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Abstract

Motivation: The recent advance of single-cell technologies has brought new insights into complex

biological phenomena. In particular, genome-wide single-cell measurements such as transcrip-

tome sequencing enable the characterization of cellular composition as well as functional variation

in homogenic cell populations. An important step in the single-cell transcriptome analysis is to

group cells that belong to the same cell types based on gene expression patterns. The correspond-

ing computational problem is to cluster a noisy high dimensional dataset with substantially fewer

objects (cells) than the number of variables (genes).

Results: In this article, we describe a novel algorithm named shared nearest neighbor (SNN)-Cliq

that clusters single-cell transcriptomes. SNN-Cliq utilizes the concept of shared nearest neighbor that

shows advantages in handling high-dimensional data. When evaluated on a variety of synthetic and

real experimental datasets, SNN-Cliq outperformed the state-of-the-art methods tested. More import-

antly, the clustering results of SNN-Cliq reflect the cell types or origins with high accuracy.

Availability and implementation: The algorithm is implemented in MATLAB and Python. The

source code can be downloaded at http://bioinfo.uncc.edu/SNNCliq.

Contact: zcsu@uncc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The recent advance of single-cell measurements has deepened our

understanding of the cellular heterogeneity in homogenic popula-

tions and the underlying mechanisms (Kalisky and Quake, 2011;

Pelkmans, 2012; Raser and O’Shea, 2004). With the rapid adaption

of single-cell RNA-Seq techniques (Saliba et al., 2014), enormous

transcriptome datasets have been generated at single-cell resolution.

These datasets present a tremendous opportunity and challenge to

the computational biology community for their analysis to reveal

new insights into many biological problems, for example, to eluci-

date cell types in complex tissues. A straightforward approach to

this problem would be to partition the cells into well-separated

groups via clustering techniques, so that cells (data points) in the

same group exhibit similar gene expression levels (attributes).

However, the high variability in gene expression levels even between

cells of the same type (Buganim et al., 2012; Guo et al., 2010;

Hashimshony et al., 2012; Shalek et al., 2013) can confound this

seemly straightforward clustering approach. In addition, single-cell

RNA-Seq data is generally in tens of thousands dimensions, which

can substantially further complicate the clustering problem. In par-

ticular, usually only a few out of 1000 genes are significantly differ-

entially expressed in distinct cell types. Consequently, when

clustering on the whole transcriptome, many genes would be re-

garded as irrelevant attributes and may even impede the identifica-

tion of cell types.

It has been claimed that for a broad range of data distributions,

the conventional similarities (such as Euclidean norm or Cosine

measure) become less reliable as the dimensionality increases (Beyer

et al., 1999). The reason is that all data become sparse in high-

dimensional space and therefore the similarities measured by these

metrics are generally low between objects (Beyer et al., 1999).

Accordingly, many clustering methods based on these measures are
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not effective enough for high-dimensional data with few objects. An

alternative similarity measure utilizes the ranking induced by a

specified primary similarity. One commonly used secondary similar-

ity is based on the notion of shared nearest neighbor (SNN), which

takes into account the effect of surrounding neighbor data points.

More specifically, the similarity between a pair of data points is a

function of their intersection of the fixed-sized neighborhoods deter-

mined by the primary measure (e.g. Euclidean norm). It has been

demonstrated that in high dimensionality, SNN measures are more

robust and result in more stable performances than the associated

primary measures (Houle et al., 2010). SNN techniques have been

successfully applied to some clustering problems (Ertöz et al., 2003;

Guha et al., 2000; Jarvis and Patrick, 1973). Inspired by these earlier

applications, we define a new similarity between two data points

based on the ranking of their shared neighborhood.

