
Genome analysis

A hidden Markov random field-based Bayesian

method for the detection of long-range

chromosomal interactions in Hi-C data

Zheng Xu1,2,3, Guosheng Zhang3,4, Fulai Jin5, Mengjie Chen1,2,

Terrence S. Furey2, Patrick F. Sullivan2,6, Zhaohui Qin7, Ming Hu8,* and

Yun Li1,2,3,*

1Department of Biostatistics, 2Department of Genetics, 3Department of Computer Science, 4Curriculum in

Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA, 5Department

of Genetics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44016, 6Department of

Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden, 7Department of Biostatistics

and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA and 8Division of

Biostatistics, Department of Population Health, New York University School of Medicine, New York, NY 10016, USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on February 13, 2015; revised on September 11, 2015; accepted on October 30, 2015

Abstract

Motivation: Advances in chromosome conformation capture and next-generation sequencing

technologies are enabling genome-wide investigation of dynamic chromatin interactions. For

example, Hi-C experiments generate genome-wide contact frequencies between pairs of loci

by sequencing DNA segments ligated from loci in close spatial proximity. One essential task in

such studies is peak calling, that is, detecting non-random interactions between loci from the two-

dimensional contact frequency matrix. Successful fulfillment of this task has many important impli-

cations including identifying long-range interactions that assist interpreting a sizable fraction of the

results from genome-wide association studies. The task – distinguishing biologically meaningful

chromatin interactions from massive numbers of random interactions – poses great challenges

both statistically and computationally. Model-based methods to address this challenge are still

lacking. In particular, no statistical model exists that takes the underlying dependency structure

into consideration.

Results: In this paper, we propose a hidden Markov random field (HMRF) based Bayesian method

to rigorously model interaction probabilities in the two-dimensional space based on the contact fre-

quency matrix. By borrowing information from neighboring loci pairs, our method demonstrates

superior reproducibility and statistical power in both simulation studies and real data analysis.

Availability and implementation: The Source codes can be downloaded at: http://www.unc.edu/

�yunmli/HMRFBayesHiC.

Contact: ming.hu@nyumc.org or yunli@med.unc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 650

Bioinformatics, 32(5), 2016, 650–656

doi: 10.1093/bioinformatics/btv650

Advance Access Publication Date: 4 November 2015

Original Paper

http://www.unc.edu/~yunmli/HMRFBayesHiC
http://www.unc.edu/~yunmli/HMRFBayesHiC
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv650/-/DC1
http://www.oxfordjournals.org/


1 Introduction

Chromosomal DNA must be tightly packed to fit within the limited

space of the nucleus. The intricate, highly compacted folding of the

chromosomes, however, is by no means random. Chromatin archi-

tectures are closely linked to genomic functions by influencing how

genetic information is accessed, read, and interpreted in a given cell

and under certain local micro-environmental conditions via dynamic

interactions among genes and their regulatory elements. For ex-

ample, a long-range loop structure can be formed to link a distant

enhancer with its target gene to regulate gene transcription. Hence,

characterization of the three dimensional (3D) genome organiza-

tions is critical to understanding genomic function (Dekker et al.,

2013; Sajan and Hawkins, 2012).

Recent advancements in chromosome conformation capture

(3C) (Dekker et al., 2002) and derived methods (such as 3C, 4C, 5C

and Hi-C) allow the study of 3D chromosome organization with

increasing resolution and throughput. These 3C-based methods

quantify the interaction or contact frequency, how often any pair of

loci in the genome is in close spatial proximity. For 3C, a locus is the

unit of analysis and corresponds to one restriction enzyme fragment

(hereafter termed fragment). Approaches to analyze interaction fre-

quencies fall largely into two complementary categories: 3D model

reconstruction and peak calling. The first set of methods simultan-

eously model contact frequencies of all pairs of loci in the genome to

reconstruct 3D structure (Bau et al., 2011; Hu et al., 2013;

Jhunjhunwala et al., 2008; Marti-Renom and Mirny, 2011; Russel

et al., 2012; Trieu and Cheng, 2014). The second set of methods

aim to identify interaction peaks, meaning pairs of loci where the

observed contact frequency is higher than expected from non-ran-

dom chromatin looping or co-location events (Ay et al., 2014; Duan

et al., 2010; Sanyal et al., 2012). To answer many important biolo-

gical questions (e.g. pinpointing individual cis-regulatory elements),

higher resolution for the contributing loci is highly desirable, if not

indispensable.

