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This review summarizes our current understanding of the major pathway for the initiation
phase of protein synthesis in eukaryotic cells, with a focus on recent advances. We describe
the major scanning or messenger RNA (mRNA) m7G cap-dependent mechanism, which is a
highly coordinated and stepwise regulated process that requires the combined action of at
least 12 distinct translation factors with initiator transfer RNA (tRNA), ribosomes, andmRNAs.
We limit our review to studies involving either mammalian or budding yeast cells and factors,
as these represent the two best-studied experimental systems, and only include a reference to
other organismswhere particular insight has been gained.We closewith a brief description of
what we feel are some of the major unknowns in eukaryotic initiation.

We present a summary of the current
knowledge of the molecular mechanisms

enabling the initiation of protein synthesis in
eukaryotic cells. We focus on the major m7G
cap-dependent pathway, and only briefly con-
sider alternative initiation routes. We cannot
cover all the work that has been performed
and so we focus primarily on more recent stud-
ies. The evidence for the pathway derives from a
wide variety of complementary biochemical, ge-
netic, and structural biology approaches used to
mainly study both mammalian translation ini-
tiation and that of the yeast Saccharomyces cer-
evisiae. The systems are generally highly similar,
but there are some differences and increased
complexity is found in mammalian cells. One
advantage of the yeast system is its high amena-
bility to genetics that, when combined with oth-
er complementary approaches, has provided

deep mechanistic insight. We begin with a brief
overview of the general initiation pathway, fo-
cusing on the roles of the initiation factors and
then discuss each step in detail, highlighting key
points of mechanistic understanding. The re-
view concludes with a consideration of impor-
tant questions that remain as yet unanswered.

AN OVERVIEW OF THE INITIATION
PATHWAY

The initiation of protein synthesis is the process
that results in bringing together an 80S ribosome
with a messenger RNA (mRNA) and initiator
methionyl-transfer RNA (Met-tRNAi). These
three components combine such that Met-
tRNAi makes codon–anticodon base-pair inter-
actions with the correct initiation codon at the
start of an open-reading frame (ORF) within the
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mRNA. AUG is the typical initiation codon, al-
though near-cognate codons are used to initiate
on some mRNAs (Starck and Shastri 2016;
Kearse andWilusz 2017). The codon–anticodon
interaction is confinedwithin the P site of an 80S
ribosome. This topology then allows the elonga-
tion phase of protein synthesis to begin, by bind-
ing an elongator aminoacyl-tRNA to the vacant
80S A site to read the adjacent codon down-
stream. Although this may appear relatively
simple, eukaryotes have evolved a complex
translation initiation pathway. There are at least
12 dedicated proteins, termed eukaryotic initia-
tion factors (eIFs), that each play critical roles in
the process, and several of these factors are
comprised of multisubunit proteins. Why so in-
volved, when prokaryotes initiate translation us-
ing just three factors (Rodnina 2018)? Of course,
this is a matter of conjecture, but it likely reflects
the need to tightly control a process that con-
sumes a large amount of cellular energy in the
form of ATP and GTP and can cause serious
consequences when out of balance, as evidenced
by many disease states caused by aberrant trans-
lation (see Stern-Ginossar et al. 2018; Wek
2018). In addition to the discussion below, read-
ers may find it informative to consult previous
reviews covering the topics we discuss here
(Hinnebusch and Lorsch 2012; Hinnebusch
2014, 2017; Dever et al. 2016).

The initiation pathway is shown schemati-
cally in Figure 1 and is envisaged as a series of
steps (blue text) in which the eIFs guide theMet-
tRNAi and ribosomal subunits to the mRNA
AUG codon. Met-tRNAi is brought to the ribo-
some in a complex with eIF2•GTP. eIF2 is a
GDP/GTP binding “G” protein and has high
affinity for Met-tRNAi only when GTP-bound
(Kapp and Lorsch 2004). The eIF2•GTP•Met-
tRNAi complex is widely known as the ternary
complex (TC). This is typically considered the
first step in translation initiation. As eIF2•GDP
is the stable form of eIF2 (Panniers et al. 1988;
Erickson and Hannig 1996), it must first be ac-
tivated to eIF2•GTP by the guanine nucleotide
exchange factor (GEF) eIF2B before the TC can
form (Rowlands et al. 1988; Pavitt et al. 1998).
Next, the TC binds to the small ribosomal sub-
unit (40S) with eIF5, eIF3, eIF1, and eIF1A to

form a larger 43S preinitiation complex (PIC).
There may be several routes to PIC formation.
eIF1, eIF1A, and eIF3 can dissociate 80S com-
plexes and bind to 40S subunits (Pisarev et al.
2007) and then recruit eIF5/TC. Alternatively,
eIF3 and eIF1 can form an independent multi-
factor complex (MFC) with TC and eIF5 before
binding the 40S subunit (Asano et al. 2000; So-
kabe et al. 2012).

mRNAs are activated by binding eIF4F at
the 50 7-methylguanosine cap (m7G cap) and
the poly(A) binding protein (PABP) at the 30

poly(A) tail (Jackson et al. 2010). eIF4F compris-
es a complex formed between eIF4E, eIF4G, and
eIF4A. The large eIF4G subunit has binding
sites for eIF4E, PABP, and RNA and can form
a “closed-loop” circularized mRNA/RNA-bind-
ing protein (RPB) complex (Fig. 1). eIF4A is an
RNA helicase and both eIF4F formation and the
binding to eIF4A of an accessory factor eIF4B
enhance eIF4A activity. eIF4A unwinds mRNA
secondary structures to facilitate 43S PIC re-
cruitment at, or close to, the m7G cap, forming
an mRNA•43S complex (Fig. 1) (Kumar et al.
2016). eIFs 1 and 1A bound at the P and A sites
of the 40S subunit, respectively, open a cleft in
the 40S between its “head” and “body” that fa-
cilitates single-stranded mRNA binding and the
subsequent scanning step. Further interactions
between eIF3 in the 43S PIC and a region of
eIF4G on the activatedmRNA facilitate forming
and stabilizing this intermediate complex (Villa
et al. 2013). mRNAs have 50 leaders, typically
called 50 untranslated regions (50UTRs), that
span the distance between the m7G cap and
the initiation codon for the major ORF. 50UTRs
vary in length, sequence, and structure. Usually
the AUG codon closest to the m7G cap is used
to initiate protein synthesis, but there are
exceptions.

