
(0.13%)

624
(0.14%)

394
(0.08%)

334
(0.08%)

3068

 Incidence (event/105 person-years) 13.3 7.25 7.4 4.6 4.2 7.3

Coronary heart disease, N (%) 526
(0.12%)

288
(0.06%)

308
(0.07%)

165
(0.03%)

156
(0.04%)

1443

 Incidence (event/105 person-years) 6.5 3.3 3.6 1.9 1.9 3.4

Stroke, N (%) 172
(0.04%)

115
(0.02%)

110
(0.03%)

72
(0.02%)

45
(0.01%)

514

 Incidence (event/105 person-years) 2.1 1.3 1.3 0.8 0.6 1.2

Diabetes, N (%) 184
(0.04%)

98
(0.02%)

96
(0.02%)

51
(0.01%)

28
(0.01%)

457

 Incidence (event/105 person-years) 2.3 1.1 1.1 0.6 0.4 1.1

Non-CVD, non-diabetes, N (%) 7506
(1.68%)

5567
(1.16%)

5468
(1.24%)

4776
(1.01%)

4426
(1.01%)

27,743

 Incidence (event/105 person-years) 93.1 63.0 64.7 55.7 55.4 66.2

b. Cox proportional hazard models

All cause
 (unadjusted)

1.84
(1.78, 1.91)

1.25
(1.20, 1.29)

1.21
(1.16, 1.25)

1.04
(1.00, 1.08)

1 4.10*10−231

All cause
 (adjusted)

1.23
(1.17, 1.28)

1.08
(1.04, 1.13)

1.04
(1.00, 1.08)

1.01
(0.98, 1.06)

1 1.3*10−33

Total CVD  (unadjusted) 3.32
(2.93, 3.75)

1.92
(1.68, 2.19)

1.71
(1.49, 1.95)

1.15
(0.99, 1.33)

1 2.13*10−126

Total CVD
 (adjusted)

1.76
(1.52, 2.04)

1.44
(1.24, 1.66)

1.27
(1.11, 1.46)

1.05
(0.91, 1.22)

1 1.3*10−14

CHD
 (unadjusted)

3.49
(2.92, 4.18)

1.87
(1.54, 2.27)

1.8
(1.48, 2.18)

1.03
(0.83, 1.29)

1 1.21*10−66

CHD
 (adjusted)

1.70
(1.37, 2.11)

1.36
(1.09, 1.68)

1.31
(1.07, 1.60)

0.95
(0.76, 1.18)

1 1.6*10−9

Stroke
 (unadjusted)

3.96
(2.85, 5.50)

2.60
(1.84, 3.66)

2.22
(1.57, 3.15)

1.56
(1.08, 2.27)

1 5.06*10−24

Stroke
 (adjusted)

2.03
(1.39, 2.98)

1.83
(1.26, 2.66)

1.61
(1.12, 2.30)

1.40
(0.96, 2.03)

1 3.3*10−6

Diabetes
(unadjusted)

6.96
(4.68, 10.36)

3.76
(2.47, 5.72)

3.08
(2.02, 4.69)

1.81
(1.14, 2.87)

1 5.13*10−38

Diabetes
 (adjusted)

3.14
(2.00, 4.94)

2.36
(1.5, 3.7)

2.04
(1.32, 3.15)

1.55
(0.97, 2.46)

1 3.2*10−9

Non CVD/diabetes
 (unadjusted)

1.70
(1.64, 1.77)

1.18
(1.13, 1.23)

1.16
(1.11, 1.20)

1.02
(0.98, 1.06)

1 7.78*10−247

Non CVD/diabetes
 (adjusted)

1.17
(1.12, 1.22)

1.04
(1.00, 1.09)

1.01
(0.97, 1.05)

1.01
(0.97, 1.05)