This paper focuses on peak calling. Identifying non-random con-

tacts is of fundamental biological interest to researchers due to their

relevance for functional regulation. For instance, it can shed light on

the functional mechanisms of non-coding complex trait associations

identified in genome-wide association studies (GWAS). GWAS have

been resoundingly successful, identifying thousands of variants asso-

ciated with complex traits. Only a small proportion (7–12%) fall in

protein coding regions (Hindorff et al., 2009; Kumar et al., 2012;

Pennisi, 2011; Ward and Kellis, 2012) making interpretation of

non-coding variants imperative. Although a large number of regula-

tory elements have been annotated (Bernstein et al., 2012; Maurano

et al., 2012), their target genes are largely unknown (Jin et al., 2013;

Niu et al., 2014). Recent 3C-based studies are generating an increas-

ingly comprehensive catalog of interactions between genes and their

regulatory elements in different cell types at varying resolution

across multiple organisms including drosophila, yeast, mouse and

human (Hou et al., 2012; Lieberman-Aiden et al., 2009; Sexton

et al., 2012; Smallwood and Ren, 2013). Such information will be

fundamental to understanding functional mechanisms. For example,

a recent study (Smemo et al., 2014) used 4C data to identify long-

range (at megabase distances) interactions between the obesity-

associated intronic variants in FTO and the homeobox gene IRX3,

with the expression of IRX3 rather than FTO being directly linked

to body mass. This study showcased the value of interactions identi-

fied from the 3C-based studies for shedding light on the functional

mechanisms of genetic variants implicated by GWAS.

Several computational and statistical methods have been de-

veloped for this important peak calling task for data generated from

3C-based methods. Sanyal et al. (2012) developed a 5C peaking call-

ing algorithm where they first estimated the null contact frequencies

(average and standard deviation) using nonparametric lowess

smoothing over genomic distance (using all pairs with the assump-

tion that the vast majority of interactions are random collisions),

then calculated standardized z-scores and raw P-values by fitting the

z-scores to a Weibull distribution, followed finally by converting the

raw P-values into q-values for FDR analysis. Duan et al. (2010)

binned pairs of loci according to genomic distance, estimated null

contact probabilities within each bin, and called peaks by assuming

the contact frequency of every pair in each bin followed an identical

binomial distribution. Jin et al. (2013) developed a pipeline to esti-

mate the expected contact frequency accounting for locus length, in-

ter-locus distance, mappability and GC content, and then tested for

significant interaction by assuming the observed contact frequency

followed a negative binomial distribution. Most recently, Ay et al.

(2014) refined the binning method in Duan et al. (2010) and to de-

velop Fit-Hi-C. Specifically, Fit-Hi-C provided more accurate esti-

mates of the contact probabilities by fitting nonparametric spline

curves across genomic distances (instead of discrete binning), re-fit-

ting spline curves after filtering non-random collisions based on the

initial spline, and modeling other Hi-C biases by incorporating

locus-specific correction factors inferred from a previously published

iterative correction and eigenvector decomposition method

(Imakaev et al., 2012).

These existing methods have advanced the field by improving

the accuracy in the estimation of the expected contact frequencies

under the null (i.e. random collisions). All these methods take into

account genomic distance between the pair of loci under inference

during the estimation, with some (Ay et al., 2014; Jin et al., 2013)

incorporating other genomic biases. However, all existing methods,

by testing each individual pair of loci independently, ignore the po-

tential correlation among pairs of loci. This was less of an issue with

lower resolution data when multiple fragments combined into meta-

fragments served as the units of analysis.