Scanning describes themovement of the 43S
PIC along the mRNA from the m7G cap, in a 30

direction, searching for an AUG initiation co-
don in a suitable context tomake a stablemRNA
codon–tRNAi anticodon interaction. This re-
quires energy in the form of ATP. In Figure 1,
this is depicted with PIC/m7G cap complex in-
teractions maintained. This “open” scanning
form transitions to a “closed” complex on
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Figure 1. Overview of the general eukaryotic translation initiation pathway. The pathway for recruiting initiator
transfer RNA (tRNA) to the messenger RNA (mRNA) AUG codon in the context of an 80S ribosome (bottom
right) is depicted as a series of major steps, labeled with blue text, linked with black arrows. Individual eukaryotic
initiation factor (eIF) cartoons and complexes are labeled with black text and nucleotide hydrolysis/inorganic
phosphate release reactions are shown by blue arrows. The broad green arrow indicates the direction of scanning
toward the AUG codon. The regulatory reactions leading to eIF2 and eIF4E inhibition are shown with plum and
red arrows. All steps are described in the main text, starting with eIF2 activation. The timing of release of some
factors from initiating ribosomes/mRNA (eIF4F, eIF4B, or eIF3) is not yet clear, so this is not shown.
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AUG recognition, in which base pairing is es-
tablished between the P-site-bound Met-tRNAi

anticodon and the mRNA AUG codon. Here
scanning is halted and initiation complex reor-
ganization is triggered. eIF2-bound GTP can be
hydrolyzed to GDP + phosphate (Pi) during
scanning in an eIF5-dependent reaction, but Pi
is released from eIF2 only on AUG recognition
(Algire et al. 2005; Majumdar andMaitra 2005).
Following AUG recognition, eIF1 relocates, trig-
gering an eIF2 conformational change that likely
facilitates Pi release. This significantly lowers the
affinity of eIF2 for Met-tRNAi (Algire et al.
2005). Together these changes facilitate release
of eIF2•GDP and eIF5. eIF2 must be reactivated
again to form the eIF2•GTP complex to partic-
ipate in further rounds of initiation. Finally,
eIF5B•GTP is recruited and facilitates the join-
ing of the large ribosomal subunit (60S) and
reorientation of the initiator tRNA (Yamamoto
et al. 2014). Release of eIF5B•GDP and eIF1A
allows formation of an 80S ribosome attached to
an mRNA with Met-tRNAi bound to the AUG
codon in the P site, poised to begin translation
elongation.

43S PIC FORMATION

eIF2 Activation and TC Formation

eIF2 is the main Met-tRNAi carrier and is a key
regulatory switch that modulates the global ini-
tiation pathway. Met-tRNAi has 20- to 50-fold
higher affinity for eIF2•GTP than for eIF2•GDP
(Kapp and Lorsch 2004; Jennings et al. 2017).
However, eIF2•GTP is unstable, whereas
eIF2•GDP is relatively stable (Panniers et al.
1988; Kapp and Lorsch 2004; Jennings et al.
2016), necessitating the action of a GEF
(eIF2B) to promoteGDPdissociation and there-
by facilitate GTP and Met-tRNAi binding to
form the TC. During periods of cell stress, eIF2
is subjected to tight control as several protein
kinases can phosphorylate the α subunit of
eIF2 (eIF2αP) onaconserved serine residue (ser-
ine51 inhumans). This converts eIF2 frombeing
a substrate to an inhibitor of eIF2B GEF activity
(Fig. 1) and provides a mechanism to impose a
global brake on protein synthesis initiation at its

outset (Rowlands et al. 1988; Pavitt et al. 1998).
This is an important regulatory mechanism, be-
cause selective mRNAs are able to escape such
global repression. These translational controls
are described in greater depth elsewhere (Proud
2018; Wek 2018, but see also Hinnebusch et al.
2016; Young and Wek 2016).

Evidence from yeast suggests that there is
little free eIF2•GDP in cells, as eIF5 associates
with high affinity forming eIF2•GDP/eIF5 com-
plexes that are produced on release of these fac-
tors at theendof each initiationcycle (Algire et al.
2005; Singh et al. 2006). eIF5 can stabilize GDP
binding to eIF2•GDP and thereby ensure tight
regulation of initiation by preventing any spon-
taneous release of GDP from eIF2 that might
otherwise bypass the eIF2B-centered control
mechanism. Thus, eIF5 is a GDP-dissociation
inhibitor (GDI) (Jennings and Pavitt 2010).
This activity requires the eIF5 carboxy-terminal
domain (CTD) and evolutionarily conserved
residues within the central linker region, but
not the amino-terminal domain (NTD) that is
necessary for eIF5’s role as a GTPase-activating
protein (GAP).TheCTDand linker interactwith
both eIF2γ and β subunits and may constrain
eIF2, preventing eIF2B-independent GDP re-
lease (Alone andDever2006; Jennings andPavitt
2010; Jennings et al. 2016). Thus, eIF2Bdisplaces
eIF5 from eIF2•GDP before performing nucleo-
tide exchange. In yeast, eIF5 displacement re-
quires the eIF2Bγ and ε subunits (Jennings
et al. 2013). eIF5 displacement by eIF2B has
not yet been studied with mammalian factors.

eIF2B is a large multifunctional protein. En-
coded by five genes (subunits α–ε), its α, β, and
δ subunits form an eIF2αP-sensing regulatory
complex, whereas eIF2Bγ and ε perform eIF2
activation functions (Pavitt 2005; Jennings
et al. 2013). eIF2B was recently shown to be a
dimer of pentamers (Gordiyenko et al. 2014;
Wortham et al. 2014), with the Schizosaccharo-
myces pombe structure revealing that the deca-
mer contains a regulatory (αβδ)2 hexameric
“core” with two separate εγ “arms,” so it can
likely interact with two eIF2 molecules simulta-
neously. Consistent with prior genetic and bio-
chemical evidence, in vitro cross-linking indicat-
ed that the eIF2α domain 1, including serine 51,
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makes direct contactwith an interface composed
of all three eIF2B regulatory subunits, whereas
eIF2γ (towhich GDP/GTP directly binds) inter-
acts with both γ and ε (Kashiwagi et al. 2016).
The eIF2Bε carboxy-terminal catalytic domain
(Boesen et al. 2004; Mohammad-Qureshi et al.
2007) was not resolved in the eIF2B complex
structure, so further studies will be required to
elucidate both the mechanism of eIF2B GEF ac-
tion and its major form of control by eIF2αP.

Following nucleotide exchange, eIF2•GTP
binds Met-tRNAi to form the TC. eIF2 binds
with 20-fold enhanced specificity to Met-tRNAi

over the distinct elongator methionyl-tRNA
(Met-tRNAm) that decodes internal AUG me-
thionine codons (Kapp et al. 2006). Assessing
the function of tRNAs where specific nucleo-
tides have been swapped has identified Met-
tRNAi elements that ensure it binds eIF2 and
is excluded from elongation. In Met-tRNAi

these include the A1:U72 base pair that is re-
placed by a G:C pair in Met-tRNAm. Substitu-
tions here and at bases throughout the tRNAi

contribute to eIF2 binding (Drabkin et al.
1993; Kapp et al. 2006), andmake other contacts
important for scanning and ensuring the fidelity
of start codon recognition (Kolitz and Lorsch
2010; Dong et al. 2014). As eIF2γ is a structural
mimic of tRNA-binding elongation factors SelB,
EF1A (EF-Tu), and eEF1A, it was proposed that
eIF2 would bind tRNAi in a similar manner to
the elongation factors (Schmitt et al. 2010).
However, cross-linking and structural studies
of both yeast and archaeal eIF2 proteins reveal
that the eIF2α and β subunits also contribute to
a distinct Met-tRNAi binding mode where both
eIF2γ and eIF2α make extensive contacts with
the Met-tRNAi acceptor stem (Shin et al. 2011;
Schmitt et al. 2012; Naveau et al. 2013). As de-
scribed below, cryoelectron microscopy (cryo-
EM) of partial 48S complexes has provided fur-
ther insight into Met-tRNAi binding by eIF2
(Hussain et al. 2014; Llacer et al. 2015; Hinne-
busch 2017; Jobe et al. 2018).

