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The enterically transmitted hepatitis A (HAV) and hepatitis E viruses (HEV) are the leading
causes of acute viral hepatitis in humans. Despite the discovery of HAVandHEV 40–50 years
ago, their evolutionary origins remain unclear. Recent discoveries of numerous nonprimate
hepatoviruses and hepeviruses allow revisiting the evolutionary history of these viruses. In
this review, we provide detailed phylogenomic analyses of primate and nonprimate hepato-
viruses and hepeviruses. We identify conserved and divergent genomic properties and cor-
roborate historical interspecies transmissions by phylogenetic comparisons and recombina-
tion analyses. We discuss the likely non-recent origins of human HAV and HEV precursors
carried by mammals other than primates, and detail current zoonotic HEV infections. The
novel nonprimate hepatoviruses and hepeviruses offer exciting new possibilities for future
research focusing on host range and the unique biological properties of HAV and HEV.

Hepatitis Avirus (HAV) and hepatitis E virus
(HEV) are the most common causes of

acute viral hepatitis in humans, infecting mil-
lions and causing about 11,000 and 44,000
deaths worldwide, respectively (WHO 2017).
HAV and HEV were identified in the early
days of hepatitis virus discovery about 40–50
years ago (Feinstone et al. 1973; Balayan et al.
1983). During the route to discovery of HAV, an
epidemiological link to animals was suspected
(Robertson 2001). However, zoonotic transmis-
sion is not known for HAV. In contrast, infec-
tions with certain HEV genotypes can be zoo-
notic in temperate climates (Dalton et al. 2008).
However, the majority of HAV and HEV infec-

tions in the world are acquired through contam-
inated water and food (Sattar et al. 2000; Guth-
mann et al. 2006; Renou et al. 2014).

HAV is classified within the genus Hepato-
virus of the family Picornaviridae (Cristina and
Costa-Mattioli 2007), whereas HEV is within
the genusOrthohepevirus of the familyHepevir-
idae (Smith et al. 2014). Although these viruses
are classified within different virus families, they
share unique biological properties. Recent stud-
ies reveal that HAV and HEV occur as typical
nonenveloped viruses in feces. In contrast, in
blood they can exist as lipid-layered particles,
challenging the concept that viruses are either
enveloped or nonenveloped, and implying spe-

Editors: Stanley M. Lemon and Christopher Walker
Additional Perspectives on Enteric Hepatitis Viruses available at www.perspectivesinmedicine.org

Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a031690
Cite this article as Cold Spring Harb Perspect Med 2018;8:a031690

1

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg

mailto:felix.drexler@charite.de
mailto:felix.drexler@charite.de
mailto:felix.drexler@charite.de
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org
http://www.perspectivesinmedicine.org/site/misc/terms.xhtml


cial cellular entry mechanisms (Takahashi et al.
2010; Feng et al. 2013).

Nonprimate HEV-related viruses have been
identified in even-toed ungulates, rodents, bats,
and fish over recent decades (Meng 2010; Drex-
ler et al. 2012b; Smith et al. 2014). In contrast,
the existence of nonprimate hepatoviruses was
only discovered recently (Drexler et al. 2015).
The recent expansion of the spectrum of non-
primate hepatoviruses and hepeviruses enables
new insights into the evolutionary history of
HAV and HEV.

EXPANSION OF THE KNOWN GENETIC
DIVERSITY OF HEPATOVIRUSES AND
HEPEVIRUSES

Until recently, the genus Hepatovirus contained
only the species HAV comprising six genotypes.
Genotypes (gt)I–III infect humans, and gtIV–
gtVI were found sporadically in different species
ofOldWorldmonkeys (Cristina andCosta-Mat-
tioli 2007). As shown in Figure 1A, primate
HAVs now represent only a small fraction of
the hepatovirus genetic diversity. In 2015, 13
new putative Hepatovirus species were reported
from various small mammals, representing >20
different mammalian species and three orders
(Drexler et al. 2015). Another two novel hepato-
viruses were described from seals in the United
States (Anthony et al. 2015) and from Chinese
woodchucks (Yu et al. 2016). Finally, another
new hepatovirus was identified in a tree shrew
during transcriptome sequencing (National Li-
brary of Medicine (US) NCBI, 1988b, Accession
No. KT_877158.1). The expanded genus Hepa-
tovirus now comprises nine species named
Hepatovirus A (HAV) through Hepatovirus I
according to the International Committee on
the Taxonomy of Viruses (ICTV) (Zell et al.
2017). Another seven putative Hepatovirus spe-
cies can be predicted using partial genomic data
as a surrogate criterion for species delineation
(Drexler et al. 2015). These 16 putative virus
species were recovered from six different orders
of mammalian hosts, including humans and
monkeys (order Primates), rodents (Rodentia),
a tree shrew (Scandentia), bats (Chiroptera),
hedgehogs and shrews (Eulipotyphla), and seals

(Carnivora). Despite the hugely increased diver-
sity of the genus, classification of all novel he-
patoviruses within a single genus is warranted
by considerably larger sequence distances to
the next closely related Picornaviridae genus
Tremovirus (Drexler et al. 2015) and criteria for
picornavirus classification from the ICTV (Zell
et al. 2017).