When analyzing a fragment resolution Hi-C data, Jin et al.

(2013) recognized this potential issue and developed the anchor-

fragment caller (AFC), an ad hoc approach to accommodate the cor-

relation of peak status among neighboring fragment pairs. In AFC,

one anchor was fixed (either a fragment or mega-fragment from

consecutive smaller fragments) and one-dimensional peak calling

was performed. For each anchor, the algorithm started with the

identification of candidate peak regions. A candidate peak region

could encompass multiple consecutive fragments with moderate

marginal evidence for non-random interaction with the anchor and,

importantly, AFC allows for small gaps. Peaks were called by aggre-

gating information across the entire candidate peak region via as-

signing thresholds on read counts and P-values from contributing

fragment pairs as well as from the entire region cumulatively. As an

initial attempt to model the spatial dependency of the underlying

peak status, AFC performed reasonably.

We believe that the existing methods are not yet optimal, and

that improvements in multiple aspects are needed. First, an im-

proved analysis suite for data from 3C-derived methods should be

based on an explicit model that yields clear and reproducible expect-

ations for genome-wide interaction frequencies. Second, existing

approaches choose anchor fragment(s) arbitrarily and also ignore

any correlations between neighboring fragments or anchors. For ex-

ample, we found that neighboring anchors often interact with the

same target fragments, suggesting that these anchors are parts of a

bigger region involved in the same DNA looping event. Therefore an

ideal peak caller should consider correlations between neighboring
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fragments in the context of a two-dimensional (2D) contact

matrix generated from 3C-derived technologies. Third, one-

dimensional calling approaches are not optimal, do not incorporate

useful existing information, and considerable benefits can be gained

using a 2D approach. For example, we observed AFC asymmetric

peak calls (Supplementary Figs S1 and S2) and lower power in the

identification of non-random interactions (details in Section 3).

Thus, these observations motivated us to develop rigorous statistical

models that efficiently use information from neighbors in the 2D

space.

Here we present a hidden Markov random field (HMRF) based

Bayesian method for peak calling using Hi-C data. Our approach

improves on prior methods by explicitly borrowing information

from neighboring fragment pairs via modeling the dependency in the

2D space. Our results in real data and from extensive simulations in-

dicate superior performance of our method over existing methods,

across a range of underlying dependency structure.

2 Methods

2.1 Notations
Hi-C generates a contact frequency matrix between pairs of frag-

ments. Assume a total of N fragments under consideration. Let uij,

1� i < j�N denote the observed contact frequency between frag-

ment i and fragment j. Similarly, let eij, 1� i < j�N denote the ex-

pected contact frequency between fragment i and fragment j under

random collisions. Let the binary indicator variable Zij take two

possible values 1 and �1 which represent the peak status underlying

fragment pair i and j, with Zij ¼ 1 corresponding to a peak (i.e. a

non-random interaction) and Zij ¼ �1 corresponding a non-peak

(i.e. a random collision event).

2.2 Mixture of negative binomials
We assume that the observed contact frequencies uij follow a nega-

tive binomial distribution, uij � NBðlij;/Þ; where / is the over-dis-

persion parameter and uij has mean lij and variance lij þ l2
ij=/. The

benefit of using a negative binomial distribution (over Poisson or bi-

nomial distribution) is its allowance for over-dispersion, often

observed in Hi-C data (Jin et al., 2013).

Furthermore, we assume that the observed contact frequencies

follow a mixture of negative binomial distributions as a consequence

of the mixture of underlying interaction status Zij’s. Specifically, let

h > 0 represent the peak to background ratio (signal to noise ratio).