Although the TC is stable in isolation, it was
recently shown that eIF2B can bind and disrupt
the TC (Jennings et al. 2017). This unexpected
finding suggests that eIF2B can both promote
TC formation and destabilize the product of

this GEF reaction. Hence, free TC may not be
long-lived in cells and may not represent the
final product of eIF2 activation. When eIF5 is
bound to the TC, it impairs the ability of eIF2B
to destabilize the TC, consistent with the idea
that TC/eIF5 complexes represent a stable active
form of eIF2 that can be recruited to the PIC
(Jennings et al. 2017). Therefore, eIF2B can dis-
place eIF5 from eIF2•GDP/eIF5 complexes to
perform nucleotide exchange (Jennings et al.
2013), but cannot remove eIF5 from TC/eIF5.
Hence, eIF5 binding to TC likely prevents eIF2B
from antagonizing the next steps in protein syn-
thesis initiation (Jennings et al. 2017).

eIFs-1, -1A, and -3 Promote TC Binding to 40S

Three additional factors, eIF1, eIF1A, and eIF3,
are implicated in recruiting the TC to the 40S
ribosomal subunit (Majumdar et al. 2003; Olsen
et al. 2003; Kolupaeva et al. 2005; Cheung et al.
2007). Their cooperative binding induces con-
formational changes that rotate the head and
open up a cleft between the head and body of
the 40S to facilitate TC binding (Maag et al.
2005; Passmore et al. 2007; Weisser et al. 2013;
Sokabe and Fraser 2014). eIF1 is a small protein
that binds to the platform of the 40S subunit
body close to the P site and mRNA channel
(Weisser et al. 2013; Aylett et al. 2015). eIF1A,
which is a homolog of bacterial IF1 (Rodnina
2018), sits adjacent to eIF1 in the 40S A site con-
tacting both the head and body. Both eIF1 and
eIF1A bind cooperatively to the 40S subunit
(Maag et al. 2005; Sokabe andFraser 2014) above
rRNA helix 44, and eIF1A is located at the
decoding center (Weisser et al. 2013). The de-
coding centermonitorsA-site tRNA-mRNAco-
don–anticodon pairing during elongation. Both
factors play crucial roles in many steps in the
initiation pathwayandmutations in either factor
affect TC recruitment, scanning, and the strin-
gency of AUG recognition (Cheung et al. 2007;
Fekete et al. 2007; Martin-Marcos et al. 2013;
Hinnebusch 2014). eIF1A is also important for
60S subunit joining. These roles are described
below.

Like eIF1 and 1A, eIF3 promotes TCbinding
to the 43S PIC (Valasek 2012; Sokabe and Fraser
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2014; Aitken et al. 2016). The mammalian eIF3
complex is the largest initiation factor com-
prising 13 subunits (designated a→m) and
∼800 kDa. In contrast, yeast eIF3 is smaller, shar-
ing only homologs of the a, b, c, g, i, and j sub-
units. It has been suggested that theyeast complex
represents a minimal core eIF3 (Valasek 2012;
Wagner et al. 2016; Valasek et al. 2017). In yeast,
an eIF3ac dimer is connected to the eIF3bgij
subcomplex via an eIF3a–CTD/3b interaction
(Valasek 2012). This eIF3aCTD/bgij complex
has been termed the “yeast-like core” of eIF3
(Fig. 2, left) (des Georges et al. 2015) or alterna-
tively the “peripheral” subunits (Simonetti et al.
2016). Six of the additional mammalian sub-
units (eIF3d–f, h, and k–m) interact with the
conserved eIF3ac module to form a large “oc-
tamer” structural core of the mammalian com-
plex comprising subunits a, c, e, f, h, k, l, and m
that form a five-lobed structure (des Georges
et al. 2015) to which eIF3d binds (Fig. 2, right).
It is likely that the enhanced complexity of
mammalian eIF3 allows for more diverse regu-
latory inputs to control translation than in yeast.

Structural studies have shown, in progres-
sively increasing detail, that the large eIF3 com-

plex binds and wraps around the solvent ex-
posed (back) surface of the body of the 40S
subunit such that it can contact and monitor
important events occurring at both the mRNA
entry channel/A site as well as the exit channel/E
site and factor binding to the intersubunit inter-
face (Hashem et al. 2013b; Erzberger et al. 2014;
Aylett et al. 2015; des Georges et al. 2015; Llacer
et al. 2015; Simonetti et al. 2016). A cartoon
model summarizing some of these factor–40S
interactions is shown in Figure 3. The images
are a composite derived from both yeast and
mammalian studies and show positions for all
eIF3 subunits. The structural studies are sup-
ported by many functional analyses of eIF3 in-
teractions that indicate a complex network of
interactions among the 43S PIC factors that pro-
mote its formation and also make critical con-
tributions to later steps in initiation (Valasek
2012; Sokabe and Fraser 2014; Aitken et al.
2016). Specifically, the eIF3 octamer core of
the mammalian complex binds around the 40S
mRNA exit channel. In yeast, eIF3c binds eIF1
and eIF5 and these subunits make further links
to the TC (Valasek et al. 2003, 2004; Yamamoto
et al. 2005). In contrast, the eIF3aCTD-3bgij

3k

eIF3 yeast-like core eIF3 octamer

3i

3g (RRM)

3j

3b

3g

3a CTD

3h

3f

3m 3a

3c

3e

3d3l

to 3c
NTD

Figure 2. Structural models of eukaryotic initiation factor (eIF)3. A composite model of the structure of eIF3
showing the mammalian octamer (right) from PDB 5A5T (des Georges et al. 2015) and the associated eIF3d
subunit (PDB 5K4D) (Lee et al. 2016) that is linked via eIF3a to the yeast-like core eIF3bgi complex (PDB 5A5U)
(des Georges et al. 2015). The eIF3g is composed of an RNA-recognition motif (RRM) (PDB 2CQ0) and a β-
propeller domain similar to eIF3b. eIF3j can interact with the eIF3b RRM. NTD, Amino-terminal domain.
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yeast-like core complex is located at the mRNA
entry channel, where eIF3aCTDbinds both eIF1
and eIF2, whereas 3a, 3b, 3g, and 3j contact 18S
rRNA and ribosomal proteins (Fig. 3) (Valasek
2012). eIF3j appears more loosely associated
with the other eIF3 subunits and has distinct
roles suggesting that it should be viewed as an
eIF3-associated factor (Valasek et al. 2017).
eIF3j enhances the affinity of many interactions
among the 43S components when part of eIF3
(Fraser et al. 2007; Sokabe and Fraser 2014).
Recent analyses of yeast eIF3 mutants indicate
that mutations in eIF3b, 3i, or 3g destabilize TC
binding to the PIC and mutations within these
subunits or in eIF3a also impair mRNA recruit-
ment (Khoshnevis et al. 2014; Aitken et al.
2016).