As shown in Figure 1B, the genetic diversity
of hepeviruses exceeds the known diversity of
hepatoviruses. This is consistent with their clas-
sification as a family (note that the scale of the
hepevirus phylogeny is about twice that of the
hepatovirus phylogeny). As for HAV, hepevi-
ruses infecting humans represent only a small
proportion of the known virus diversity. They
are classified within a single species termed Or-
thohepevirus A, which currently comprises eight
HEV genotypes. HEV gt1 and gt2 are found in
humans only, whereas HEV gt3 and gt4 infect
humans, even-toed ungulates (mainly pigs), rab-
bits, and small carnivores. HEV gt5 and gt6 are
associated with pigs and wild boars (Smith et al.
2016), and HEV gt7 and gt8 are associated with
camelids (Woo et al. 2014, 2016; Rasche et al.
2016a). As for HAV, a huge diversity of nonpri-
mate viruses defines the genetic space of the
family Hepeviridae, including at least three ad-
ditional Orthohepevirus species and as-yet-un-
classified hepeviruses from a moose, falcon, and
tree shrew (National Library of Medicine (US)
NCBI, 1988a, Accession No. KR_905549.1; Lin
et al. 2014; Reuter et al. 2016). In sum, unique
orthohepeviruses have been found in eight dis-
tinct mammalian host orders, including several
orders in which hepatoviruses have also been
found (Primates, Scandentia, Rodentia, Carniv-
ora, Chiroptera), as well as even-toed ungulates
including pigs, camels, deer, cattle, swine,moose
(Artiodactyla), rabbits (Lagomorpha), and birds
(Aves). A sister genus termed Piscihepevirus is
defined by a trout hepevirus (Batts et al. 2011;
Smith et al. 2014).

THE DIFFERENT RELEVANCE OF ANIMAL
RESERVOIRS FOR HUMAN INFECTIONS

Despite the diversity of animal hepatoviruses,
so far no zoonotic transmission of HAV has
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Figure 1. Genetic diversity of hepatoviruses and hepeviruses and evidence for zoonotic transmission of hepevi-
ruses to humans. (A) Bayesian phylogeny of the full genome of hepatoviruses. A GenBank search with the term
“Hepatovirus” was performed on August 3, 2017, and all sequences longer than 6000 nucleotides were selected.
Duplicates, cell culture-adapted strains, or viruses isolated from experimentally infected animals were excluded
from thedataset, resulting in 124final hepatitisAvirus (HAV) sequences. Complete polyprotein coding sequences
were translation aligned, then nonhomologous regions (px/3A) were deleted. HAV genotype (gt)IV and gtVI are
definedonly bypartial sequence information andwere, thus, not included inA (Nainan et al. 1991;Robertsonet al.
1992). (B) Bayesian phylogenyof the full genome of hepeviruses. AGenBank search using the term “Hepeviridae”
was performed on August 4, 2017, and all sequences exceeding 6000 nucleotides were selected. Duplicates, cell
culture-adapted strains, or viruses isolated from experimentally infected animals were excluded from the dataset
unless they were described as reference sequences according to Smith et al. (2016), resulting in final hepatitis E
virus (HEV) 317 sequences. Complete open reading frame (ORF)1 and 2 sequences were concatenated and
translationally aligned, and the nonhomologous hypervariable region within ORF1 was deleted. Unique hepevi-
ruses from fox and mink were not included in B because they are only partially sequenced (Bodewes et al. 2013;
Krog et al. 2013). Orthohepe, Orthohepevirus. (C) Bayesian phylogenies of the complete ORF1 and 2 of repre-
sentative humanandnonhumanhepeviruses showing zoonotic origins of humanHEV.ThemooseHEVwas used
as an outgroup (KF951328). All Bayesian phylogenies were generated at the nucleotide level from translation
alignments excluding all ambiguous data or gaps using MrBayes V3.1 (Ronquist and Huelsenbeck 2003). A
general time-reversible (GTR) model with a γ distribution (G) across sites and a proportion of invariant sites
(I) (GTR + G + I) was used as the substitution model. Trees were run for two million generations, sampled
every 100 steps. After an exclusion of 5000 of the total 20,000 trees as burn-in, final trees were annotated with
TreeAnnotator from the BEAST package (Drummond and Rambaut 2007) and visualized with FigTree. Bayesian
posterior probability support above 0.9 at nodes is highlighted by filled circles. The scale bar indicates genetic
distance. HEV genotypes (gt) are indicated by arabic numerals and subtypes by letters; HAV genotypes are
indicated by romannumerals.H. sap.,Homo sapiens; S. scr., Sus scrofa;C. nip.,Cervus nippon;O. cun.,Oryctulagus
cuniculus; C. dro., Camelus dromedarius.

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



been reported. In contrast, the animal sources
of human infections with HEV are diverse. As
shown in Figure 1C, there is considerable evi-
dence of zoonotic transmission for HEV gt3,
gt4, and gt7, as indicated by viruses from hu-
mans grouping within viruses recovered from
animals.