We assume the following on loglij :

loglij ¼
logeij þ h; Zij ¼ 1

logeij; Zij ¼ �1

(

where eij’s are expected counts under random collision events, esti-

mated using existing methods such as ICE (Imakaev et al., 2012) or

Fit-Hi-C (Ay et al., 2014). Thus we use the following negative bino-

mial mixture distribution:

uij � NB
�

eije
hðZijþ1Þ=2;/

�
:

2.3 Hidden Markov random field (HMRF) model
A HMRF is a generalized hidden Markov model (HMM) in a higher

dimensional space (Besag et al., 1995). Instead of an underlying

Markov chain in HMM, HMRF has an underlying Markov random

field, a set of random variables having a Markov property described

by an undirected graph. HMRF has been applied in genetics,

including evaluation of population structure (François et al., 2006),

gene expression data (Stingo and Vannucci, 2011), network-based

genomic discovery (Wei and Pan, 2010) and GWAS (Li et al., 2010).

We use HMRF to account for the local spatial dependency

among adjacent fragment pairs, and simultaneously detect all

2D peaks by borrowing information from neighboring fragment

pairs. Our HMRF modeling is conceptually similar to the employ-

ment of HMM or Bayesian hidden Ising model for peak identifica-

tion from ChIP-Seq data (Choi et al., 2010; Mo, 2012; Qin et al.,

2010), but we extend the modeling from a one dimensional space to

a two dimensional space. In our HMRF model, we adopt the follow-

ing Ising prior (Kindermann et al., 1980) for the binary variable

Zij 2 f�1; 1g representing the unobserved peak status underlying

fragment i and fragment j such that Zij only depends on the status of

four neighboring fragment pairs ðiþ 1; jÞ, ði� 1; jÞ, ði; jþ 1Þ and

ði; j� 1Þ:

pðZijjwÞ ¼
exp wZij

X
ji0 �ijþjj0 �jj¼1

Zi0 j0

n o
WðwÞ ; 1� i < j�N;

where w is the inverse temperature parameter measuring the level

of clustering among Zij’s. The term WðwÞ is the normalizing func-

tion ensuring the probability mass sum to 1. The case w ¼ 0 corres-

ponds to independent uniform prior on Zij’s, analogous to the

disordered states at infinite temperature. Large values of w corres-

pond to more tightly clustered configurations of Zij’s, analogous to

more ordered/correlated states at low temperature. In Hi-C data,

positive clustering is expected, particularly with the high-resolution

Hi-C data where neighboring fragment pairs are likely to

share the underlying peak or non-peak status. Our model explicitly

models the level of clustering and estimates the value of w based on

data (Besag et al., 1995). Although our model is expected to mani-

fest its advantages more with clustered hidden states, but, even in

the special case of no clustering, it is unlikely that our model will

incur any power loss if the inverse temperature parameters can be

calibrated to its true value (close to 0 in this case). Supplementary

Figure S3 shows the histogram of domain-specific inverse tempera-

ture estimates from real data at fragment pair level (based on the

peaks reported by AFC), which clearly suggest non-negligible clus-

tering of the peaks for pairs within topological domains (Dixon

et al., 2012; Hou et al., 2012; Li et al., 2012; Nora et al., 2012). In

this work, we focus on the detection of intra-domain interactions,

which account for the vast majority of non-random interactions

(e.g. 95.3% interactions reported by Jin et al. (Jin et al., 2013)

are intra-domain). We followed domain definitions from Dixon

et al. (2012).

2.4 Bayesian inference and the joint probability
We adopt a Bayesian approach (Gelman, 2004) for parameter infer-

ence where the inference is based on the posterior distributions.

Supplementary Material Section 1 provides all details of Bayesian

statistical inference procedure. We will start with specifying the

priors. For convenience and computational efficiency, we make a re-

parameterization: c ¼ /�1: By default, our model uses weak priors

with large variance: a translated gamma distribution for h:

pðhÞ ¼ Gammaðh� h0; 2; 2Þ, a gamma distribution for c : c � G

ammaðc; 0:1; 1Þ and a uniform distribution for w: w � Unif ð0; 1Þ.
To evaluate the impact of priors, we considered other priors and

found little impact on final peaks called (Spearman correlation

>0.99 on average, detailed in Supplementary Material Section 3).