1 1.3*10−19
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data set as rapidly growing proportions over time have 
12  years of education. Furthermore, we used an eco-
logical measure of SES—based on locality of residence, 
which lacks refinement in cities. Therefore, residual 
confounding cannot be excluded as an explanation for 
the associations we report in multivariable-adjusted 
analyses. Alternatively, differences in GIT might be 
associated with different life-style behavioral patterns 
in childhood or specific intra-utero exposures (also 
referred to as fetal origin of adult disease [FOAD]) 
[39]. For example it has been suggested that low birth 
weight, a surrogate marker of poor nutrition and fetal 
growth, is associated with stroke, coronary heart dis-
ease, stroke and diabetes [40, 41]. Additionally, it 
could be that physical activity and diet in childhood 
could have affected intelligence scores and the sub-
sequent risk for diabetes and CVD death in an inde-
pendent manner. The observation of a shorter stature 
among adolescents with lower GIT may argue in 
favor of a common mechanism for these observation. 
For example, poor nutrition in early life and perhaps 
already in-utero may independently affect neurocog-
nitive development (and thus lower GIT) [42–44], 
growth velocity (thus shorter stature) [45, 46] and 

may increase the risk for future development of the 
metabolic syndrome [45, 47] and its associated cardio-
metabolic risk. An additional possible explanation is 
that a higher GIT score leads to greater achievements, 
higher income, higher SES, a more healthy lifestyle, 
less exposure to a deleterious life-style, better access to 
healthcare and a better ability to prevent and manage 
disease [48–50]. Finally, it could be that the relation-
ship observed suggests a common origin(s) or path-
way for both cognitive function and dyglycemia. These 
might include, among others, mitochondrial (dys)func-
tion [51, 52], the sortilin pathway [53], activation of the 
hypothalamic-pituitary-adrenal axis, inflammation, 
dysglycemia perse or brain and systemic insulin sensi-
tivity [54–56]. Supporting the latter two explanations 
is the relatively strong relationship observed between 
cognitive function and diabetes-related mortality.

The study has several limitations. First, only a lim-
ited number of potential confounders were available for 
adjustment. Thus, information related to socio-demo-
graphic variables was restricted to country of origin, 
education and a residential-based index of SES in ado-
lescence. Information related to individual measures 
of SES and to life-style factors such as diet, physical 

Fig. 2  Cox hazard ratios for mortality due to all cardiovascular disease, coronary heart disease, stroke, diabetes, and all-cause mortality for the 
highest GIT quintile in comparison to lower quintiles after multivariable adjustment for age, sex, birth year, BMI, residential SES, education and 
country of origin (Model 4)
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activity and smoking in adolescence (and adulthood) 
were not available, thus limiting our ability to assess 
an independent relationship (or an association medi-
ated through these risk factors). Second, data regard-
ing CVD mortality were not available from 1967 to 
1981, however most cases of death during those years 
were attributable to service-based trauma, whereas the 
expected number of CVD or diabetes deaths was triv-
ial [16]. The study has several strengths including the 
large sample size and consequently substantial statis-
tical power, the inclusion of data with respect to both 
women and men, the largely unselected population-
based sampling and the ability to restrict the analysis to 
a healthy population.

Conclusions
To conclude, this analysis demonstrates an inverse rela-
tionship between cognitive function at the age of 17 and 
the risk for diabetes-related death as well as all-cause 
mortality and CVD-related death. The study’s results 
emphasize the need for further research aimed at assess-
ing an independent association of adolescent cognition 
with subsequent mortality as well as unravelling possi-
ble mechanistic routes that may explain the strong cog-
nitive–diabetes relationship. On a clinical level, these 

results highlight the ability of cognitive tests to dis-
criminate between individuals at higher and lower risk 
for CVD/diabetes death, thus possibly enabling targeted 
risk mitigation strategies and more intense follow-up for 
these high risk populations.

Additional file

Additional file 1. Additional analyses supporting the association 
between the general intelligence test score and cause-specific mortality.
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