Major animal reservoirs of HEV gt3 and gt4
include domestic pigs and wild boars (Meng
2010). A number of human HEV infections
could be linked to the consumption of pork
meat and its products (Yazaki et al. 2003; Li
et al. 2005; Colson et al. 2010; Kim et al. 2011;
Renou et al. 2014; Riveiro-Barciela et al. 2015).
Of note, for areas in which mixed farming of
livestock species, including pigs, is a common
practice (e.g., China), gt4 infection of other live-
stock species (such as sheep and cattle) were
described. In such a scenario, virus shedding
into milk was reported in cows infected with
HEV gt4. These data may point to milk as a
putative additional source of human food-borne
HEV infections (Wu et al. 2015; Huang et al.
2016).

Zoonotic transmission of gt3 can also in-
volve recently identified viruses from rabbits
(Zhao et al. 2009; Cossaboom et al. 2012; Izopet
et al. 2012). Cross-species transmission of HEV
between deer and humans was reported in 2003
from Japan (Tei et al. 2003). Further studies sug-
gested initial virus transmission between boar
and deer (Takahashi et al. 2004).

Epidemiologic data are scarce for the recent-
ly identified HEV gt7 and gt8 recovered from
camels. However, HEV infection in an immu-
nocompromised patient was linked to the con-
sumption of dromedary camel milk and meat in
the United Arab Emirates (Lee et al. 2016). Be-
cause camels are a major livestock species in
regions in which there is little or no rearing of
swine (Bourn 2003; Kadim et al. 2013; Rasche
et al. 2016a), they may be important regional
sources of zoonotic infections. This hypothesis
is consistent with the role of camels as sources of
human infections with Middle East Respiratory
Syndrome (MERS) coronavirus (Reusken et al.
2013; Memish et al. 2014) and the existence of
close relatives of other human coronaviruses in
camels (Corman et al. 2016).

GENOMICVARIABILITYOFHEPATOVIRUSES
AND HEPEVIRUSES

As shown in Figure 2A, nonprimate and primate
HAV generally share the same genome organi-
zation. Conserved genomic properties (shown
above the genome plot) include the absence of
a leader (L) protein, YPX3L late domain motifs
in VP2 likely involved in quasi-envelope acqui-
sition (Feng et al. 2014), as well as the existence
of a predicted transmembrane domain (TMD)
in the 3A domain (Beneduce et al. 1997) and a
cis-acting replication element (cre) in RNA–en-
coding the 3Dpol domain (Yang et al. 2008).
Untranslated regions (UTRs) at the genome ter-
mini are generally variable in length but share
characteristic features such as suggestive inter-
nal ribosome entry site (IRES) structures within
the 50UTR and a 30 terminating poly(A) tail.
However, the type of IRESmay not be conserved
among different hepatoviruses. Human HAVs
have type III IRESs (Brown et al. 1991). As de-
scribed previously, certain bat and rodent hep-
atoviruses contain sequence elements character-
istic of type IV IRESs, presumably acquired by
ancient recombination events involving differ-
ent viral families (Drexler et al. 2015). Distinct
from other picornaviruses, the VP1 capsid pro-
tein of HAV has a carboxy-terminal extension
termed pX (often referred to as 2A), which is
involved in capsid assembly and possibly qua-
si-envelopment (Cohen et al. 2002; Feng et al.
2014). Interestingly, this unique genomic fea-
ture could not be unambiguously identified in
some of the recently found bat hepatoviruses
(Drexler et al. 2015), raising new questions
about the role and origin of pX in hepatoviruses.

As shown in Figure 2B, all nonhuman hepe-
viruses share the general genome organization
of human HEV, and have at least three different
open reading frames (ORFs). Additional ORFs
that overlap with ORF1 have been hypothesized
in nonhuman hepeviruses (Johne et al. 2010,
2012; Drexler et al. 2012b). However, the func-
tional activity of these putative ORFs remains to
be confirmed.