To sum up, eIF3 is critical for bringing the
TC to the 40S subunit and for stabilizing mRNA
interactions. It also plays a role bridging the 43S
PIC to the mRNAm7G cap-binding complex as
human eIF3c, 3d, and 3e subunits can be cross-
linked to a region of eIF4G (Villa et al. 2013). Of
these subunits, yeast eIF3 lacks 3d and 3e, sug-
gesting 3c may fulfill this role, although the
eIF5-CTD can provide further stabilizing inter-

actions between the 43S PIC and eIF4G in place
of the eIF4G/eIF3 contacts found for mamma-
lian eIF3 (Yamamoto et al. 2005; Singh et al.
2012). As described below eIF3 also facilitates
later steps in initiation and can play wider roles
in translation including the recycling of postter-
mination ribosomes and in reinitiation (Pisarev
et al. 2007; Beznoskova et al. 2015; Mohammad
et al. 2017; Valasek et al. 2017; see also Hellen
2018; Wek 2018).

MFC Is an Alternative Route to the 43S PIC

Another route to form the 43S PIC has been
proposed following the isolation of a complex
containing the TC and eIFs 1, 3, and 5. Original-
ly described in yeast and termed the MFC, it has
now also been isolated from both plant and
mammalian cells (Asano et al. 2000; Dennis
et al. 2009; Sokabe et al. 2012). The MFC likely
helps cooperative recruitment of these transla-
tion factors to 40S subunits as there are multiple
interactions among components. The yeast
eIF5-CTD makes independent contacts with
eIF3c-NTD, eIF1, and eIF2β (Yamamoto et al.
2005; Luna et al. 2012). Thus, eIF5 bridges an
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Figure 3. Model for preinitiation complex (PIC) arrangement at AUG recognition. Three 90° rotated cartoon
views of an idealized 48S PIC, modeled on recent structural and functional studies. This model was based on the
partial yeast 48S closed complex structure (3JAP) (Llacer et al. 2015) and modified to include findings of others
(Luna et al. 2012, 2013; Aylett et al. 2015; des Georges et al. 2015; Simonetti et al. 2016; Obayashi et al. 2017). The
entry view (left) shows the eukaryotic initiation factor (eIF)3 yeast-like core subunits, whereas the exit view (right)
shows only the mammalian eIF3 octamer complex. eIF2 is shown as semitransparent in the central intersubunit
view (middle) to indicate the position of factors otherwise hidden below. For further details of eIF2 interactions,
see Figure 4. The position of Rack1 on the ribosome head is shown for orientation purposes only and is not
discussed in the text. Factor colors correspond to those used in other figures.
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interaction between the TC and eIF3c, in addi-
tion to a direct eIF2/eIF3a–CTD interaction
(Valasek et al. 2002). In the human MFC, the
eIF3/eIF5 interaction may be weaker than in
yeast (Sokabe et al. 2012). There is evidence
that in plants the affinities of these MFC com-
ponents for each other is enhanced by phos-
phorylation (Dennis et al. 2009), but whether
phosphorylation similarly affects human MFC
interaction affinities has not yet been evaluated
(Sokabe et al. 2012). Thus, as indicated in Figure
1, there are at least two routes to the formation of
43S complexes. The relative importance of these
43S PIC formation routes to individual mRNAs
in different cells or in response to different stim-
uli remains to be resolved.

mRNA RECRUITMENT AND SCANNING

Having constructed the 43S PIC, the next step is
mRNA recruitment. eIF4A, eIF4B, eIF4E, and
eIF4G are all that is required in model in vitro
systems. As these proteins have been purified
and a range of mutants analyzed, some of the
biochemical properties of these proteins are
known as independent entities. However, there
remains some uncertainty to their sequential
utilization in the initiation pathway. eIF4E is
the major m7G cap recognition factor (Gross
et al. 2003) and is a site of translational control
via a series of eIF4E-binding proteins (4E-BPs)
that limit eIF4E access to eIF4G (Richter and
Sonenberg 2005). Binding of 4E-BPs to eIF4E
is regulated by phosphorylation that alters the
structure of the binding protein so that it can no
longer bind eIF4E (Bah et al. 2015). When not
bound by a 4E-BP, eIF4E can interact with
eIF4G (Gross et al. 2003; Gruner et al. 2016;
Proud 2018). eIF4G enhances the affinity of
eIF4E for the m7G cap, suggesting the interac-
tions help reinforce each other to promote ini-
tiation (Gross et al. 2003; Yanagiya et al. 2009;
O’Leary et al. 2013). eIF4E binds to a motif
shared among the 4E-BPs and eIF4G: YX4Lϕ
(where X and ϕ denote any amino acid and
any hydrophobic residue, respectively). There
are structures available of eIF4E with short re-
gions of eIF4G, including this motif, which re-
veal this interaction (Gross et al. 2003; Gruner

et al. 2016). eIF4G is frequently referred to as a
large protein scaffold because, as previously de-
scribed, it contains multiple regions to which
many translation factors and mRNA can bind
(Fig. 1) (Yanagiya et al. 2009; Park et al. 2011),
and can also bridge this eIF4F/mRNA/PABP
complex to the 43S PIC via eIF3 (Villa et al.
2013).

At the heart of the mRNA activation process
is eIF4A that is one of the best-characterized
RNA helicases and one of the original founding
members of the DEAD-box RNA helicases
(Grifo et al. 1984; Linder et al. 1989). It is the
only “traditional” initiation factor that is known
to bind ATP and it functions during both
mRNA activation and mRNA scanning. Char-
acteristic activities for eIF4A include: ATP-de-
pendent retention of RNA on nitrocellulose fil-
ters, RNA-dependent ATP hydrolysis, and RNA
duplex unwinding (Merrick 2015). All of these
activities are also found in the eIF4F complex
where the level of activity is always greater
(Abramson et al. 1987; Rozen et al. 1990; Feok-
tistova et al. 2013; Sokabe and Fraser 2017). Ac-
tivity enhancements are a reflection of improved
binding constants for mRNA as well as en-
hanced efficiency (as rate). The activities of
both eIF4A and eIF4F can be further improved
by the presence of eIF4B (Harms et al. 2014).
What is unclear currently is whether the ATP-
dependent action of eIF4A in the initiation
pathway is exclusively through eIF4F or whether
there are individual steps that use just eIF4A
(Pause et al. 1994).

What is thought to be the most important
function of eIF4A is its helicase activity that can
be used to reduce or eliminate secondary struc-
ture in an mRNA or, by analogy to the DEAD-
box RNA helicase NPH-II, to separate protein
fromRNA (Jankowsky et al. 2001). Both of these
elements are important for loading a single
strand of RNA into the mRNA channel on the
43S PIC. This conversion of an mRNA (as the
mRNA initially exists having exited the nucleus)
to an activated mRNA is catalyzed by the se-
quential recognition by eIF4F of the m7G cap
and the generation of a single strand of RNA
(eliminating secondary structure, protein, or
both from the 50 end of the mRNA) that can
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be placed on the 43S PIC. The first step is the
recognition of them7G cap by the eIF4E subunit
of eIF4F. This recognition ensures that the
bound RNA is an mRNA (has an m7G cap)
and that eIF4E is bound to the 50 end of the
mRNA in an ATP-independent manner. The
subsequent removal of RNA secondary struc-
ture and possible protein is dependent on ATP
and is greatly enhanced by eIF4B (Abramson
et al. 1987; Rozen et al. 1990). Based on the
relatively slow turnover numbers for ATP hy-
drolysis (Lorsch and Herschlag 1998; Merrick
2015), presumed to be the result of the slow
chemical step in the hydrolysis of ATP, the com-
plex of eIF4F and eIF4B remains associated with
the mRNA long enough to effect an interaction
with eIF3 on the 43S PIC that leads to the bind-
ing of the mRNA to the 40S subunit via a pro-
tein–protein interaction (eIF4F and eIF3) al-
though it is likely that the 40S subunit also
contributes to the mRNA loading process.