Note that h0 is fixed to ensure model identifiability (we use

h0 ¼ 0:5 by default). The likelihood is fully specified based on the
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mixture of binomial distributions introduced earlier. Combined

with the conditional independence assumption of uij given Zij, we

have

pðfuijg j fZijg;h;cÞ

¼
Y

1� i<j�N

1

c
1

c
þ eije

hðZijþ1Þ=2

0
BB@

1
CCA

1

c C
1

c
þuij

� �

C
1

c

� �
uij!

eije
hðZijþ1Þ=2

1

c
þ eije

hðZijþ1Þ=2

0
BB@

1
CCA

uij

:

The posterior probability can be written as

pðfZijg;h;c;wjfuijgÞ / pðfuijg;fZijg;h;c;wÞ
¼ pðfuijg j fZijg;h;cÞpðfZijgjwÞpðhÞ p ðcÞ p ðwÞ:

We used Metropolis-Hastings algorithm (detailed in Supplementary

Material Section 1.1) to infer all parameters except the inverse tem-

perature parameter w, which is estimated using a pseudo-likelihood

approach (detailed in Supplementary Material Section 1.2).

3 Results

Comprehensive simulation studies have demonstrated the superior

performance of our HMRF Bayesian caller over other available

methods. In particular, our simulations showed that our model is

able to accurately estimate the inverse temperature parameter w
across a wide range of spatially dependent patterns and as a result

improved power for calling peaks (detailed in Supplementary

Material Section 2). Next, we showcase the improved reproducibil-

ity and statistical power of our method in real data analysis. As

aforementioned, our method was motivated by our observations in

real data and was developed for re-analysis of the fragment reso-

lution Hi-C data generated by Jin et al. (2013). In the original study,

twelve replicates of primary IMR90 human fibroblast cells (includ-

ing six replicates untreated cells and six replicates after TNF-a treat-

ment) were used to generate �3.4 billion paired-end reads. This

unprecedented sequencing depth allowed direct identification of

interacting fragments. One major finding of this study is that TNF-

a responsive enhancers are already in contact with their target pro-

moters before signaling, manifested by similar peak patterns

observed under each condition separately. Motivated by this finding

and the insufficient sequencing depth in each condition (i.e. before

or after TNF- a treatment), we combined data from the two condi-

tions to achieve higher statistical power in detecting fragment reso-

lution chromatin interaction.

We thus first test our HMRF Bayesian caller in this Hi-C data

set. We analyzed three datasets (1) IMR90 before TNF-a treatment,

(2) IMR90 after TNF-a treatment and (3) the combined dataset

(dataset by pooling data from datasets 1 and 2). Under the rationale

that peak patterns of the two conditions are shared, a robust

caller is expected to identify similar patterns for the three datasets.

Figure 1 shows peak calling results from one domain chr17:29.52–

29.72 Mb. We observed that fewer peaks were called in datasets 1

and 2, particularly dataset 1 where the total number of reads was

75.1% of that in the dataset 2. Comparatively, our method encour-

ages more clustering of peaks and more consistent results across the

three datasets. For example, within this particular domain, 40.6%

and 69.9% of the peaks called in the combined dataset were de-

tected using only dataset 1 and 2, respectively, by our method, com-

pared with 35.3% and 65.2% (40.3% and 67.9%) by AFC (Fit-Hi-

C). Genome-wide quantitative comparisons are presented below

(Tables 1 and 2).

