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Abstract

Motivation: Prediction and prioritization of human non-coding regulatory variants is critical for

understanding the regulatory mechanisms of disease pathogenesis and promoting personalized

medicine. Existing tools utilize functional genomics data and evolutionary information to evaluate

the pathogenicity or regulatory functions of non-coding variants. However, different algorithms

lead to inconsistent and even conflicting predictions. Combining multiple methods may increase

accuracy in regulatory variant prediction.

Results: Here, we compiled an integrative resource for predictions from eight different tools on

functional annotation of non-coding variants. We further developed a composite strategy to inte-

grate multiple predictions and computed the composite likelihood of a given variant being regula-

tory variant. Benchmarked by multiple independent causal variants datasets, we demonstrated

that our composite model significantly improves the prediction performance.

Availability and Implementation: We implemented our model and scoring procedure as a

tool, named PRVCS, which is freely available to academic and non-profit usage at http://jjwanglab.

org/PRVCS.

Contact: wang.junwen@mayo.edu, jliu@stat.harvard.edu, or limx54@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Interpreting functions of non-coding regulatory variants is an im-

portant topic in current genetics study because the majority of the

variants discovered by genome-wide association studies (GWASs)

and large-scale cancer whole-genome sequencing studies are located

in the non-coding regulatory regions (Li et al., 2016; Melton et al.,

2015). Thus, evaluating and prioritizing the functional impact of

regulatory variants, especially for their roles in disease pathogenicity

and applications in personalized medicine, are major challenges in

current human genetics.

With the accumulation of functional genomics data, computa-

tional methods have been developed to predict and prioritize non-

coding regulatory variants (Kellis et al., 2014). Strategies such as

supervised learning trained on different gold standard datasets as
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well as defined scoring scheme have been widely used to distinguish

functional/pathogenic variants from neutral ones. Available tools,

such as CADD (Kircher et al., 2014), GWAVA (Ritchie et al.,

2014), Funseq (Khurana et al., 2013), Funseq2 (Fu et al., 2014),

GWAS3D (Li et al., 2013a), SuRFR (Ryan et al., 2014), DANN

(Quang et al., 2015) and fathmm-MKL (Shihab et al., 2015), can

achieve satisfactory performances based on different levels of func-

tional annotations and causality assumptions. However, current

methods either performed poorly or acted inconsistently compared

with in vivo saturation mutagenesis of enhancer region (Kircher and

Shendure, 2015). To systematically assess the performance and con-

sistency of current methods, comprehensive evaluations are needed

using different genome-wide benchmark datasets. In addition, com-

puting and querying prediction results from separate algorithm/

database/web server is a time-consuming process. Resources which

can integrate pre-calculated prediction scores for prevalent algo-

rithms will benefit the functional annotation of regulatory variants.

Furthermore, it has been demonstrated that combining multiple al-

gorithms significantly outperforms each single measurement in pri-

oritizing disease-causing non-synonymous single nucleotide variants

(Dong et al., 2015; Li et al., 2015) and positively selected loci

(Grossman et al., 2010), which implies potential effectiveness in

non-coding regulatory variants prioritization.

In this study, we first compiled genome-wide prediction scores

from eight tools that prevalently used in predicting non-coding regu-

latory variants. We observed significant inconsistence among these

investigated predictions. To borrow the potential complementarities

and strengths of different tools, we used a composite strategy to inte-

grate multiple predictions and compute the composite likelihood of

a given variant being causal in gene regulation. We demonstrated

that our method significantly improved the performance of regula-

tory variants prediction and prioritization in several independent

benchmark datasets.

2 Methods

2.1 Variant prediction scores collection and processing
We downloaded genome-wide pre-computed prediction scores from

five algorithms including four scores (CADD, DANN, Funseq2,

fathmm-MKL) for all possible SNPs in the human reference genome

(GRCh37) and one score (GWAVA) for all the 1000 Genomes

Project alleles (Genomes Project et al., 2012). Other tools didn’t

provide pre-calculated files and only supported known variants, we

therefore obtained predictions from execution of corresponding pro-

grams. For Funseq, we ran the program for all the 1000 Genomes

Project variants under germline and the non-coding analysis param-

eter setting. For GWAS3D, we calculated the prioritization scores

for all 1000 Genomes biallelic variants. For SuRFR, we ran the soft-

ware for 1000 Genomes variants under the ‘ALL’ model. We

finally constructed a resource for functional prediction scores of

non-coding SNPs from the above eight prevalent methods

(Supplementary Table S1).