A major player in mRNA recruitment is
eIF3, both as an essential component in the for-
mation of the 43S PIC as well as in stabilization
of the bound mRNA at both the entry and exit
channels (Aitken et al. 2016). Of particular im-
portance are the NT and CT domains of eIF3a
and the NTD of eIF3c, and this is consistent
with the mapping of these portions of eIF3 to
various cryo-EM structures of 48S complexes
(Aylett et al. 2015; des Georges et al. 2015; Llacer
et al. 2015; Jobe et al. 2018). Recently m7G cap-
interacting domains were identified within both
eIF3d (Lee et al. 2016) and eIF3l (Kumar et al.
2016) that may play roles in transitioning an
eIF4E-bound mRNA m7G cap to one where
the m7G cap is anchored by eIF3. Such a role
for eIF3 would be consistent with the apparent
loss of eIF4E when 48S complexes are formed
(Kumar et al. 2016). Release of eIF4Ewould then
permit the known regulation by 4E-BP under
appropriate circumstances (Merrick 2015;
Proud 2018). It should be noted that yeast eIF3
lacks homologs of the d and l subunits, and so
further studies will be needed to resolve the rel-
ative importance of these m7G cap interactions
for general protein synthesis initiation. eIF3j
binds to the 40S decoding center and makes
contact with eIF1A (Fig. 3) (Fraser et al. 2007;

Aylett et al. 2015). eIF3j binding was shown to
impair mRNA recruitment to 40S, except when
TC was present, suggesting eIF3j may impair
mRNA binding to 40S complexes lacking TC
(Fraser et al. 2007; Mitchell et al. 2010). In sum-
mary, numerous studies suggest that a network
of multiple interactions is established among
initiation factors, tRNA, and the 40S ribosome,
which act together to facilitate mRNA recruit-
ment to the 48S PIC.

Perhaps the least understood step in the ini-
tiation process is scanning. This is in part be-
cause of the difficulty in obtaining a 48S PIC
with the mRNA in its initial position when first
bound to the 40S subunit, as the requirements
for mRNA binding and scanning appear to be
similar (requiring eIF4A, eIF4B, eIF4F, and
ATP). The early work of Kozak established the
requirement for ATP in scanning (Kozak 1980).
eIF4A uses ATP and, in vitro, is sufficient as
either eIF4A alone or within eIF4F to form
48S complexes positioned at the start codon
(Pestova et al. 1998; Dmitriev et al. 2003; Aylett
et al. 2015; Llacer et al. 2015). The question is
how is the “RNA helicase” activity used to drive
the scanning process? Some hints at this have
been obtained from RNA helicase studies. For
yeast eIF4F, there is about a 22-fold preference
for a 50 overhang on a RNA duplex substrate
relative to a 30 one (Rajagopal et al. 2012). This
could conceivably orient the mRNA for move-
ment in a 50 to 30 direction. However, in contrast,
there is no equivalent preference shown by
mammalian eIF4F (Rogers et al. 2001). A recent
study using a single molecule, optical trapping
assay for RNA duplex unwinding was able to
show processivity with complexes of human
eIF4A, eIF4B, and eIF4G (García-García et al.
2015), although this result has not been repro-
duced in standard assays of duplex unwinding
with these proteins (Rogers et al. 2001; Gao et al.
2016). What is not yet clear in the scanning
process is how the TC is able to inspect the
mRNA for a start codon while the PIC is travers-
ing the 50UTR.

Translation of the mRNA is assumed to
temporarily remove extensive secondary struc-
ture and RNA-associated proteins from both the
50 leader and ORF. Thus, at termination the re-
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lease of the 40S and 60S subunits frees them to
initiate again (Hellen 2018). Kinetically, reuse of
ribosomes to repeatedly translate the same
mRNA is likely aided by what is termed the
“closed-loop model” wherein PABP and eIF4G
interact with each other to circularize the
mRNA (Fig. 1) (Wells et al. 1998; Park et al.
2011; Archer et al. 2015; Costello et al. 2015,
2017). Thus, at termination, the ribosomal sub-
units are likely released in close proximity to the
50 end of the mRNA and this facilitates subse-
quent initiation events in a more efficient man-
ner. This may be especially important in cells in
log phase growth where the availability of free
40S subunits is limiting (Chu et al. 2014), and is
likely more important on some mRNAs than
others as, at least in yeast, it is clear that the
propensity of some mRNAs to form a closed
loop is greater than others (Archer et al. 2015;
Costello et al. 2015). Recent computational anal-
yses support the idea that the closed-loop can
enhance translation rates, particularly on short-
er mRNAs (Rogers et al. 2017).

Some mRNAs have extensive secondary
structure or length, or both, in their 50UTRs
and therefore require additional “helicase pow-
er,” which may come in the form of increased
concentrations of eIF4A or eIF4B or of a variety
of other RNA helicases, including mammalian
Dhx29 and yeast Ded1 (Svitkin et al. 2001; Pi-
sareva et al. 2008; Parsyan et al. 2011; Sen et al.
2015, 2016). At present, it is not clear whether
these other helicases function entirely indepen-
dently or as a partner/subunit of one of the ini-
tiation factors, as yeast Ded1 may function as an
eIF4F subunit (Gao et al. 2016). The current
interpretation is that such helicases regularly
participate in many initiation events but are
critically important for optimal initiation of
mRNAs with highly structured 50UTRs.

AUG RECOGNITION

AUG Recognition Causes Conformational
Changes in the PIC

Typically, the first encountered AUG in an
mRNA is used, providing it has a good se-
quence context. In mammals, the sequence

GCCPuCCAUGG, generally called the Kozak
consensus sequence, enhances AUG recogni-
tion (Jackson et al. 2010). Within this sequence,
the purine (Pu = A or G) nucleotide at −3 and
the G at +4 position are most important (both
relative to the A of the AUG, designated +1). In
contrast, AUG contexts differing significantly
from this context can be bypassed, a process
called leaky scanning. Leaky scanning is used
by specific mRNAs to regulate expression levels
and is used as an autoregulatory loop as de-
scribed for the translation factor eIF1 and eIF5
mRNAs (Ivanov et al. 2010; Martin-Marcos
et al. 2011; Loughran et al. 2012; Hinnebusch
et al. 2016). Alternatively, leaky scanning may
include or exclude an NTD signal sequence that
can alter the destination of the final protein. For
example, a single mRNA encodes an enzyme
with both cytoplasmically and mitochondrially
targeted forms where different start codons are
used to generate the isoforms (Slusher et al.
1991). Similarly, leaky scanning of an upstream
ORF can regulate the flow of ribosomes to the
downstream ORF (see Wek 2018). It is also
notable that mRNAs with long leaders can be
efficiently translated, as can those with very
short leaders (Berthelot et al. 2004). How close
an AUG codon can be to the m7G cap and still
be translated has been addressed recently in vi-
tro. It was found that AUG codons immediately
adjacent to the m7G cap can be used efficiently,
providing that eIF1 was excluded from the reac-
tions (Kumar et al. 2016). Hence, it is possible that
eIF1 may prevent initiation very close to the m7G
cap. A potential exception to this is the transla-
tion initiator of short 50UTR (TISU) sequence
SAASAUGGCGGC (S =G or C) in mRNAs that
appears to bemuchmore permissive for initiation
events close to the m7G cap (Elfakess et al. 2011;
Sinvani et al. 2015; Kwan and Thompson 2018).