Similar to HAV, several genomic properties
are conserved among hepeviruses (shown above
the genome plot). Within ORF1, the domains
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Figure 2. Genomic variability among hepatoviruses and hepeviruses. Genome organization showing conserva-
tion of putative functional domains within (A) hepatoviruses, and (B) hepeviruses. Conserved domains (green)
are depicted above, and nonconserved domains (red) are depicted below graphs. (C) Relative CpG, UpA dinu-
cleotide content and effective number of codons in hepatoviruses and hepeviruses calculated using SSE 1.3
software (Simmonds 2012). Median (bar) and quartiles (box and whiskers) are shown. (D) Phylogenetic rela-
tionships of boreoeutherian vertebrate orders, including an avian outgroup. (Phlyogeny adapted from Foley et al.
2016.) Squares indicate vertebrate orders inwhich hepatoviruses or orthohepeviruses were found. (E) Amino acid
sequence identities within hepatoviruses (top) and hepeviruses (bottom) of different host orders. Generally,
representative viruses from each host order were tagged and sequence identities within families were plotted
using a fragment length of 400 and a step size of 200 amino acid residues. Alignment gaps were excluded from the
analysis. A schematic representation of the hepatitis Avirus (HAV)/hepatitis E virus (HEV) genome organization
is depicted at the top for orientation. For HAV, complete coding sequences of the polyproteins were translation-
ally aligned. Accession numbers of representative sequences were, within Primates: AB020564, AY644676,
AB279732, D00924; Chiroptera: KT452742, KT452730, KT452729, KT452714; Rodentia: KT452735,
KT452685, KT229611, KT452644, KT452637; Eulipotyphla: KT452691, KT452658. For HEV, the complete
open reading frame (ORF)1 and ORF2 were concatenated and translationally aligned. ORF3 is only shown for
indication of its position. Accession numbers of representative sequences were, within Lagomorpha: FJ906895,
KJ013415; Primates: M73218, M74506, AP003430, AB197673; Cetartiodactyla: AF082843, AB189071,
AB573435, AB602441, KF951328, KJ496143, KX387865; Chiroptera: JQ001749, KJ562187, KX513953; Aves:
KX589065, KU670940, AY535004. Hel, Helicase; HVR, hypervariable region; MT, methyltransferase; PCP,
papain-like cysteine protease; RdRp, RNA-dependent RNA polymerase; TMD, transmembrane domain; UTR,
untranslated region; X, X domain/ADP-ribose-binding module; Y, Y-like domain.
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encoding the putative methyltransferase (MeT),
helicase (Hel), and RNA-dependent RNA poly-
merase (RdRp) (Koonin et al. 1992; Rozanov
et al. 1992) can be unambiguously identified in
all hepeviruses. However, none of the other pu-
tative ORF1 domains described for HEV (see
Kenney and Ming 2018) can be unambiguously
identified in all of the nonhuman hepeviruses,
including the X (ADP-ribose-10-monophospha-
tase-like domain) and Y (unknown function)
domains, and the predicted papain-like cysteine
protease (PCP) domain (shown below the ge-
nome plot). Although anORF3 can be predicted
in all hepeviruses, this ORF varies considerably
in size. For example, the ORF3 of the trout he-
pevirus defining the genus Piscihepevirus con-
tains 226 translatable amino acid (aa) residues,
whereas the predicted ORF3 of the tree shrew
hepevirus may only contain 62 aa residues.
Whether all predicted hepevirus ORF3 have
similar functions, thus, remains to be confirmed.
It was previously reported that the ORF3 of hu-
man and avian hepeviruses contains at least one
PSAP “late domain” motif potentially involved
in hepevirus envelopment and cell egress (Surjit
et al. 2006; Nagashima et al. 2011; Feng et al.
2014; Kenney et al. 2015). Interestingly, a P(S/
T)AP motif was not identifiable in the ORF3 of
tree shrew, bat, rat, falcon, and trout hepeviruses.
In some of these viruses, a PSAP motif can in-
stead be found within the ORF1. However, the
hepeviruses identified in a tree shrew, Rhinolo-
phus bat, and a rat contain neither an identifiable
P(S/T)AP nor other late-domain motifs such as
YPX3L, PPXY, SDP, or GPPX3Y in any ORF
(summarized in Ren and Hurley 2011). Wheth-
er other motifs involved in cell egress exist in
these viruses and how divergent hepeviruses
form quasi-enveloped particles facilitating cell
egress in general is, thus, an open question.

CONSERVED CODON USAGE PATTERNS
OF HEPATOVIRUSES AND HEPEVIRUSES

Codon usage varies among RNA viruses and is
one of distinctive features of certain taxonomic
groups. It is largely a product of pressure on the
genomic nucleotide and dinucleotide content,
rather than pressure to use abundant transfer

RNAs (tRNAs) (Jenkins and Holmes 2003; Be-
lalov and Lukashev 2013). The extent of codon
usage bias can be approximated by a single num-
ber termed the effective number of codons
(ENCs) (Wright 1990). The maximum possible
value is 61 (all codons used equally), and the
lowest possible is 20 (one codon used per each
aa). HAVhas been well known for very low ENC
values (Pintó et al. 2007; Lukashev et al. 2012).
This was a conserved genomic feature of the
expanded genus Hepatovirus, because all non-
primate hepatoviruses also had relatively low
ENC values, although the variation was greater
than among primate HAVs (Fig. 2C).

Codon usage bias in HAV has been attribut-
ed to a specific replication strategy aimed at
avoiding virus protein overexpression triggering
an immune response (Pintó et al. 2007) or
avoidance of specific dinucleotides, namely,
CpG and UpA (Karlin et al. 1994; Rima and
McFerran 1997; see Pintó et al. 2018). These
dinucleotides are underrepresented in many
mammalian RNA viruses, but to a variable ex-
tent (Jenkins and Holmes 2003; Belalov and Lu-
kashev 2013). Depletion of CpG was attributed
to pressure from a recently discovered zinc-fin-
ger antiviral protein (ZAP) (Takata et al. 2017),
whereas UpA may be a target of antiviral ribo-
nuclease (RNase) L (Player and Torrence 1998).
HAV is known to have an extremely low relative
CpG content (even after correction for genomic
C andG content), typically between 0.1 and 0.16
of the statistically expected value (Fig. 2C). The
avoidance of CpG is conserved within nonpri-
mate hepatoviruses, although it is slightly less
pronounced than in HAV (median 0.2, maxi-
mum 0.33). UpA dinucleotides are moderately
underrepresented in the genomes of both HAV
and nonprimate hepatoviruses (Fig. 2C). There-
fore, codon usage bias and dinucleotide content
bias, putatively related to interactions of the vi-
rus with host cell innate immune responses, are
similar in all hepatoviruses.