We next proceeded to quantitatively and systematically evaluate

the performance based on genome-wide calling for all domains. For a

fair comparison, we selected thresholds based on posterior peak proba-

bilities for our method and P-values for Fit-Hi-C to match the number

of peaks called by AFC for each dataset. We also performed other com-

parisons where we matched the number of peaks called by either our

method or Fit-Hi-C, or where we let each method call peaks according

to its own criterion and found similar patterns (detailed in

Supplementary Material Section 5). Treating peaks called in the com-

bined dataset as truth, we gauged performance in single-condition data-

sets using the following three statistics: false-positive rate (FPR), false

discovery rate (FDR) and recovery rate (RR). Denote the number of

false positives, true positives, false negatives and true negatives as FP,

TP, FN and TN, where the truth is defined according to AFC results

from the combined dataset and the four numbers sum up to the total

number of intra-domain fragment pairs. We have FPR¼FP/(FPþTN),

FDR¼FP/(FPþTP) and RR¼TP/(TPþTN). As shown in Table 1

upper panel, methods accounting for potential dependency of underly-

ing peak statuses (AFC and our HMRF Bayesian caller) resulted in bet-

ter performance than Fit-Hi-C which models fragment pairs

independently. Furthermore, our method outperformed the others for

all three measures. For example, for IMR90 before TNF-a treatment,

we obtained FPR¼0.52%, FDR¼15.6% and RR¼42.3% for our

HMRF Bayesian caller, compared with FPR¼0.60%, FDR¼18.4%

and RR¼41.1% for AFC and FPR¼0.64%, FDR¼19.2% and

RR¼41.2% for Fit-Hi-C. By borrowing information from neighboring

fragment pairs in a probabilistic framework, our method lead to more

robust inference with simultaneously lower false positive, false discov-

ery rates and higher recovery rate.

In addition, for each caller, we calculated the Jaccard Index

(Hamers et al., 1989) between the peak sets from the two condi-

tions, defined as the ratio of number of peaks identified under both

conditions over the number of peaks identified by either. Average

Jaccard Index across all domains genome-wide is shown in Table 2

for each method. Again, methods accounting for the dependency of

underlying peak status show higher concordance across conditions.

Average Jaccard Index improved by 33.6% and 61.3% respectively,

from 13.7% (Fit-Hi-C) to 18.4% (AFC) and 22.1% (HMRF).

To avoid potential systematic differences between treated and

untreated conditions in terms of peak status (although not supported

by results in Jin et al. (2013)), we also analyzed two randomly split

datasets as described by Jin et al. (2013). Results shown in Table 1

(lower panel) and Table 2 (rightmost column) similarly show better

reproducibility and robustness of our methods over existing ones.

Given one important utility of called peaks is to illuminate biologic-

ally meaningful interactions, we directly evaluated the power to iden-

tify one important category of biological interactions: between

enhancers and transcription start sites (TSS). We used the enhancer-

promoter connection map based on multi-tissue correlations between

distal and promoter chromatin accessibility (Thurman et al., 2012),

augmented with results from multi-tissue correlations between chroma-

tin accessibility and gene expression (Sheffield et al., 2013), retrieved

from http://dnase.med.unc.edu/supplement/allGeneCorrelations100000

.p2.txt.gz. We left Fit-Hi-C out in the comparison as it showed incom-

parable reproducibility with the other callers. Supplementary Figure S4

demonstrates the increased power of HMRF over AFC with up to

11.3% more enhancer-TSS interactions identified by HMRF, given the

same number of peak regions called by two methods. In addition,

Supplementary Figure S5 shows one particular example where the po-

tential target gene CTSB (Maurano et al., 2012) of a GWAS variant

rs1600249 (Freudenberg et al., 2011) was missed by AFC but captured

by our method.
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In addition, we performed transcription factor binding sites

(TFBS) and active TSS (reported by Jin et al., 2013) enrichment

analysis to elucidate the biological relevance of identified inter-

actions. Specifically, we evaluated two aspects. First, we tested if

fragment pairs detected as interacting loci are enriched with TFBS.

Second, we compared the number of interacting loci for TFBS versus

non-TFBS. We used ENCODE IMR90 TFBS information retrieved

from http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/

wgEncodeRegTfbsClustered where TFBS were called from ChIP-seq

data using the computational pipeline developed by the ENCODE

project (Gerstein et al., 2012; Wang et al., 2013). We found that re-

gardless of the detection threshold (ranging from 1 in 100 000 frag-

ment pairs called as peaks to 1 in 100), the pairs of interacting

fragments called are significantly enriched with TFBS and active TSS

(v2 P-value<10�238Þ with �42% identified peak pairs overlapping

with TFBS while �28% identified non-peak pairs overlapping with

TFBS (Fig. 2). In addition, we found that fragments overlapping

with TFBS or active TSS are involved in a slightly (but statistically

significant) larger number of interactions than those not overlapping

with TFBS or active TSS (Supplementary Fig. S6).