To recognize an AUG initiation codon, the
Met-tRNAi anticodon within the scanning PIC
must base-pair with the mRNA and signal this
interaction to the associated factors in the PIC.
These signaling events drive conformational
changes in the PIC that switch it from an
“open” to a “closed” conformation wherein al-
tered interactions between the components
cause release of eIF1, eIF2•GDP, and eIF5
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from the PIC (Unbehaun et al. 2004; Cheung
et al. 2007). Many of the precise changes that
occur are now becoming understood. These ul-
timately result in a PIC arrangement competent
to recruit the 60S subunit. Both biochemistry
and yeast genetics implicate eIF1, eIF1A, and
eIF5 along with eIF2 in stringent AUG recogni-
tion. Highly informative to the mechanism of
AUG recognition has been the study of yeast
Sui−mutants that enhance inappropriate recog-
nition of a mutated UUG start codon. Compen-
sating Ssu− “suppressor of sui” mutations in
these initiation factors have also been described
that enhance the stringency of AUG selection, as
recently reviewed (Dever et al. 2016).

In the scanning PIC, eIF1 is located close to
the P site (Hashem et al. 2013a; Weisser et al.
2013; Hussain et al. 2014). Its location prevents
complete Met-tRNAi anticodon–AUG pairing.
Recent structural insights revealed that in the
open scanning conformation, the eIF2β subunit
extends between eIF1 and eIF1A connecting
these factors with Met-tRNAi that is bound to
the 40S head. It was proposed that contacts ob-
served between eIF1, eIF2β, and the Met-tRNAi

anticodon stem help to stabilize the scanning
conformation (Fig. 4, “open”) (Llacer et al.
2015). Upon AUG recognition, there are a num-
ber of rearrangements that occur following the
transition to the intermediate closed conforma-
tion that occurs following scanning arrest (Fig. 4,
“closed”). These include movements of the 40S
that define these conformations (Llacer et al.
2015), as well as changes in the relative positions
of thebound factorsthatarehighlighted inFigure
4. Met-tRNAi is repositioned and establishes
codon–anticodon pairing with the mRNA. The
eIF1A amino-terminal tail (NTT) appears to
monitoror stabilize the closed codon–anticodon
duplex in agreement with prior biochemical ob-
servations (Fekete et al. 2007). Likewise eIF2α
contacts the conserved mRNA nucleotide at the
–3 position using Arg54, which is close to the
regulatorySer51 residue, in agreementwithprior
cross-linking experiments (Pisarev et al. 2006).
In contrast, eIF2β retracts from both the tRNA
acceptor stem and eIF1A. In the closed confor-
mation structure, eIF1 is partially displaced to
enable codon–anticodon pairing between Met-
tRNAi and the AUG codon of the mRNA.

Met-tRNAi

GDPCP

Open

elF2α

elF2βser51

Arg56
Arg54

40S
Anticodon loop

elF1A

elF1

elF2γ Met-tRNAi

GDPCP

Closed

elF2α

elF2β
ser51

Arg56
Arg54

mRNA

–3 –2 AUG

elF1A

elF1

elF2γ

Figure 4. Altered conformation of initiation factors on AUG recognition. Cartoons derived from cryoelectron
microscopy (cryo-EM) analyses of partial preinitiation complexes in a scanning mode (open, left panel) and
AUG recognition mode (closed, right panel) (Llacer et al. 2015). Note, in particular, the movement of eukaryotic
initiation factor (eIF)1, eIF1A (tail), and eIF2β. eIF3 and part of the 40S head structures were removed for clarity.
Images were created with University of California San Francisco (UCSF) Chimera software from PDB files 3JAP
and 3JAQ. See text for details.
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Although not resolved in these PIC struc-
tures, eIF5playscritical roles inAUGrecognition
and is thought to move during the PIC rear-
rangements mediating the open–closed transi-
tions (Aylett et al. 2015; Llacer et al. 2015; Aitken
et al. 2016; Obayashi et al. 2017). eIF1A and eIF5
interactions help retain eIF1 in the open scan-
ning PIC (Maag et al. 2005; Luna et al. 2012,
2013) and eIF5–eIF3c interactions contribute
to coordinating the rearrangements (Obayashi
et al. 2017). It has also been shown that the 40S
ribosomal proteins make important contacts
withmRNA,Met-tRNAi, and translation factors
that assist in determining accuracy of AUG co-
don recognition. Rps5/uS7 is located at the 40S
mRNA exit channel and contacts TC and AUG
–3/–4 context nucleotides (Pisarev et al. 2008),
andmutations inuS7were shownto impairAUG
recognition analogous to mutations in transla-
tion initiation factors (Visweswaraiah et al.
2015) or in Met-tRNAi itself (Dong et al. 2014).

eIF2•GTP Hydrolysis and Factor Release

Although the eIF5-CTD makes a series of criti-
cal contacts during scanning, it is the Arg15
residuewithin the eIF5-NTD that stimulates hy-
drolysis of eIF2-bound GTP (Das and Maitra
2001; Paulin et al. 2001). It is thought that hy-
drolysis can occur during scanning, but that
release of Pi to form eIF2•GDP occurs only at
AUG recognition (Algire et al. 2005; Majumdar
and Maitra 2005). (Note that in the structures
shown in Fig. 4, a nonhydrolyzable variant of
GTP [GDPCP] was used to stabilize the inter-
mediate complexes.) It is proposed that the
eIF1A carboxy-terminal tail (CTT) moves to
contact eIF5-NTD on AUG recognition, move-
ment that is coupled to both the dissociation of
eIF1 from the PIC and to Pi release from eIF2
(Nanda et al. 2013; Saini et al. 2014). It appears
likely that Met-tRNAi–AUG base-pairing and
multiple factor interactions stimulate this series
of events (Aitken et al. 2016; Obayashi et al.
2017). Although not shown in Figure 4, struc-
tural analysis of a late-stage 48S complex reveals
that large movements of the eIF3 yeast-like core
subunits occur before eIF2•GDP release (Simo-
netti et al. 2016).