In contrast, HEV and all other hepeviruses
have a low codon usage bias, as is evident from
their high ENC value, a minimal CpG bias with
typical values around 0.75, and almost no UpA
bias (Fig. 2C). Therefore, hepevirus genomes are
apparently not subjected to the same pressure as
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hepatovirus genomes. The different mecha-
nisms by which hepatoviruses and hepeviruses
evade intracellular immunity, thus, require fur-
ther investigation.

HOT SPOTS OF VARIABILITY WITHIN
HEPATOVIRUS AND HEPEVIRUS GENOMES

Nonprimate HAV and HEV are now known to
exist in several mammalian orders (Fig. 2D).
Surprisingly, patterns of genetic variability in
these newly discovered hepatitis viruses mirror
those among HAV and HEV despite the genetic
differences of their hosts. In hepatoviruses, the
level of sequence identity within different host
orders was generally lowest in the genomic re-
gion encompassing the pX-2B domains (Fig.
2E). The 2B domain of hepatoviruses infecting
chiropteran, rodent, and eulipotyphlan hosts
did not show any homology with other nonpri-
mate hepatoviruses, and may represent a hot
spot for acquisition of heterologous sequence
from unknown sources, including host genetic
material (Emerson et al. 1992; Beard et al. 2001;
Drexler et al. 2015). Also, a distinct decrease in
sequence identity occurred in the genomic re-
gion encompassing the 3A domain. Because 3A
is a membrane protein (Beneduce et al. 1997),
the decrease in sequence similarity may be ten-
tatively linked to host-specific viral adaptation
processes.

Similar to hepatoviruses, a genomic hot spot
evident as a sharp decrease in sequence identity
can be identified in hepeviruses. As shown in
Figure 2E, hepevirus genera have little sequence
identity (and no obvious homology) in the
putative protease and hypervariable regions
(HVRs) of ORF1. Again, this may hint at heter-
ologous acquisitions of genetic material from
unknown sources, because BLAST searches
found this genome region to be neither homol-
ogous to any known sequence, nor to contain
any identifiable functional domain. Indeed, the
possibility of such external acquisitions was
shown experimentally, when a fragment of
174 nucleotides of a human messenger RNA
(mRNA) became inserted into the HEV HVR
during adaptation of an HEV strain to replica-
tion in cell culture (Shukla et al. 2011). Interest-

ingly, insertions within the HVR have also
been tentatively associated with the failure of
ribavirin treatment, the standard treatment for
immunocompromised patients chronically in-
fected with HEV (Debing et al. 2016; Todt
et al. 2016). Nonhomologous proteins encoded
by otherwise closely related viruses are often
involved in suppression of innate antiviral
mechanisms (Agol and Gmyl 2010). Indeed,
the protease domain of HEV was suggested
as an interferon antagonist (Nan et al. 2014).
Whether these highly diverse genome regions
have convergent functions is, thus, an intriguing
question.

THE ROLE OF RECOMBINATION IN THE
EVOLUTION OF HAVAND HEV

Recombination has been reported in HAV, both
in cell culture (Lemon et al. 1991) and in vivo
(Colina et al. 2004; Belalov et al. 2011). Recom-
bination can also be detected in nonprimate
hepatoviruses. Compatibility matrix analysis of
distantly related hepatoviruses suggested several
gene transfers (Fig. 3A). A bootscan analysis
confirmed the mosaic nature of a nonprimate
hepatovirus from Eidolon helvum bats and re-
vealed typical picornavirus breakpoints map-
ping roughly to the borders of the P1, P2, and
P3 domains, as well as a predicted breakpoint
within the 3Dpol domain (Fig. 3B). These re-
combination events are also clearly evident
from conflicts in phylogenetic trees of these
three major hepatovirus polyprotein domains
(Fig. 3C). Importantly, the primate HAVs do
not appear to have been involved in recombina-
tion with other animal hepatoviruses. Multiple
instances of recombination involving viruses
that were found in distantly related hosts, on
different continents, suggest common non-re-
cent host shifts (or, at least, spillover infections)
during hepatovirus evolution. Of note, the evi-
dence for such ancestral recombination events
(which require a host switch by one of the
parental viruses) is consistent with the lack of
high-order cosegregation of the viral and host
phylogenies (Figs. 1A and 2D).

Recombination in HEV has been reported
both within a genotype (van Cuyck et al. 2005)