By representing data as a similarity graph in which nodes corres-

pond to data points and weighted edges represent the similarities

between data points, the clustering task can be achieved through

partitioning the graph into homogeneous and well-separated sub-

graphs. That is, the nodes in the same subgraph have high intercon-

nectivity, while nodes from different subgraphs have few

connections in between. Several graph theory-based algorithms have

been applied to clustering problems in earlier studies. One of the

best-known graph-theoretic divisive clustering methods first finds

the minimal spanning tree, and then splits the tree by removing in-

consistent edges with weights larger than the average in neighbor-

hood (Zahn, 1971). Another algorithm called Chameleon first

divides a graph into several subsets via a multilevel procedure, and

then repeatedly combines these subsets to the ultimate clustering so-

lution (Karypis et al., 1999). However, the partitioning schemes

used in these methods all require a prior knowledge of the number

of subsets to be produced or the sizes of the partitions. Some other

approaches avoid this problem by making assumptions about when

to stop the recursive partition. For example, the highly connected

subgraph (HCS) clustering method (Hartuv and Shamir, 2000)

defines a cluster as a HCS with a connectivity (the minimum number

of edges to be removed to disconnect a graph) above half the num-

ber of nodes. The method iteratively cuts an unweighted graph using

the minimum-cut algorithm until such subgraphs are produced.

However, the algorithm produces many singletons for a sparse

graph, although it includes a singleton adoption step. Besides, it

does not separate clusters completely for certain data structures in

our hand (see later).

To overcome the limitations of these existing algorithms, we

developed a quasi-clique-based clustering algorithm inspired by our

earlier work (Zhang et al., 2009) to identify tight groups of highly

similar nodes that are likely to belong to the same genuine clusters.

Combining this algorithm with the SNN-based similarity measure,

our method called SNN-Cliq is able to automatically determine the

number of clusters in the data. Moreover, it can identify clusters of

different densities and shapes, which is considered to be one of the

hardest issues in clustering problems. Additionally, it requires few

input parameters and finding a valid parameter setting is generally

not hard. Most importantly, SNN-Cliq shows great advantages over

traditional methods especially in clustering high-dimensional single-

cell gene expression datasets.

2 Methods

By incorporating the concept of SNN in similarity measures, we

model data as an SNN graph, with nodes corresponding to data

points (e.g. vectors of gene expression levels of individual cells) and

weighted edges reflecting the similarities between data points. We

then find the ultimate clustering solution by using graph-theoretic

techniques to cluster the sparse SNN graph. The SNN-Cliq is carried

out in the following steps and is schematically shown in

Supplementary Figure S1.

2.1 Construct an SNN graph
We first compute a similarity matrix using Euclidean distance (other

suitable measures can also be used instead) between pairs of data

points (e.g. a point is a cell and the distance between points is calcu-

lated using the vectors of gene expression levels in the cells). Next,

for each data point xi, we list the k-nearest-neighbors (KNN) using

the similarity matrix, with xi itself as the first entry in the list. To

construct an SNN graph, for a pair of points xi and xj, we assign an

edge e(xi, xj) only if xi and xj have at least one shared KNN. The

weight of the edge e(xi, xj) is defined as the difference between k and

the highest averaged ranking of the common KNN:

wðxi; xjÞ ¼ max

(
k� 1

2
ðrankðv; xiÞ þ rankðv; xjÞÞj

v 2 NNðxiÞ \NNðxjÞ
� (1)

where k is the size of the nearest neighbor list, and rank(v, xi) stands

for the position of node v in xi’s nearest neighbor list NN(xi). Note

that a closer neighbor v is higher ranked but the value of rank(v, xi)

is lower. For example, rank(xi, xi)¼1 because xi is ordered first in

xi’s nearest neighbor list.

Therefore, this SNN graph captures the similarity between two

nodes in terms of their connectivity in the neighborhood. In other

words, unlike the primary similarity, in our measure, the similarity

between two nodes needs to be confirmed by their closeness to other

nodes (common nearest neighbors). The rationale behind SNN is

that the ranking of nodes is usually still meaningful in high-dimen-

sional space though the primary similarity might not (Houle et al.,

2010). The ranking of shared neighbors of two nodes in a genuine

cluster is expected to be high, thus leading to a highly weighed edge.