2.2 Construction of causal and control regulatory

variants training datasets
We compiled a disease-causal or functional regulatory variants data-

set by combining four different resources: (i) the Human Gene

Mutation Database (HGMD) (Stenson et al., 2014) public dataset

used by GWAVA [regulatory mutations from the April 2012 release

of HGMD that were downloaded from Ensembl release 70

(Cunningham et al., 2015)]; (ii) the ClinVar (Landrum et al., 2014)

pathogenic variants in the non-coding region compiled by GWAVA;

(iii) validated regulatory variants from the OregAnno (Griffith et al.,

2008) database; (iv) candidate causal SNPs for 39 immune and non-

immune diseases in a recent fine-mapping study (Farh et al., 2015)

(highly reliable fine-mapped GWAS SNPs with high-density

Immunochip). We merged these datasets and annotated each variant

using GENCODE v19 annotation by SNVrap (Li and Wang, 2015).

We further filtered out the variants that overlapped with gene cod-

ing regions and known splicing sites (Ensembl release 70). To select

more effective and less biased control dataset than direct random

sampling or region-specific matching, we first retrieved SNPs in high

LD with each above collected causal variant (r2>0.8 in EUR popu-

lation) and each significant GWAS SNPs [P < 5E-8 in GWASdb (Li

et al., 2016)]. We then randomly drew control non-coding SNPs (no

overlapping with gene coding regions and known splicing sites) out-

side of the retrieved SNPs, considering matched minor allele fre-

quency (absolute 0.05 deviations).

2.3 Regulatory variant validation dataset
In addition to aforementioned training datasets, we manually cura-

ted 81 experimentally validated regulatory variants from recent pub-

lications, which served as an independent dataset for causal variants

in evaluating existing algorithms and our model. We then

sampled frequency-matched background SNPs from the same loci

(within 10 kb) of these curated causal variants.

2.4 Composite model
We computed the probability density of the scores from each of the

eight tools using causal and control datasets respectively by kernel

density estimation. For each test, the empirical distribution of the

causal variants approximates the probability that a SNP will have a

prediction score s given the causal attribute; in contrast, the distribu-

tion of neutral variants approximates the probability that a SNP will

have the same prediction score s given the neutral attribute. Thus,

assuming the independence between tests, the probability that a

causal SNP obtains a set of scores (s1,. . .sn) and the probability that

a neutral SNP obtains the same set of scores can be solved as the

product of the probability of each score in the causal or neutral con-

dition (n is the number of test). We calculated the Bayes factor (BF)

to compare the two probability models, in which the null hypothesis

is that the variant is neutral, and the alternative hypothesis is that

the variant is causal:

BF ¼
Yn

i¼1

PðsijcasualÞ
PðsijneutralÞ

The probability of the variant being causal is computed as the

composite likelihood:

PðcasualjSÞ ¼
Yn

i¼1

PðsijcasualÞ � p
PðsijcasualÞ � pþPðsijneutralÞ � ð1� pÞ

where S is the observed set of scores, and we used flat prior prob-

ability p¼0.5 for the causal probability of each variant. Comparing

with conventional logit model and support vector machine, this

prior probability can be measured using different perspectives of

variant function, such as the evolutionary selection and condition-

specific functional elements.

We trained the composite model using our refined training data-

set after removing variants with any missing score. For CADD,

DANN, Funseq2 and fathmm-MKL, 1000 Genomes Project refer-

ence alleles and the first alternative alleles were used to extract pre-

diction score. For some tools with more than one model scores, we
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adopted CADD C-scores (CADD_Cscore), GWAVA transcription

start site (TSS) scores (GWAVA_TSS) and fathmm-MKL non-coding

score according to theme relevance and author’s suggestion. We

used ten-fold cross validation to evaluate the model performance

and investigated the performance fluctuation using the enumerated

subset of eight individual tools. In prediction, a position with miss-

ing score was replaced by a population mean score for the corres-

ponding test (Supplementary Table S1). Furthermore, we tested the

model on the curated independent dataset and three established

datasets for human regulatory loci.