Following GTP hydrolysis, eIF2•GDP has a
low affinity for Met-tRNAi (Kapp and Lorsch
2004; Jennings et al. 2017), enabling eIF2•GDP
to be released from the 48S complex. It is pro-
posed that eIF5 leaves with eIF2 (Unbehaun
et al. 2004) where it prevents premature release
of GDP, as described above (Jennings and Pavitt
2010), before subsequent reactivation for further
rounds of translation. In contrast, eIF1A re-
mains ribosome-bound to stimulate 60S joining.
The precise timing of when eIF3 and the eIF4
factors dissociate is not yet clear and so the re-
lease of these factors is not shown in Figure 1.

60S SUBUNIT JOINING

The ribosomal 40S and 60S subunits naturally
bind to each other, especially in the presence of
elevated concentrations of Mg2+. Thus, it was
not too surprising that one of the early activities
ascribed to eIF5B was its subunit-dependent
GTPase activity, an activity not dependent on
any other initiation factor or Met-tRNAi (Mer-
rick et al. 1975). Early studies established that the
use of GDPNP (or GDPCP) blocked initiation
complex formation at the level of a 48S complex
(with either artificial or natural mRNAs). Thus,
release of eIF2 from the 40S subunit was an es-
tablished early requirement for 60S joining. The
rationale for this can be readily inferred from the
recent 48S structures that provide extensive de-
tail into the positioning of the various initiation
factors, mRNA, and Met-tRNAi (Figs. 3 and 4).
Factor release opens up the 40S surface for the
binding of eIF5B•GTP, assisted by retaining
40S bound eIF1A (Schreier et al. 1977; Choi et
al. 2000; Marintchev et al. 2003; Olsen et al.
2003). The interactions between eIF5B and
eIF1A have been visualized both by crystallog-
raphy (Zheng et al. 2014), and dynamically by
nuclear magnetic resonance (NMR) (Nag et al.
2016). In these studies, the eIF1A-CTT is ob-
served to interact with domain IV of eIF5B. To-
gether these events are thought to stabilize
Met-tRNAi–AUG interactions at the P-site and
recruit the 60S subunit.

Uncertain in these events is whether eIF5B
drives or facilitates the release of eIF2•GDP/eIF5
or the release of eIF3. Cross-linking studies with
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anmRNA containing 4-thioU at the –3 position
indicate that there is a conformational change
(and change in cross-linking to eIF2α) that oc-
curs in the presence of eIF5 and eIF5B (Pisareva
and Pisarev 2014). Yet in studies that have ex-
amined the formation of 80S complexes on
model mRNAs, eIF3 was routinely associated
with the 40S subunits, but little or none was
found in the 80S complexes (Peterson et al.
1979; Pisareva and Pisarev 2014). This would
suggest that there may be other mechanisms to
promote the release of eIF3.

When trapped as a GDPNP (or GDPCP)
complex, eIF5B has been located on the 80S
ribosome (Fernandez et al. 2013; Yamamoto
et al. 2014). It is positioned across the interface
of the 40S subunit such that contact between
eIF5B domain IV places the Met-tRNAi in the
P/I conformation, which with hydrolysis of the
GTP would lead the Met-tRNAi into the P po-
sition. There is a large change in the conforma-
tion of 80S-bound eIF5B, where domains III and
IV are rotated 60°–65° relative to free eIF5B
(Fernandez et al. 2013; Yamamoto et al. 2014).
A recent “remodeling” performed by Kuhle and
Ficner (2014) places theMet-tRNAi 30 CCA end
and the methionine in domain IV of eIF5B in a
position equivalent to that seen with either IF2
or EF1A (EF-Tu) and their aminoacyl-tRNAs. It
appears that the hydrolysis of GTP by eIF5B is
sufficient to lead to its removal from the 80S
ribosome (as is also true for bacterial IF2 (Rod-
nina 2018). eIF5B•GDP release is coupled to the
removal of eIF1A (Fringer et al. 2007). The 80S
ribosome is then ready to participate in the elon-
gation phase of protein synthesis, with Met-
tRNAi in the P site and a vacant A site.

ALTERNATIVE INITIATION EVENTS

For cells that are in log phase growth, almost all
the translation is thought to proceed as de-
scribed earlier. However, that does leave a small
percentage of mRNAs translated by a different
route. Characteristic of the expression of these
mRNAs is that they are either cell-type-specific
or they are expressed under conditions of stress.
As such, these mechanisms usually have limited
impact on overall expression because of their

lack of competitiveness for the translational ma-
chinery and the consequence is that these sys-
tems have been difficult to recapitulate in vitro.
Two of the best-studied alternative schemes are
the internal ribosome entry site (IRES) pro-
moted initiation and regulated-reinitiation on
GCN4/ATF4 and related mRNAs with multiple
upstream ORFs (Pelletier and Sonenberg 1988;
Dever et al. 1992). IRESs provide an alternative
40S recruitment strategy, whereas GCN4/ATF4
and other mRNAs use the scanning mechanism
described above (see Kwan and Thompson
2018 and Wek 2018, respectively, for coverage
of these examples in greater detail). Further
mechanisms include the previously mentioned
TISU, an alternate 50 sequence that promotes
efficient initiation at AUG codons close to the
50 end in the absence of scanning (Sinvani et al.
2015; Haimov et al. 2017; Kwan and Thompson
2018), and m6 methylation of 50UTR adenine
residues, which can promote cap-independent
translation (Meyer et al. 2015; Peer et al. 2018).

The more curious events are those where
eIF2 does not seem to be the protein responsible
for directing the binding of the initiator Met-
tRNAi. The most commonly cited player is
eIF2A, which is a single polypeptide of 65 kDa
(Merrick and Anderson 1975). eIF2A appears to
play a major role in initiating translation for
major histocompatibility complex (MHC) class
I peptides (Starck and Shastri 2016), in the in-
tegrated stress response (Starck et al. 2016), tu-
mor progression (Sendoel et al. 2017), and viral
replication (Ventoso et al. 2006; Kim et al. 2011).
Other proteins such as eIF2D (also known as
ligatin), eIF5B, or MCT-1/DENR have been im-
plicated in binding initiator tRNA to ribosomes
(Pestova et al. 2008; Dmitriev et al. 2010; Skab-
kin et al. 2010; Weisser et al. 2017). Similarly,
initiator Met-tRNAi may not always be used to
initiate. Some initiation at CUG leucine codons
has been found independent of eIF2 (Schwab
et al. 2004). Biochemical analysis revealed that
cells use an elongator leucine-bound transfer
RNA (Leu-tRNA) to initiate translation at cryp-
tic CUG start codons in an eIF2A-dependent
manner (Starck et al. 2012). The ability to use
these alternate proteins to initiate protein syn-
thesis is generally assisted by the activation of
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one of the eIF2 kinases and the subsequent
phosphorylation of serine 51 of the α subunit
of eIF2, yielding a reduced concentration of ter-
nary complexes (Fig. 1). The definition of the
exact pathway of initiation for alternate initiat-
ing aminoacyl-tRNA-binding proteins remains
to be elucidated.