Evolution of Enteric Hepatitis Viruses
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Figure 3. Evidence of recombination in hepatoviruses. (A) Phylogenetic compatibility scan of the full polyprotein
genes of hepatoviruses isolated from humans, rodents, tree shrew, and bats. GenBank Accession numbers of
sequences used were: AB279735; KT452644; KT452685; KT452729; KT877158; KT452742; KT452735. The
graph was created using SSE 1.3 (Simmonds 2012), a sliding window of 500 nt, and a step size of 50 nt, with a
bootstrap cutoff of 70%. (B) The bootscan graph shows percent of bootstrap replicates (y axis) that support
grouping of the query sequencewith each of three test sequences in a 1000 nt window sliding over the genome at a
20 nt step (x axis, window center position); the plot was done using Simplot 3.5 (Lole et al. 1999) and the Kimura
substitution model; dotted line shows the 70% reliable bootstrap support cutoff. As a result of alignment shifts,
the genome plots do not precisely correspond to raw genome positions. (C) Bayesian phylogenies of hepatovirus
domains P1, P2 (only 2C), and P3 (only 3CD) showing reliable evidence of several recombination events. Viruses
are colored according to their host order. Phylogenies were generated at the amino acid level from translation
alignments excluding all ambiguous data or gaps using MrBayes V3.1 (Huelsenbeck and Ronquist 2001) and a
WAG amino acid substitution model. Trees were generated as described above and rooted by the avian enceph-
alomyelitis virus (genus Tremovirus). Bayesian posterior probabilities above 0.9 are marked by filled circles at
nodes. The scale bar indicates genetic distance.M. fas.,Macaca fascicularis;C. aet.,Chlorocebus aethiops;M. arv.,
Microtus arvalis; C. mig., Cricetulus migratorius;M. him.,Marmota himalayana; S. mas., Sigmodon mascotensis;
E. hel., Eidolon helvum; T. bel., Tupaia belangeri chinensis; E. eur., Erinaceus europeaensis; C. afr., Coleura afra;
R. lan.,Rhinolophus landeri; P. vit., Phoca vitulina;M.man.,Miniopterus cf.manavi; L. sik., Lophuromys sikapusi;
S. ara., Sorex araneus.
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and between different genotypes (van Cuyck
et al. 2005; Chen et al. 2012). Moreover, it has
been suggested that the emergence of the family
Hepeviridae involved recombination between
Alphavirus-like viruses, which provided repli-
cation complex proteins, and astrovirus-related
viruses, which provided structural proteins
(Kelly et al. 2016). Compatibility matrix analy-
sis suggests several recombination events within
orthohepeviruses (Fig. 4A). The major phylo-
genetic grouping incongruences are observed
in the papain-like cysteine protease domain
and proline-rich genome region, and may result
from nonhomologous recombination events
with unknown partners. Phylogenies of the
full ORF1 and 2 sequences are in general con-
gruent, except for the camel hepevirus forming
HEV gt7 (Fig. 4B). However, a bootscan anal-
ysis suggests several recombination events
throughout the genome among orthohepevi-
ruses A–D (Fig. 4C). The strong evidence for
a recombinant origin of the camelid-associated
HEV gt7 may point to a large diversity of pa-
rental viruses likely circulating in camels. Re-
combination data obtained for gt7 suggest that
the ORF1 encoding nonstructural proteins may
acquire diverse capsids from unknown recom-
bination partners, similar to what has been ob-
served in human parechoviruses (Drexler et al.
2011). This hypothesis will require investiga-
tions of more complete gt7 hepeviruses sam-
pled from diverse geographic regions (Woo
et al. 2014; Rasche et al. 2016a). Of note, phy-
logenetic signals in RNA viruses generally de-
grade over time because of high sequence var-
iation and saturation of mutations. The fact that
these recombination events between distinct
hepevirus species remain detectable nonethe-
less implies that they involved highly divergent
viruses. This is in contrast with a hypothetical
emergence of HEV ancestors from a population
of recombinant closely related viruses such
as the camelid-associated HEV gt7 and gt8.
From an ecological perspective, such recombi-
nation events indicate that the replication of
orthohepeviruses may not be tightly restricted
to their host species, as recombination requires
coreplication of two highly divergent viruses in
the same cell.

EVOLUTION OF BAT HEPATOVIRUSES AND
HEPEVIRUSES

Recombination analysis and overall tree topolo-
gy suggest frequent host shifts during both hep-
atovirus and hepevirus evolution. Bats represent
an old mammalian order and are among the
most speciose mammals with at least 1200 ex-
tant species (Teeling et al. 2005). These animals
have been ascribed a prominent role for virus
evolution, in general, and zoonotic viruses, in
particular (Olival et al. 2017). Therefore, we an-
alyzed bat-borne hepatoviruses and hepevi-
ruses in the context of the evolutionary history
of their hosts.

Strikingly, although bat hepatoviruses and
hepeviruses were identified on different conti-
nents and in different host families (Fig. 5A,B),
many of them are still monophyletic, suggesting
a common viral ancestor (Fig. 5C,D). Given the
diversity of hosts in other Orthohepevirus spe-
cies and the evidence for frequent host shifts in
hepatoviruses, this monophyletic clustering is
surprising and may hint at a long-term associa-
tion of specific clades (for hepatoviruses) or
even virus species (for orthohepeviruses) with
the order Chiroptera.

There are several possible explanations for
these findings. First, the monophyly of bat vi-
ruses could hint at cospeciation of ancestral vi-
ruses and bat hosts. However, this concept is
currently subject to question even for taxa as-
sumed to be prototypic examples of virus and
host coevolution, such as the gammaherpesvi-
ruses (Escalera-Zamudio et al. 2016). In the par-
ticular case of bat hepato- and hepeviruses, vi-
rus–host coevolution is not consistent with
conflicting phylogenetic clustering of host spe-
cies and the corresponding viruses (Fig. 5C,D).
Furthermore, the relatively short branches in
viral phylogenies are difficult to reconcile with
the formation of extant bat families, projected to
10–64million years ago (Eick et al. 2005; Teeling
et al. 2005) and their non-recent geographical
dispersal.

Second, bat viruses may have been acquired
from bridging hosts other than bats. However,
for both virus families, the phylogenies do not
suggest the existence of bridging hosts.