2.5 Expression quantitative trait loci fine-mapping data
We collected the uniformly processed expression quantitative trait

locus (eQTL) fine-mapping data that was profiled by Brown and

colleagues (Brown et al., 2013). They used multi-traits Bayesian lin-

ear regression models to jointly test for eQTLs from eleven studies

on seven tissues/cell lines (Supplementary Table S2). We down-

loaded the eQTL SNPs regarding the most highly associated cis-

linked SNP within an LD block. To further acquire more significant

eQTL SNPs, we applied log10BF cutoff values of 10% FDR for each

tissue/cell type. We merged these eQTL SNPs in different tissues/cell

lines and generated 33,104 the most likely functional eQTLs with

less false positive associations. We also sampled an equal number of

frequency-matched background SNPs around nearest TSS of ran-

domly selected genes (within 10 kb).

2.6 Allelic imbalanced SNPs of chromatin accessibility
We downloaded 9456 allelic imbalanced SNPs from a recent study

(Maurano et al., 2015) on identification of sequence variants influ-

encing human transcription factor occupancy. These loci exhibited

strong imbalance (>70%) at a strict FDR cutoff of 0.1% by quan-

tifying the relative proportion of DNase-seq reads mapping to each

allele totaled across all heterozygous cell types. We used the same

strategy as in eQTL data process to generate control SNPs.

2.7 DNase I sensitivity quantitative trait loci data
We downloaded 579 DNase I sensitivity quantitative trait locus

(dsQTL) SNPs and 28 950 control SNPs from deltaSVM article (Lee

et al., 2015). deltaSVM applied stringent rules to determine the

most likely causal dsQTL SNPs by restricting a fixed small region

(100-bp) to ensure that the changes in DNase I sensitivity were phys-

ically linked to SNP loci. For control dataset, deltaSVM randomly

selected a larger set of common SNPs (minor allele frequency > 5%)

only from the top 5% of DNase I sensitivity sites that had been used

to identify dsQTLs in the original study Degner et al. (2012).

2.8 Somatic mutation dataset
We retrieved the COSMIC (Forbes et al., 2015) non-coding somatic

SNVs dataset and classified them as single-site recurrent or non-

recurrent. We compared the composite likelihoods between the re-

current and non-recurrent somatic dataset using Wilcoxon rank-

sum test.

3 Results

3.1 Integrative resources for non-coding regulatory

variant functional annotation and prediction
To facilitate the efficient search of non-coding variant prediction

scores, we compiled an integrative database from eight latest algo-

rithms on non-coding variant functional prediction and prioritiza-

tion, comprising CADD, GWAVA, Funseq, Funseq2, GWAS3D,

SuRFR, DANN and fathmm-MKL (Supplementary Table S3). The

dataset presented prediction scores for around 8.6 billion possible

single nucleotide substitutions in the human reference genome

(GRCh37) either by integrating pre-computed values or executing

available tools. Since methods like Funseq, GWAVA, GWAS3D and

SuRFR, didn’t provide precalculated files or only supported known

variants or took long execution time for all possible SNPs, we only

provided known variants from 1000 Genomes Project biallelic SNPs

in current version. We present the prediction scores of each variant

using one line encoding instead of three lines encoding for different

alleles, which will benefit the query and reduce the storage

space. The compressed dataset is available at ftp://jjwanglab.org/

PRVCS/v1.1/dbNCFP_whole_genome_SNVs.bgz, which can also be

randomly accessed by Tabix (Li, 2011).

Identifying benchmark data of causal regulatory variants and

negative control for training model is challenging. To maximally ex-

tend data spectrum and avoid bias in later evaluation, we con-

structed a large and integrative benchmark dataset for non-coding

causal variants from HGMD, ClinVar, OregAnno and fine-mapped

GWAS of 39 immune and non-immune diseases. After merging and

removing variants with missing value, we generated 5247 genome-

wide non-redundant variants with reliable causal evidence as the

training set, including disease-causal, regulatory-casual and the

most likely casual GWAS variants. Annotations showed that these

variants are widely spread in non-coding genomic regions

(Supplementary Figure S1), and they also cover the full range of al-

lele frequencies (Supplementary Figure S2). This integrative collec-

tion might be a reference data for training and evaluating regulatory

variant prediction models. We further generated a control dataset

(10 times that of the positive data) with matched allele frequency

from LD blocks that do not contain casual and disease-associated

variants (Table 1). The dataset together with original sources are

available on ftp://jjwanglab.org/PRVCS/reference.