Fig. 1. Peaks called in the domain Chr.17:29.52 Mb-29.72 Mb. For each dataset (combined, before and after TNF-a treatment), the same number of peaks as using

AFC method was shown (based on posterior probabilities for HMRF and P-values for Fit-Hi-C) for comparison

Table 1. Genome-wide real data evaluation based on false-positive

rate (FPR), false discovery rate (FDR) and recover rate (RR)

Dataset Method FPR (%) FDR (%) RR (%)

IMR90 HMRF-Bayesian 0.52 15.60 42.30

IMR90 AFC 0.60 18.40 41.10

IMR90 Fit-Hi-C 0.64 19.20 41.20

IMR90þTNF-a HMRF-Bayesian 0.83 18.50 55.40

IMR90þTNF-a AFC 0.98 22.40 52.90

IMR90þTNF-a Fit-Hi-C 1.00 22.50 53.30

Dataset Method FPR FDR RR

Split1 HMRF 0.84 19.10 55.90

Split1 AFC 0.97 22.60 54.00

Split1 Fit-Hi-C 1.03 23.50 53.70

Split2 HMRF 0.47 15.20 41.30

Split2 AFC 0.56 18.60 39.90

Split2 Fit-Hi-C 0.58 18.80 40.30

Assuming calling result for the combined dataset is the true peak pattern,

we summarized the following measures for 1432 domains, i.e. genome-wide.

We reported the genome-wide average of false-positive rate (FPR), false dis-

covery rate (FDR) and recovery rate (RR) by the HMRF-Bayesian method,

AFC method and Fit-Hi-C for both IMR90 before TNF-a treatment and

IMR90 after TNF-a treatment. We found that the HMRF-Bayesian method

has better performance than AFC method and Fit-Hi-C

Table 2. Genome-wide real data evaluation based on the consist-

ency measure (Jaccard Index)

Method IMR90 vs. IMR90þTNF-a* (%) Split1 vs Split2* (%)

HMRF 22.1 6 0.33 22.7 6 0.32

AFC 18.4 6 0.32 18.5 6 0.31

Fit-Hi-C 13.7 6 0.29 13.6 6 0.28

*Mean 6 SE
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Finally, we applied our methods to two other datasets: the mouse

embryonic stem cell (mESC) and human embryonic stem cell (H1-

hESC) dataset (Dixon et al., 2012). For both datasets, we down-

loaded observed Hi-C count data from the Fit-Hi-C website and esti-

mated the expected counts using Fit-Hi-C. For mESC, genome-wide

ChIA-PET data are available (Zhang et al., 2013) and for H1-hESC,

5C data were generated in 44 regions by the ENCODE pilot project

(Sanyal et al., 2012). We gauged performance of our methods and of

Fit-Hi-C by comparison with results from data generated from inde-

pendent technologies. Comparison results suggest our method was

able to detect more interactions captured from 5C (Supplementary

Fig. S7a) or ChIA-PET (Supplementary Fig. S7b) data with the same

number of peak regions called, according to HMRF posterior peak

probabilities or Fit-Hi-C P-values.

4 Discussion

Peak calling from data generated by 3C-derived methods is a funda-

mental task for the identification of chromatin interactions in 3D

space. However, model-based methods for this important task are

still lacking. Existing methods focus on the calibration of expected

count frequency distribution under random collision, accounting for

multiple biases behind 3C analysis including but not limited to dens-

ity of restriction enzyme sites, mappability and GC content. We have

found existing methods rather mature for the purpose of calibrating

expected counts (with results robust to different methods used).

Establishing the expected count distribution is nevertheless a pre-

requisite, not peak calling itself. None of the existing methods con-

sider the dependency underlying the peak status with statistical rigor.

In this work, we propose a HMRF based Bayesian method that

explicitly models the dependency of the underlying peak pattern.