Evolution of Enteric Hepatitis Viruses
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Figure 4. Evidence of recombination in hepeviruses. (A) Phylogenetic compatibility scan of concatenated open
reading frame (ORF)1 + ORF2 alignment of hepeviruses isolated from human (X98292), tree shrew (KR905549),
Falco tinnunculus (KU670940), Rattus rattus (AB847306), chicken (KF511397), Eptesicus serotonius
(JQ001749), and Rhinolophus ferrumequinum (KJ562187) was generated as described in the legend to Figure
3A. (B) Bayesian phylogenies of completeORF1 and 2 of orthohepeviruses. Viruses are colored according to their
host order. Phylogenies were generated at the nucleotide level from translation alignments excluding all ambig-
uous data or gaps using MrBayes V3.1. A general time-reversible (GTR) model with a γ distribution (G) across
sites and a proportion of invariant sites (I) (GTR + G + I) was used as the substitution model. Trees were
generated as above. Trees were rooted by the sister genus Piscihepevirus. Bayesian posterior probabilities above
0.9 are marked by filled circles at nodes. The scale bar indicates genetic distance. C. bac., Camelus bactrianus;
A. alc., Alces alces; R. nor., Rattus norvegicus; M. put., Mustela putorius furo; F. tin., Falco tinnunculus; E. gar.,
Egretta garzetta; E. ser., Eptesicus serotinus; G. gal., Gallus gallus; M. dav., Myotis davidii; R. fer., Rhinolophus
ferrumequinum. (C) Evidence of recombination in the speciesOrthohepevirus A relative to speciesB–D. The scan
was performed similarly as described in the legend for Figure 3B. Window size was 800 nt, step size at 20 nt.
Accession numbers of sequences used: JQ013793; JN998606; AY535004; KJ562187. As a result of alignment
shifts, the genome plots do not precisely correspond to raw genome positions. Orthohepe, Orthohepevirus.
(D) Evidence of recombination in species Orthohepevirus A genotype (gt) 8 (C. bactrianus) relative to gt1
(Homo sapiens), gt7a (Camelus dromedarius), and the moose (A. alces) hepevirus. Window size was 2500 nt,
step size 50 nt. Accession numbers of sequences used: KX387865; KJ496143; X98292; KF951328. ORF1–ORF3
were concatenated for bootscan analyses, as indicated by genomic representations above panels C and D. Hel,
Helicase; HVR, hypervariable genome region; PCP, papain-like cysteine protease.
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Figure 5. Global distribution and phylogenetic relationships of bat hepatoviruses and hepeviruses. (A) Map
showing the geographic origins of recently identified bat hepatoviruses (blue) and bat hepeviruses (orange).
CHN, China; COD, Democratic Republic of the Congo; CRC, Costa Rica; ESP, Spain; GER, Germany; GHA,
Ghana; LUX, Luxembourg; MAD, Madagascar; PAN, Panama; ROU, Romania; UKR, Ukraine. (B) Chiropteran
phylogeny (phylogeny adapted from Foley et al. 2016) complemented manually by the family ofMiniopteridae,
which diverged around 43million years ago (mya) from theVespertilionidae (Miller-Butterworth et al. 2007). Bat
families in which hepatitis Avirus (HAV)- or hepatitis E virus (HEV)-related viruses have been found are tagged
with blue or orange squares, respectively. (C) Bayesian phylogeny of a 863-nucleotide partial VP2/VP3 region of
bat and representative nonchiropteran hepatoviruses. Analyzed region corresponds to positions 391–1253 in a
prototype genotype (gt) Ia HAV strain (GenBank AB020564). M. gla., Myodes glareolus. See also the legend to
Figure 3. (D) Bayesian phylogeny of a 324-nucleotide partial RNA-dependent RNA polymerase (RdRp) region of
bat and representative nonchiropteran hepeviruses. The analyzed region corresponds to positions 4255–4577 in
an HEV gt1 prototype strain (GenBank accession number M73218). Generally, Bayesian phylogenies were
generated on translation alignments excluding all ambiguous data or gaps using MrBayes V3.1 (Huelsenbeck
and Ronquist 2001) and a WAG amino acid substitution matrix. Trees were rooted by Tremovirus for HAV and
Piscihepevirus for HEV, respectively. Bayesian posterior probabilities above 0.9 are marked by filled circles at
nodes. The scale bar indicates genetic distance. Host trees were generated using complete cytochrome B coding
sequences retrieved from GenBank and settings as described for virus phylogenies, including priors, to increase
phylogenetic resolution above the level of host families.
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Third, bat populations may be connected
and share viruses among each other, similarly
towhat has been hypothesized for European and
Asian picorna- and coronaviruses (Lukashev
et al. 2017). Connectivity over large distances
may be facilitated by the ability of bats to fly
and, indeed, some bat species are migratory.
However, most bats only migrate across short
distances rarely exceeding 100 km. Only very
few species, for example, the African fruit bat
E. helvum, some European bats (e.g., Pipistrellus
leiseri, Nyctalus noctula), and some American
bats (Leptonycteris species, Tadarida brasilien-
sis) can cover distances of up to 2000 km (Kunz
and Fenton 2005). Most importantly, such mi-
gration normally does not include transoceanic
flights. Additionally, there is no regular meeting
site for bats from different continents, contrast-
ing with birds meeting in certain wintering or
breeding sites, where global exchange of viruses
can take place (Global Consortium for H5N8
and Related Influenza Viruses 2016). As an al-
ternative hypothesis, bats can be moved across
continents accidentally through human activity
(Constantine 2003), facilitating virus exchange
with bats in new habitats. However, given the
low rate of acute infections in bats (Drexler
et al. 2012b, 2015), it is not likely that a translo-
cated bat would shed virus and transmit it to
other bats.