3.2 Existing methods show inconsistent prioritization

of non-coding regulatory variants
To measure the statistical dependence of ranked scores among col-

lected algorithms, we performed Spearman’s Rank Correlation

(SRC) tests for each pair of algorithms on each of the causal

(Fig. 1A) and control (Supplementary Figure S3) datasets. We found

that algorithms with similar models or training features have moder-

ate pairwise correlations, such as FunSeq and FunSeq2 (SRC �0.5),

or CADD, DANN and Fathmm-MKL (SRC �0.6). However, algo-

rithms with different pathogenicity/regulatory causality assumptions

are weakly correlated (SRC < 0.3). The weak correlations among

existing tools might indicate the heterogeneity of training datasets,

features used, as well as the difference in algorithmic assumptions.

In addition, we manually curated 81 experimentally validated

regulatory variants from recent publications (no overlaps with the

training dataset), which served as independent data to test predic-

tion performance (Table 1 and Supplementary Table S4). Pairwise

SRC of eight algorithms on this curated data still presented weak

correlations (Fig. 1B), further suggesting inconsistent predictions

among current methods.

3.3 Composite of multiple signals improves casual

regulatory variant detection
To take advantage of possible complementarities among different

tools, we combined them into a composite likelihood statistic and

estimated the probability of the investigated variant being causal.

The composite model significantly improved the prediction
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performance on our refined training dataset (Fig. 2A). The ten-fold

cross-validation of our method yielded an Area Under the Curve

(AUC) of 0.84 and an average maximal Matthews Correlation

Coefficient of 0.41, higher than those of all current tools. Further

evaluation on the independent regulatory variants dataset also indi-

cated that the composite model performed better than existing tools

(Fig. 2B). We found GWAS_TSS and FunSeq2 consistently outper-

formed the remaining tools in these two experiments. However,

CADD and DANN showed lower AUC, possibly because they were

not specially designed to prioritize non-coding regulatory variants.

Since our training dataset contained SNPs that haven’t been rec-

ognized as pathogenic, we here inspect whether our composite

model also works well in only pathogenic dataset. We excluded

FunSeq, GWAS3D and SuRFR in this test due to many rare variants

and variants located in mitochondrial DNA that are not scored by

these tools (missing values). 99 pathogenic non-coding SNPs re-

mained with valid scores for CADD, GWAVA, Funseq2, DANN

and fathmm-MKL. For these independent pathogenic SNPs, we

compared our combined model against two control datasets pro-

vided by GWAVA (non-coding variants classified in ClinVar as non-

pathogenic and a set of 1000 Genomes Project variants with

matched distance to the nearest TSS). We found the combined model

(AUC of 0.89) outperformed CADD, GWAVA, Funseq2 and

DANN substantially, but worked slightly worse than fathmm-MKL

(AUC of 0.90). This may be due to the fact that fathmm-MKL had

used these ClinVar pathogenic variants to train their model.

(Supplementary Figure S4).

We further investigated whether combining only a subset of the

eight methods can achieve better predictive power. Interestingly,

many of subset combinations could slightly improve the model per-

formance upon the average AUC of 10-fold cross-validation and rank

variance (Supplementary Table S5). The best model consisted of only

four tools (CADD_Cscore, GWAVA_TSS, GWAS3D and SuRFR)

with an AUC of 0.858 (Supplementary Figure S5). These four tools

complement each other by using different learning algorithms and

measuring different features such as evolutionary selection, chromatin

states, transcription factor binding affinity etc. Although some subset

combinations could achieve better performance using cross-validation

of training data, we still lack large and independent gold standard to

test their stability. Therefore, to make an equitable and unbiased

evaluation, we used full combination model in most of comparisons.

3.4 Evaluation of composite model on eQTL, allelic

imbalance and dsQTL datasets
Recent advances on large-scale genotyping and genomic/epigenomic

sequencing have enabled us to efficiently map QTLs to different

Table 1. The training and testing dataset in the study

Name Description No. positive set No. control

Training dataset Refined causal SNPs in the non-coding region from different

resources including HGMD, ClinVar, OregAnno and fine-

mapping causal variant with high density Immunochip

5247 55 923

Curated SNPs Manually curated experimentally validated regulatory SNPs 81 (76) 156

eQTL SNPs Uniformly processed fine-mapping eQTL SNPs for eleven studies 33 104 (31 118) 36 540

Allelic imbalanced SNPs Allelic imbalanced SNPs of chromatin accessibility by a large

number of DNase-seq assays

9456 (8592) 9678

dsQTL SNPs The most likely causal dsQTL SNPs from deltaSVM 579 (559) 28 950 (26 832)

Note: number in bracket is the number of variant with non-missing values for eight tools.