In contrast, the ranking of shared neighbors of two nodes from dif-

ferent clusters is expected to be low, resulting in a lowly weighted

edge. Moreover, SNN graphs are usually sparse, thus allowing for

scaling to large datasets.

2.2 Identify clusters in the SNN graph
In a recent application, we proposed an algorithm for graph parti-

tion by finding maximal cliques (Zhang et al., 2009). A maximal cli-

que is a complete (fully connected) subgraph that is not contained in

a larger clique. Although enumerating all the maximal cliques in a

graph is an NP-hard problem, maximal cliques associated with each

node can be efficiently found by a heuristic approach (Zhang et al.,

2009). However, cliques are rare in SNN graphs due to the general

sparsity. We instead search for quasi-cliques, which are dense

enough but not necessarily complete. Our graph clustering method

consists of two steps. Firstly, we extract local maximal quasi-cliques

associated with each node in the subgraph induced by the node. We

then construct clusters through merging these quasi-cliques and as-

signing nodes to unique clusters.

2.2.1 Find quasi-cliques in the SNN graph

Given an SNN graph, we use a greedy algorithm to find a maximal

quasi-clique associated with each node (Supplementary Fig. S2).
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First, for a subgraph S induced by a node v (S consists of v, all its

neighbor nodes and associated edges), we find a dense quasi-clique

in S. To this end, for each node s in S, we compute a local degree d

as the number of edges incident to s from the other nodes in S. We

select the si with the minimum degree di among all the nodes in S

and remove si from S if di/jSj< r, where jSj is the size of the current

subgraph S and r is a predefined threshold (r � (0, 1]). We then up-

date d for the remaining nodes and repeat the process until no more

nodes can be removed. If the final subgraph S contains more than

three nodes, i.e. jSj �3, we call it the quasi-clique for v.

After all possible quasi-cliques are found, we eliminate redun-

dancy by deleting quasi-cliques that are completely included in other

quasi-cliques. The parameter r defines the connectivity in the result-

ing quasi-cliques. A higher value of r would lead to a more compact

subgraph, while a lower value of r would result in a less dense

subgraph. One can try different values of r to explore the cluster

structures or optimize the results, but we found that when r¼0.7

the method performed well in all of the problems tested (see later).

In fact, because of the following merging step, adjusting r in a

certain range would not lead to substantial differences in the results.

2.2.2 Identify clusters by merging quasi-cliques

We identify clusters in the SNN graph by iteratively combining sig-

nificantly overlapping subgraphs starting with the quasi-cliques. For

subgraphs Si and Sj, the overlapping rate Oi,j is defined as the size of

their intersection divided by the minimum size of Si and Sj:

Oi;j ¼
jSi \ Sjj

min ðjSij; jSjjÞ
(2)

We initialize the set of subgraphs to be all the quasi-cliques and

merge Si and Sj if Oi, j exceeds a predefined threshold m [m � (0, 1)].

In all the applications in this article, we set m to 0.5. After each

merging, we update the current set of subgraphs and recalculate

pairwise overlapping rates if necessary. This process is repeated until

no more merging can be made, and the final set of subgraphs is our

identified clusters. Since a subgraph may overlap with multiple other

subgraphs and merging in different orders may lead to distinct

results, we give high priority to the pair with the largest total size

jSij þ jSjj. In this way, a larger cluster is promised and would not

likely be split into small ones.