The true peak pattern is unknown and can take different forms in

the presence of dependency. We simplify the problem by assuming

an Ising distribution prior and learn the level of dependency from

data in a Bayesian framework. Our extensive simulations indicate

superior performance in terms of both the estimation of the extent

of dependency and the statistical power to distinguish peaks from

background, across a range of underlying dependency patterns.

There are several aspects where the model can be further elabo-

rated. First, our model has one h, one w and one /, thus assuming

that peaks are of similar strength and clustering patterns, and that

reads have similar levels of over-dispersion. While the first two are

simplifying assumptions bypassing issues including model selection

difficulty and parameter non-identifiability, the last has been shown

to be reasonable (Jin et al., 2013). Sensitivity analysis with the IMR90

combined dataset suggests these assumptions are reasonable: splitting

each domain into two equal sub-domains resulted in highly consistent

peak calls (Spearman correlation>0.9, detailed in Supplementary

Material Section 4). Second, we use a one-parameter Ising prior, with

the parameter controlling both the peak proportion and level of de-

pendency. A two-parameter Ising prior would allow more flexibility,

particularly when the underlying dependency is weak. Third, our

method could allow incorporation of prior knowledge, when avail-

able, into the model. For instance, a hyper prior could be imposed on

the inverse temperature parameter based on estimated distribution

from similar existing datasets. Finally, the computational complexity

of our Bayesian modeling is quadratic in terms of the number of frag-

ments under consideration. Our JAVA implementation takes �13mi-

nutes for a typical domain with 200 fragments and with parallel

computing, genome-wide analysis can be easily accomplished within

a few hours. In contrast, Fit-Hi-C and our R implementation of AFC

take �4 seconds and �12minutes, respectively. Therefore, for future

work, computationally more efficient algorithms warrant consider-

ation. We attempted to apply the iterative conditional mode algo-

rithm (Li et al., 2010), but observed unsatisfactory performance with

weak peak signals (data not shown).

Despite these possible further model improvements, our method

has demonstrated favorable performance over existing methods by

borrowing information from neighboring fragment pairs via statis-

tically modeling the potential dependency among the underlying

peaks using a Bayesian framework. Our extensive simulation studies

(Supplementary Material Section 2) show the advantage of our

method across a range of dependency patterns and its ability to learn

the level of dependency (as modeled by the inverse temperature par-

ameter) from data. Both are valuable since we have limited, if any,

prior knowledge regarding the extent of dependency in real data.

Re-analysis of several published Hi-C datasets including the IMR90,

H1-hESC and mESC data confirmed the value of dependency mod-

eling as taking dependency into consideration resulted in better con-

cordance (>40% improvement as measured by Jaccard Index of

peak sets across two IMR90 datasets) and lower false positive, false

discovery rates and higher recovery rate. Our method is the first to

model dependency in a statistically rigorous manner and to borrow

Fig. 2. TFBS and active-TSS enrichment. Solid lines are estimated average levels. The 95% confidence interval of estimated average levels are represented by

dashed lines and solid lines. Left panel: TFBS enrichment analysis. Right panel: active-TSS enrichment analysis
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information from neighboring fragment pairs through a probabilis-

tic model, was able to call up to 11.3% more enhancer-TSS inter-

actions than the ad hoc method given the same number of peak

regions called. We acknowledge that there is currently no genome-

wide gold standard for real data (for example, from large scale gen-

ome-wide imaging-based experiments). We therefore made special

efforts to benchmark the methods across multiple datasets and for

each dataset, against the most reasonable silver standard. For ex-

ample, for the IMR90 cell lines, we compared against results from

the combined dataset with the highest sequencing depth, for H1

hESC and mESC, we used results from independent technologies

(5C and ChIA-PET, respectively).

With the continuing drop in sequencing costs and the intensive

interest in chromatin structure as a way to understand GWAS re-

sults, we anticipate in the near future more high-resolution (frag-

ment-level) Hi-C data where our method have demonstrated key

advantage given the non-negligible dependency structure.
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