Fig. 1. SRC among eight tools for (A) refined causal dataset and (B) curated experimentally validated dataset. Numbers indicate the correlation coefficients; Lines

indicate linear fitting; Line range indicates y range with continuous x values (Color version of this figure is available at Bioinformatics online.)
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molecular phenotypes (Kellis et al., 2014). Here, we utilized three

independent human QTLs datasets to further validate the capacity

of full composite model in prioritizing regulatory variants underly-

ing different molecular traits of gene regulation. The three datasets

include uniformly processed fine-mapping eQTLs on different tis-

sues/cell types, allelic imbalanced loci of chromatin accessibility and

deltaSVM refined dsQTLs (Table 1). Our combined model exhibited

substantial improvement in predicting eQTLs (AUC of 0.81) and al-

lelic imbalanced loci (AUC of 0.92), while the second best algorithm

only achieved AUCs of 0.74 and 0.85, respectively (Fig. 3A and B).

For the dsQTLs dataset, although only containing a few hundred

positive variants, the combined model received similar performance

as FunSeq2 (both for AUC of 0.72), outperforming other algorithms

(Fig. 3C). FunSeq2 performed stably as the best method in these as-

sessments for functional QTLs. This is probably due to more regula-

tory annotation used, such TF motif, distal regulatory elements-gene

interaction and regulatory network. Taken together, these experi-

ments strongly demonstrated that our composite model has distinct

advantage in prioritizing human functional regulatory variants. All

benchmark data are available at ftp://jjwanglab.org/PRVCS/

benchmark.

3.5 Evaluation on somatic dataset
We also observed the difference of our composite likelihood be-

tween COSMIC recurrent and non-recurrent SNPs. Wilcoxon rank-

sum test showed a significant difference (P-value < 2.2 e-16;

Supplementary Figure S6). SNPs that occur in more than one

COSMIC reported sample had higher likelihood than those that are

in single sample. This result suggested that our model is also suitable

to prioritize somatic regulatory variants.

3.6 Comparison with unsupervised integrative

approach
Most of current methods for regulatory variants prediction rely on

the supervised learning strategy. However, a recent approach, Eigen,

can integrate different annotations into one measure of functional

importance and is based on an unsupervised learning approach

(Ionita-Laza et al., 2016). We therefore compared our composite

methods with Eigen precomputed non-coding score for four

established dataset, including experimental validated SNPs, eQTLs,

allelic imbalanced SNPs and dsQTLs. Our results show that our

composite method constantly works better than Eigen non-coding

score (Supplementary Figure S7) in all four tests.

3.7 PRVCS software
We implemented our model and scoring procedure in JAVA pro-

gramming language, named PRVCS, which is freely available for

academic and non-profit users at http://jjwanglab.org/PRVCS. The

software can take either VCF (Danecek et al., 2011) or ANNOVAR

(Wang et al., 2010) variant format as input. Our PRVCS Java pro-

gram takes �0.5 h/CPU and 10 GB RAM to score all 1000

Genomes Project variants. We also provided a Tabix Perl wrapper

script to facilitate the random access remotely without downloading

whole precompiled score dataset.

4 Discussion

In summary, we have addressed several essential problems in the

field of regulatory genetic variants prioritization. We provide an in-

tegrative and lightweight resource to facilitate the efficient query of

prediction scores for current prevalent algorithms. The refined train-

ing and benchmark data of regulatory variants could be used to

evaluate subsequent methods in the future. The inconsistent priori-

tization among existing tools impedes the identification of true regu-

latory variants. Compared with the field of disease-causal non-

synonymous variant prediction (Dong et al., 2015; Gonzalez-Perez

and Lopez-Bigas, 2011; Li et al., 2013b; Lopes et al., 2012), ensem-

ble methods are urgently needed to predict and prioritize non-coding

regulatory variants. Our composite strategy takes advantage of the

complementary attributes of individual tools to achieve a better

performance.