2.2.3 Assign nodes to unique clusters

The iterative merging stops when no pairs of clusters have an over-

lapping rate greater than m. However, the clusters may still have

small overlaps, resulting in some nodes appearing in multiple clus-

ters. However, for many problems such as clustering single-cell tran-

scriptomes that we intend to address in this article, one would prefer

a ‘hard clustering’ (each data point belongs to exactly one cluster)

over a ‘fuzzy clustering’ (each data point can belong to more than

one clusters). To this end, for each candidate cluster C that the

target node v is in, we calculate a score measuring the proximity

between C and v, defined as the averaged weights on the edges inci-

dent to v from nodes in C:

ScoreðC; vÞ ¼ 1

jCj
XjCj
i¼1

wðci; vÞ (3)

where ci is a node in C. Then, we assign v to the cluster with the

maximum score and eliminate v from all the other candidate clus-

ters. The assignation will change the cluster composition and may

produce clusters with less than three nodes. In this circumstance,

these data points are considered to be singletons. However, we did

not observe such cases in our applications.

2.3 Time complexity of the algorithm
The most time-consuming step of SNN-Cliq is to construct the SNN

graph, which requires O(n2) time, where n is the number of data

points. Despite this, this step can be still fast for single-cell transcrip-

tome dataset, since n is usually quite small compared with the num-

ber of variables (genes/transcripts). The time complexity for finding

a quasi-clique induced by a node is O(dv
2), where dv is the degree of

the node. Since dv is usually much smaller than n in a sparse SNN

graph, the entire cost of finding quasi-cliques for n nodes is bounded

by O(n). Moreover, this step can be easily accelerated by paralleliza-

tion, since there is no data dependency in the process of finding

quasi-cliques associated with each node. The merging step does not

scale with n and is rather faster, since the overlaps of quasi-cliques

only account for a small portion and are related to the cluster struc-

tures rather than n.

3 Results

3.1 Performance on synthetic datasets
First, we illustrated the effect of the parameters on SNN graphs and

clustering results using a synthetic two dimensional (2D) dataset

consisting of six perceptually distinct groups (2 high-dense, 2 mid-

dense and 2 low-dense clusters) [Fig. 1(A–C)]. The dataset was gen-

erated manually by randomly placing points on a 2D space, and

then the coordinates were retrieved. The class labels were given

according to an intuitively good clustering way. Figure 1(A–C) show

the resulting SNN graphs for k¼5, 8 and 10. With the increase in k

from 5 (Fig. 1A) to 8 (Fig. 1B), more edges were present in the SNN

graph, connecting nodes in the same or from different clusters.

However, in spite of the differences in the SNN graphs, clustering

outputs stayed the same (six clusters). When k became even greater

than the average size of the clusters (k¼10 in Fig. 1C), the method

started to combine similar clusters in the low- to mid-dense regions.

We further systematically evaluated k on a wide range (k¼3–25)

(Fig. 2A). The minimum value of a valid k is three, because a node

needs at least two other neighbors to form a quasi-clique. When k

was too large (k�9), clusters might not be thoroughly separated; on

the other hand, when k was too small (k¼3 and 4), a genuine clus-

ter might be split into parts (Fig. 2A). These results demonstrate that

SNN-Cliq is relatively robust with respect to the changes in k to a

certain extent. A valid choice of k depends on both the size and

density of data. In general, a large and high-density dataset usually

requires a relatively high k value compared with a sparse and low-

density dataset. The parameters r and m both control the compact-

ness of subgraphs, thus can be used to adjust the granularity of

resulting clusters [Fig. 2(B–E)]. Altering r or m usually has the same

effect. As shown in Figure 2(B–E), the correct clustering could be

achieved by many different combinations of k, r and m settings;

however, when r¼0.7 and m¼0.5 the method had a higher toler-

ance to changes in k. Therefore, in the following applications we set

r¼0.7 and m¼0.5.

To demonstrate the applicability of SNN-Cliq, we tested it on

several datasets with distinct structures presented in Figure 1(D–F).