The strangest and least understood to date is
repeat associated non-ATG (RAN) translation,
which occurs in microsatellite repeat diseases
(Zu et al. 2013) where initiation occurs in all
three reading frames. The ability to initiate in
all three reading frames would be consistent
with the properties of either eIF2D or eEF1A,
but currently no mechanism is proposed. RAN
translation is described elsewhere (Zu et al.
2018). It is likely that the study of various dis-
eases in the future may yield yet additional
mechanisms, although it is anticipated that
these, like those above, would be dominated
by the most common binder of the initiator
tRNA, eIF2.

REGULATION OF THE 80S INITIATION
PATHWAY

It is of interest to know the molar concentration
of each initiation factor as this is also important
for regulation where the alteration of the con-
centration of active initiation factors can influ-
ence both the amount of total protein made and
mRNA selectivity. Shown in Table 1 is a subset
of the data obtained by Kulak et al. (2014), using
a label-free mass spectrometry protocol (num-
bers rounded off ) for exponentially growing
yeast and HeLa cell cultures, thereby enabling
comparison across species from a single study.
These values share consistencies with some ear-
lier evaluations (Duncan and Hershey 1983; von
der Haar and McCarthy 2002), although there
are differences that may reflect specific difficul-
ties with the estimation of one or more of the
individual factors by various methods. If the
numbers in Table 1 are roughly correct, then
the following conclusions can be drawn:

1. Most initiation factors are less abundant than
the number of ribosomes, except for eIF4A,
which is roughly equimolar.

2. eIF2B levels are lower than eIF2 and eIF5,
consistent with nucleotide exchange being a
regulated step in initiation.

3. In yeast, eIF4G is limiting for the formation
of eIF4F, whereas in HeLa cells eIF4E is lim-
iting.

4. The concentration of “extra” RNA helicases
that might assist in the initiation process is
about one-fifth the concentration of eIF4A,
consistent with their proposed more special-
ized role.

5. The level of the 4E-BP regulators is sufficient
to completely shut down eIF4F-dependent
protein synthesis (Korets et al. 2011), but
the level of the eIF4A regulator Pdcd4 in
HeLa cells is not (Lankat-Buttgereit and
Goke 2009).

Table 1. Number of protein molecules per cell

Protein Yeast (×103) HeLa (×104)

Cytoplasmic ribosomes 310 1064

eIF1 41 198
eIF1A 60 101
eIF2 31 210
eIF2B 6 75
eIF2A 11 72
eIF3 29 164
eIF4A 196 801
eIF4B 18 131
eIF4E 36 41
eIF4G (1 + 2) 11 74
eIF4H - 103
eIF5 48 91
eIF5B 13 76

PABP 96 252

DED1/DDX3 32 138
DHX29 - 12

Caf20 10 -
Eap1 1.6 -
4E-BP1 - 33
4E-BP2 - 6
4E-T - 0.4
Pdcd4 - 84

These data have been reorganized from mass spec-
trometry data reported previously (Kulak et al. 2014). For
multisubunit factors and ribosomes, the value given cor-
responds to the most abundant subunit value reported.
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Posttranslational modification of specific
initiation factors renders it possible that any giv-
en factor might become more or less active. At
present, the major global regulatory steps in ini-
tiation are understood as the phosphorylation of
eIF2 (serine 51 of the α subunit) and the de-
phosphorylation of 4E-BPs, both of which are
inhibitory (Fig. 1). These and othermechanisms
are discussed elsewhere in the literature (Proud
2018; Wek 2018).

PERSPECTIVE: WHAT WE MIGHT LIKE
TO KNOW

The size and complexity of the initiation factors
and the ribosomal subunits have made detailed
studies challenging, but methods continue to
improve and offer hopes for a more complete
understanding of protein synthesis in the near
future. One advance would be to detail the pre-
cise timing and sequence of the binding, move-
ment, and release events depicted in Figure 1,
the 80S initiation pathway.With this, one would
hope to define the rate-limiting step(s). From
the observation of 43S and 48S complexes by
sucrose gradient analysis, it would seem likely
that there are at least two slow steps, the binding
of the mRNA (hence 43S complexes) and either
the scanning of the mRNA or subunit joining
(hence the 48S complexes). Kinetic analyses of
translation should address this point and recent
progress is described elsewhere (Sokabe and
Fraser 2018).

For a single complete initiation event, is only
one copy of each initiation factor used or do
some factors recycle multiple times or does ini-
tiation require multiple copies of some factors
to be engaged? For the initiation factors eIF1,
eIF1A, eIF2, eIF2B, eIF3, eIF5, and eIF5B it
would seem likely that only a single copy of
each factor is required. However, for eIF4A
(and perhaps eIF4F), because multiple rounds
of ATP hydrolysis are required, and as eIF4A is
significantly more abundant than other initia-
tion factors (Table 1), it is plausible thatmultiple
copies are used, with the number likely depen-
dent on the complexity of the mRNA 50UTR
(e.g., amount of secondary structure and length)
(Svitkin et al. 2001). As has been noted for a few

particular mRNAs, either in vitro or in vivo, if
increased concentrations or other RNA heli-
cases are required, multiple rounds of use for
each of these may also be required (Pause et al.
1994).

During scanning on longer 50 leaders, is con-
tact maintained between eIF4F and the m7G
cap until subunit joining or through multiple
rounds of initiation? Energetically, it makes
sense for eIF4F to remain bound to the m7G
cap and assist with multiple rounds of initiation
before detaching; however, it was recently pro-
posed that eIF4E may detach from the mRNA
during scanning (Kumar et al. 2016). Similarly,
is contact between eIF4F and the PIC main-
tained during scanning? This tethered scenario
is depicted in Figure 1, with themRNA threaded
though the channel between the head and body
of the 40S subunit. However, other models of
scanning propose that the PIC can detach
from eIF4F (Archer et al. 2016).

There are several well-studied examples of
the regulated expression of proteins via reinitia-
tion, including GCN4, ATF4, and the glutamine
amidotransferase subunit of Arg-specific car-
bamoyl phosphate synthetase (Elbarghati et al.
2008; Spevak et al. 2010; Dever et al. 2016).
For the regulated expression of these mRNAs,
what are the important translation factors or
other trans-acting elements and what are the
important cis-acting elements (such as upstream
ORF [uORF] length or sequence, mRNA se-
quence, or structure contexts, etc.)? Current un-
derstanding ofGCN4 translation, the most well-
studied reinitiation system, implicates several
sequences around its uORFs and eIF3 (Szamecz
et al. 2008; Munzarova et al. 2011; Gunisova and
Valasek 2014; Mohammad et al. 2017). Given
the findings that a high percentage of mRNAs
contain either bona fide uORFs or uORFs with
non-AUG start codons (Calvo et al. 2009), it is
highly probable that both nonstandard and re-
initiation mechanisms will turn out to be more
common than currently thought (Hinnebusch
et al. 2016).

Finally, it is clear that there are rare (tissue-
or disease-specific), but important initiation
events for which we have little idea as to how
they are accomplished: MHC class I peptide
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synthesis, tumor progression, and RAN transla-
tion being examples studied (Malys and Mc-
Carthy 2011; Starck et al. 2012; Zu et al. 2013;
Sendoel et al. 2017). The ability to better under-
stand each of these processes could enable the
development of treatments to defeat these rare
events with fewer side effects than drugs that are
currently available. There is still a lot to do.
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