Identifying the high quality and confident causal regulatory vari-

ants training dataset (including functional and pathogenic) and cor-

responding control is challenging, because the mechanisms of gene

regulation are complicated. Regulatory variants could affect many

different gene regulation processes such as transcription factor

binding, nucleosome positioning, epigenomic modification and non-

coding RNA tethering (Kellis et al., 2014). The limited number of

Fig. 2. Regulatory variant predictions performance of different methods. (A) ROC curves by ten-fold crossvalidation for CADD, FunSeq, FunSeq2, GWAVA,

GWAS3D, SuRFR, DANN, fathmm-MKL and our combined model on our refined training dataset. (B) ROC curves on curated experimentally validated dataset.

AUC is shown behind each tool name (Color version of this figure is available at Bioinformatics online.)
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experimentally validated regulatory variants impedes the compre-

hensive and sufficient capture of these regulatory events. For ex-

ample, there are only a few hundred known causal non-coding

variants in ClinVar and OregAnno databases, and these variants are

highly region-biased (lots of ClinVar pathogenic variants are co-

located; many OregAnno variants are located in the TSS region).

Although current massively parallel reporter assay has been applied

to investigate the allele effect on gene expression (Patwardhan et al.,

2012; Vockley et al., 2015), studies were only carried out on limited

chromosome regions and inevitability lost chromatin context. On

Fig. 3. Performance of regulatory QTLs prediction from different methods. ROC curves on (A) eQTLs dataset; (B) allelic imbalanced dataset; (C) dsQTLs dataset

(Color version of this figure is available at Bioinformatics online.)
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the other hand, current high-density genotyping arrays and sophisti-

cated fine-mapping strategies enable us to identify the most likely

casual variants from large scale GWAS and QTL studies. The most

widely used HGMD database has integrated many disease-

associated variants (Cassa et al., 2013; Clark et al., 2015). Although

we still face difficulty to identify false positive hits from LD proxy

of GWAS fine-mapped SNPs, to construct larger and less region-

biased training dataset, incorporating the most reliable GWAS/QTL

fine-mapping results would be a temporary, practicable solution in

the non-coding regulatory variant prediction field. Besides, selecting

appropriate control dataset could improve the training model.

Comparing with the random/regional sampling, our control selec-

tion strategy can avoid the bias of specific region selection (such as

promoter) and remove all causal LD blocks that may contain bias of

GWAS ascertainment. However, there is still no guarantee that

those variants are not functional. Also, some of our control SNPs

could locate in the intron region and regulate pre-mRNA processing

and splicing. Furthermore, SNPs in the exonic region, which were

omitted by our selection, can also regulate the gene expression

(Stergachis et al., 2013).

The correlations among the investigated existing methods are

from weak to moderate, which might be attributed to the different

perspectives and logics of existing algorithms. CADD and DANN

applied fixed or nearly fixed human-derived alleles and simulated de

novo mutations to train the model, which focus on classifying the

deleterious variants from neutral/selected variants. However, our

refined training dataset summarized causal variants from a regula-

tory angle by merging the functional regulatory, deleterious and

pathogenic non-coding variants. Therefore, compared with tools

trained on HGMD (GWAVA, fathmm-MKL and SuRFR) or under

regulatory assumption (GWAS3D, FunSeq and Funseq2), CADD

and DANN didn’t perform well in most of the evaluations on regu-

latory QTLs but obtained good performance on ClinVar dataset.

This may suggest that our composite method is very suitable to pri-

oritize functional regulatory variants instead of identifying patho-

genic non-coding variants using DANN and CADD. In addition,

certain annotation features were frequently incorporated into many

algorithms, resulting in the similar scoring scheme of specific vari-

ants. Clearly, CADD and DANN utilized same feature set and are

hence moderately correlated. Also, ENCODE genomic/epigenomic

annotations, as well as base-wise evolutionary information [like

GERPþþ (Davydov et al., 2010) and phastCons (Siepel et al.,

2005)], were substantially adopted in FunSeq, Funseq2, GWAS3D,

SuRFR and fathmm-MKL. Interestingly, CADD and fathmm-MKL

used different training datasets but correlated well with each other,

probably due to large number of shared annotation features. The

better performance of our subset combination model than the full

model may reflect these redundant or even conflicted relationships

among existing tools. Nevertheless, large and independent gold

standard is needed to test the correlation of different tools and sta-

bility of reduced combination model. Furthermore, for some ma-

chine learning-based programs like CADD, DANN, GWAVA and

fathmm-MKL, they used training dataset partially overlap with our

refined training dataset, so the performance might be inflated in

cross validation. Therefore, completely independent and high-

quality causal non-coding regulatory variants are needed.
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