The dataset shown in Figure 1D is composed of 15 similar 2D

Gaussian clusters that are positioned in rings (Veenman et al.,

2002). With k¼15–35, we obtained the same correct clustering re-

sult as the original paper did (Veenman et al., 2002). The dataset

shown in Figure 1E contains clusters of arbitrary shapes and clusters
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connected by narrow bridges (Gionis et al., 2007). SNN-Cliq

successfully determined the seven clusters as long as k¼20–30. In

contrast, applying HCS (from the RBGL package in R) (Carey et al.,

2011) to the SNN graphs failed to break the bridges, although a

wide range of k was tested (Supplementary Fig. S3A). The dataset

shown in Figure 1F consists of two clusters with hardly defined bor-

der and shape, which represents a difficult case of clustering (Fu and

Medico, 2007). Nonetheless, SNN-Cliq successfully separated the

two distinct groups by breaking the bordering area with k¼25,

which agrees with an intuitively good clustering for this dataset. In

contrast, using HCS on the SNN graph failed to give a result compli-

ant with visual intuition (Supplementary Fig. S3B).

3.2 Performance on single-cell transcriptome datasets
It is generally believed that different cell types in multicellular organ-

isms express distinct sets of genes, as is often manifested by traditional

cell-population based assays. However, it has been shown that indi-

vidual cells of the same type display inevitable cell-to-cell variations

due to the stochastic nature of biochemical processes (Kalisky and

Quake, 2011; Pelkmans, 2012). Such variability, also referred to as

‘noise’, makes the identification of the type of a cell on the basis of its

transcriptome non-trivial. Moreover, as the small copy number of

RNA molecules in a cell may lead to random loss of transcripts during

library preparations, there is a notable technical noise in single-cell

transcriptomes (Brennecke et al., 2013). Therefore, we want to know

whether or not individual cells could be grouped according to their

cell types using the measured transcriptomes. We tested SNN-Cliq for

such capability using three single-cell RNA-Seq datasets generated by

different techniques in a variety of cell types in human and mouse

(Deng et al., 2014; Ramsköld et al., 2012; Yan et al., 2013). In the

original papers, the authors have clustered the cells by hierarchical

clustering or projected the cells onto the first two principal compo-

nents derived from a principal component analysis. Although these

analyses revealed general relationships between cells, they lacked a

clear grouping description of cells. To extend these studies and ex-

plore the valuable data further, we shall present the cell clustering re-

sults obtained by SNN-Cliq and compare them with those of two

widely used clustering algorithms. One is K-means (MacQueen,

1967), a partition-based clustering technique that is suitable for

spherical shaped clusters of similar sizes and densities. Another is

Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) (Ester et al., 1996), which clusters density-connected

points and discards as noise the points having less than a user defined

number (MinPts) of neighbors in a given radius (Eps). In addition, we

shall compare our quasi-clique-based method with HCS in partition-

ing SNN graphs.

3.2.1 Human cancer cells

The first dataset was generated by Ramsköld et al. (2012) using a

single-cell RNA-Seq protocol called Smart-Seq, which significantly

improved read coverage across transcripts. The dataset includes

transcriptomes of human embryonic stem cells hESC (n¼8), puta-

tive melanoma CTCs (n¼6) isolated from peripheral blood, melan-

oma cell lines SKMEL5 (n¼4) and UACC257 (n¼3), prostate

cancer cell lines LNCap (n¼4) and PC3 (n¼4) and bladder cancer

cell line T24 (n¼4). We downloaded the normalized gene expres-

sion levels in reads per kilobase of transcript per million mapped

reads (RPKM) from the Gene Expression Omnibus (GEO) database.