A similar, albeit less strict phylogenetic as-
sociation betweenmonophyletic clades of virus-
es infecting bats from different continents has
been observed for Old World hepadnaviruses
(Rasche et al. 2016b), suggesting that the ob-
served association between bats and enteric hep-
atitis viruses may not be an isolated ecological
phenomenon. In sum, the reasons for the strik-
ing association of bats with distinct hepatovirus
and hepevirus clades remain obscure. Nonethe-
less, the observed phylogenies are consistent
with non-recent host–virus associations in bat
hepatovirus and hepeviruses.

CONCLUDING REMARKS

The recent discovery of previously unrecognized
animal hepatitis viruses significantly expands
the scope of prospective virological studies. Im-

mediate applications for HAV include investiga-
tion of the role of nonprimate hepatovirus pX
domains in capsid assembly, and the search for
HAV and HEV receptors, because recent evi-
dence suggests that HAVcr1/TIM-1 is not a ca-
nonical receptor for HAV (Das et al. 2017). For
both HAV and HEV, it is intriguing to consider
whether quasi-envelopment is an evolutionarily
conserved feature. Recent evidence for nonen-
veloped hepatitis B–related viruses in fish reveal
that envelopment can emerge or be lost during
the adaptation of viruses to different vertebrate
hosts (Lauber et al. 2017). The absence of iden-
tifiable late domains in several hepeviruses sug-
gests that additional features facilitating quasi-
envelopment may exist, or envelope acquisition
may not be conserved among all hepeviruses.

Our data suggest that cross-species trans-
missions have occurred repeatedly during the
evolution of ancestors of the enterically trans-
mitted hepatitis viruses. Cell culture and infec-
tion experiments using viral isolates, once these
become available, and recombinant viruses may
provide fundamental insight concerning the
barriers to cross-species transmission of hepato-
viruses and hepeviruses. For the hepatoviruses,
cleavage of mitochondrial antiviral signaling
protein (MAVS) as a major marker of viral im-
mune evasion and host specificity (Hirai-Yuki
et al. 2016) merits immediate investigation. Fi-
nally, these viruses offer new possibilities for the
development of animal and cell culture models,
thereby allowing new insight into the immune
control and pathogenesis of the enterically
transmitted hepatitis viruses.

The expanded genetic diversity of enterically
transmitted hepatitis viruses and their hosts
suggests that the emergence of HAV and HEV
in humans is a relatively recent evolutionary
event. In both cases, a zoonotic origin seems
likely, although the immediate ancestors of hu-
man viruses remain unknown. Bats have been
implicated as particularly relevant animal reser-
voirs of zoonotic viruses (Luis et al. 2013; Olival
et al. 2017). Whereas the available data suggest
that bats can host relatives of enterically trans-
mitted hepatitis viruses, bat viruses are not likely
direct ancestors of human viruses, a situation
that is strikingly different from other human

A.-L. Sander et al.

12 Cite this article as Cold Spring Harb Perspect Med 2018;8:a031690

w
w

w
.p

er
sp

ec
ti

ve
si

n
m

ed
ic

in
e.

o
rg



viruses, including paramyxo- and coronaviruses
(Drexler et al. 2012a, 2014). For HAV, ancestors
of human viruses have been projected to rodents
(Drexler et al. 2015). For HEV, the role of
small mammals, including rodents, requires fur-
ther investigation because the Orthohepevirus
species—including hepeviruses from humans
and rodents—are monophyletic, suggesting com-
mon ancestry.

We have hypothesized previously that hu-
man HEV gt3 and gt4 may have been intro-
duced into livestock from humans, and human
infections may be a retrograde event (Drexler
et al. 2012b). This line of thought is compati-
ble with the high genetic diversity of HEV gt1–
gt4 in humans and the finding of a distantly
related virus in moose (Lin et al. 2014), which
may represent an authentic artiodactylan he-
pevirus lineage other than those viruses infect-
ing swine and other ungulates. However, this
hypothesis is at odds with the diversity of HEV
genotypes in wild boars and camels, and the
existence of diverse rabbit HEV lineages. Hy-
pothetically, small mammals, such as rodents
and lagomorphs, may have evolved hepevirus
ancestors that were introduced into artiodactyl
species reared as livestock, and that may now
act as sources of human infections. This sce-
nario is paralleled by the emergence of MERS-
coronavirus in camels directly or through in-
termediate hosts from ancestors existing in
bats (Corman et al. 2014, 2016) and, potential-
ly, SARS-coronavirus through bats and civets
(Drexler et al. 2014).

In sum, recent insight into the genetic diver-
sity that exists among the enterically transmitted
hepatitis viruses reveals that the emergence of
both HAV and HEV is likely to have been a
relatively recent evolutionary event. The reper-
toire of nonprimate homologs of HAVandHEV
offers unprecedented possibilities to unravel
fundamental biological properties defining
these unique pathogens in the coming years.
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