Since technical variability in the measurements of gene expression

levels becomes pronounced for lowly expressed genes due to random

loss of transcripts (Ramsköld et al., 2012), excluding such genes

Fig. 2. The effects of parameters on the clustering results of the synthetic

dataset shown in Figure 1A. (A) The number of clusters detected as a function

of k. (B–E) The number of clusters and ARI (see Supplementary Text for how

it is calculated) at different parameter settingsFig. 1. (A–C) SNN graphs constructed with k¼5 (A), 8 (B) and 10 (C) for a

synthetic 2D dataset containing six perceptual clusters with high-, mid- and

low- densities. Edge weights are not shown for clarity. (D–F) Performance of

SNN-Cliq on three synthetic 2D datasets with distinct structures. Dataset are

from (Veenman et al., 2002) (D), (Gionis et al., 2007) (E) and (Fu and Medico,

2007) (F). Data points grouped in the same cluster by the algorithm are shown

in the same color
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before analysis could enhance the reliability of results. As suggested

by the original paper, we used genes with an averaged RPKM�20

for the analysis, involving 3582 genes. To reduce the effects of

highly expressed genes, we log-transformed the RPKMs, i.e.

log2(xþ1). The gene expression variability is illustrated in

Supplementary Figure S4. Because of the small number of cells in

the dataset, we set k¼3; r and m are at default values (r¼0.7,

m¼0.5). As shown in Figure 3A, SNN-Cliq yielded six clusters,

with five clusters each corresponding to a unique cell type and one

cluster including cells of SKMEL5 and UACC257. However, both

SKMEL5 and UACC257 are melanoma cell lines and the difference

between them should be relatively small.

To compare our quasi-clique-based method with HCS in partition-

ing SNN graphs, we applied HCS on the same SNN graph. As shown

in Figure 3A, HCS discarded four (shown in black) of the six CTC cells

as singletons. To compare our entire algorithm with other methods in

capturing the cell types, we applied K-means from MATLAB and

DBSCAN from Python module scikit-learn-0.15.0 (Pedregosa et al.,

2011) to the log-transformed RPKMs, also with Euclidean norm as the

similarity measure. Although K-means was preformed with the correct

parameter (K¼7), the clusters found were either formed by cells of

multiple types or a portion of cells of a certain type (Fig. 3A). For ex-

ample, CTC and SKMEL5 cells were all in one cluster, while hESC

cells were partitioned into two different clusters. To give DBSCAN

some advantages, we tried different sets of parameters (MinPts, Eps)

and reported the one giving the best result (MinPts¼3, Eps¼150).

However, DBSCAN only found two different clusters; one cluster

agreed with the type hESC and the other cluster was a mixture of six

cell types (Fig. 3A). We further compared these methods using three ex-

ternal evaluation measures, Purity, Adjusted Rand Index (ARI) and F1

score (see Supplementary Text for how they are calculated). As shown

in Figure 4A, the performance of SNN-Cliq was better than the other

methods in all the three measures.

3.2.2 Human embryonic cells

The second dataset was produced by Yan et al. (2013) using a sin-

gle-cell RNA-Seq approach that showed high sensitivity and repro-

ducibility. The dataset includes transcriptomes of human oocytes

and cells in early embryos at seven crucial developmental stages:

metaphase II oocyte (n¼3), zygote (n¼3), 2-cell-stage (n¼6), 4-

cell-stage (n¼12), 8-cell-stage (n¼20), morula (n¼16) and late

blastocyst at hatching stage (n¼30). For each stage, 2 to 3 embryos

were used. We applied SNN-Cliq with the same parameterization as

before (k¼3, r¼0.7 and m¼0.5) to the log-transformed RPKMs

of 19 591 known RefSeq genes with RPKM>0.1 in at least one cell.

As shown in Figure 3B, SNN-Cliq successfully clustered the cells

from the same developmental stages, except for a few cells being

mixed into neighboring stages, i.e. two morula cells were placed in

the 8-cell-stage cluster and four 4-cell-stage cells were placed in the

2-cell-stage cluster. SNN-Cliq partitioned the 8-cell-stage cells into

three different clusters. Intriguingly, the splitting reflects their dis-

tinct embryo origins (embryo 1, 2 and 3), as cells from the same em-

bryo form their own cluster. It indicates the notable differences

between individual embryos at this developmental stage. Similarly,

the morula cells were split into different clusters for the two em-

bryos. Interestingly, morula cells from Embryo 2 were further parti-

tioned into two clusters, indicating that heterogeneous expression

patterns and possible cell differentiations might have occurred at

this stage.

Applying HCS to the SNN graph yielded very similar results to

our graph clustering method (Fig. 3B). However, it failed to recover

Fig. 3. Comparison of the clustering results from different algorithms on the

human cancer cell dataset (Ramsköld et al., 2012) (A), human embryonic cell

dataset (Yan et al., 2013) (B) and mouse embryonic cell dataset (Deng et al.,

2014). In the heatmap, each row stands for an individual cell; each column

corresponds to the clustering result produced by one of the four methods.

Cells that are grouped in the same cluster by a method are displayed in the

same color in the column. Cells that are treated as noise or singletons by the

method are shown in black in the column. The embryo origins of cells from

the same stage are distinguished by the first number in the cell names
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the 2-cell-stage because most cells at this stage were discarded as

singletons (shown in black in Fig. 3B). Although K-means was con-

ducted with the correct parameter (K¼7), it lumped all the cells

from oocyte, zygote and 2-cell-stage into a single cluster, and failed

to differentiate morula and 8-cell-stage (Fig. 3B). The results given

by DBSCAN (MinPts¼5, Eps¼150) were not compliant with the

cell identities in most of the cases; furthermore, a large number of

cells, in particular the late blastocyst cells, were assigned to noise

(Fig. 3B). Evaluations using objective measures also show that SNN-

Cliq outperformed the other methods (Fig. 4B).

3.2.3 Mouse embryonic cells

The last dataset was generated by Deng and colleagues (Deng et al.,

2014) using Smart-Seq (Ramsköld et al., 2012) or its updated form

Smart-Seq2 (Picelli et al., 2013). The dataset consists of transcrip-

tomes for individual cells isolated from mouse (CAST/EiJ x C57BL/

6J) embryos at different preimplantation stages. We obtained

RPKMs for a total of 135 cells from GEO, including zygote (n¼4),

early 2-cell-stage (n¼8), mid 2-cell-stage (n¼12), late 2-cell-stage

(n¼10), 4-cell-stage (n¼14), 8-cell-stage (n¼37) and 16-cell-stage

(n¼50). A total of 19 703 RefSeq genes with RPKM>0.1 in at least

one cell were included for the analysis. We conducted SNN-Cliq

with the same parameter setting as before (k¼3, r¼0.7 and

m¼0.5). SNN-Cliq successfully recovered zygote, early 2-cell, mid

2-cell, late 2-cell and 4-cell stages with only few misclassification,

i.e. a late 2-cell-stage cell and a 16-cell-stage cell were placed in

wrong clusters (Fig. 3C). However, the 8-cell and 16-cell stages

could not be differentiated. It is interesting to note that nine cells at

8-cell stage were separated into another cluster instead of being

lumped in the 8- to16-cell cluster. Surprisingly, a closer look into

their RNA-seq protocols reveals that the libraries of these nine cells

were exclusively prepared by Smart-Seq2, while all the other libra-

ries were prepared by Smart-Seq (recorded in GSE45719). Thus the

separation might be at least partially caused by the technical vari-

ations of different library preparation protocols. Applying HCS to

the same SNN graph yielded similar results to ours in many aspects

(Fig. 3C). However, the entire zygote stage was missing because of

the singleton problem. Both K-means (K¼7) and DBSCAN

(MinPts¼3, Eps¼130) could not separate cell stages effectively;

multiple stages were often jointed together. In addition, DBSCAN

produced too many noise cells. Again, SNN-Cliq outperformed the

other methods in all the three evaluation criteria (Fig. 4C).

4 Discussion

In single-cell transcriptome analysis, it is often desired to group indi-

vidual cells based on their gene expression levels, so that each group

corresponds to a cell type with specific functions. Such analysis

could help to characterize cell compositions in tissues and distin-

guish developmental stages, thereby leading to a better understand-

ing of the physiology and pathology of the tissues and the

developmental process. An ideal clustering method for genome-wide

single-cell data should be able to distinguish cell types from highly

noisy gene expression levels due to the unavoidable biological and

technical variations. Aimed at this goal, we have presented a cluster-

ing algorithm SNN-Cliq based on a new SNN graph and quasi-clique

finding techniques (the novelty of SNN-Cliq is described in

Supplementary text).

SNN-Cliq possesses some notable features worthy of noting.

First, it has low polynomial complexity [O(n2)] and is efficient in

practice. Therefore, it is fast enough to handle large datasets, includ-

ing the ever-increasing number of single-cell transcriptome datasets

in a foreseeable future. Second, SNN-Cliq does not require users to

specify the number of clusters to be produced; instead, it automatic-

ally determines the cluster number in a dataset. Third, it is easy to

use in terms of parameter settings. We have demonstrated that find-

ing a valid value of k is usually not hard and altering k in a certain

range will not largely affect the results for many clustering prob-

lems. To allow more flexibility, SNN-Cliq provides two granularity

parameters r for finding quasi-cliques and m for merging clusters,

which can fine-tune the clustering outputs.

SNN-Cliq has outstanding performance on both the synthetic

and real experimental datasets evaluated. Since the algorithm does

not make any assumptions on the structure of clusters, it can handle

data with various shapes and densities as demonstrated on the three

synthetic datasets. Furthermore, the evaluation on single-cell RNA-

seq datasets clearly demonstrates that SNN-Cliq could generate de-

sirable solutions with high accuracy and sensitivity, outperforming

the other algorithms tested [Fig. 4(A–C)]. For instance, for the

Fig. 4. Evaluation of clustering algorithms by external validation measures,

Purity, ARI and F1 score. The gold standard of classes is determined by cell

types or developmental stages. For mouse embryonic cell dataset, gold

standard also considers the library preparation technique (Smart-Seq or

Smart-Seq2)
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human cancer cell dataset, SNN-Cliq can detect more cell types than

the other methods. For the human and mouse embryo datasets, the

clustering of embryonic cells according to their developmental stages

can be explained by the extensive changes in gene expression over

time during early embryonic development. In both human and

mouse, the switch from maternal to embryonic genome control is

marked by rapid clearance of maternally inherited transcripts and

activation of embryonic genome-derived transcription (Telford

et al., 1990). In human, the maternal-zygotic transition occurs dur-

ing the 4-cell to 8-cell stage (Yan et al., 2013). Compared with the

vast changes of gene expression over time, the expression patterns

are generally homogeneous between cells from the same develop-

mental stage (Supplementary Fig. S4). In mouse preimplantation de-

velopment, two major waves of de novo transcription occur before

the 8-cell stage. One corresponds to the maternal-zygotic transition

at the 2-cell stage; another mid-preimplantation activation occurs

during the 4-cell to 8-cell stage, preparing for the overt morpho-

logical changes in subsequent stages (Hamatani et al., 2004). During

the 8-cell to 16-cell stage, embryos embark on compaction and es-

tablishment of cellular contact, followed by lineage differentiation

at blastocyst stage (Wang et al., 2004). The cell-to-cell variability at

this phase revealed by the correlation heatmap (Supplementary Fig.

S4) is consistent with the embryo’s need to develop increasingly

diverse cells. However, a relatively small number of genes undergo

expression changes between the 8-cell and 16-cell stages (Hamatani

et al., 2004; Wang et al., 2004), which may explain the lump of the

two stages into one cluster. In addition to detecting the cell stages,

SNN-Cliq can recognize cells that were isolated from different

embryos and cells that were generated by different library prepar-

ation protocols. In particular, SNN-Cliq does not discard data

points in regions of low density, as other methods often do by treat-

ing them as noise or singletons.
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