
Gene expression

MetaKTSP: a meta-analytic top scoring pair

method for robust cross-study validation of

omics prediction analysis

SungHwan Kim1,2, Chien-Wei Lin1 and George. C. Tseng1,3,4*

1Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA, 2Department of Statistics, Korea

University, Seoul, South Korea, 3Department of Computational and Systems Biology and 4Department of Human

Genetics, University of Pittsburgh, Pittsburgh, PA, USA

*To whom correspondence should be addressed.

Associate Editor: Janet Kelso

Received on February 18, 2015; revised on February 16, 2016; accepted on February 19, 2016

Abstract

Motivation: Supervised machine learning is widely applied to transcriptomic data to predict dis-

ease diagnosis, prognosis or survival. Robust and interpretable classifiers with high accuracy are

usually favored for their clinical and translational potential. The top scoring pair (TSP) algorithm is

an example that applies a simple rank-based algorithm to identify rank-altered gene pairs for classi-

fier construction. Although many classification methods perform well in cross-validation of single

expression profile, the performance usually greatly reduces in cross-study validation (i.e. the pre-

diction model is established in the training study and applied to an independent test study) for all

machine learning methods, including TSP. The failure of cross-study validation has largely dimin-

ished the potential translational and clinical values of the models. The purpose of this article is to

develop a meta-analytic top scoring pair (MetaKTSP) framework that combines multiple transcrip-

tomic studies and generates a robust prediction model applicable to independent test studies.

Results: We proposed two frameworks, by averaging TSP scores or by combining P-values from in-

dividual studies, to select the top gene pairs for model construction. We applied the proposed

methods in simulated data sets and three large-scale real applications in breast cancer, idiopathic

pulmonary fibrosis and pan-cancer methylation. The result showed superior performance of cross-

study validation accuracy and biomarker selection for the new meta-analytic framework. In conclu-

sion, combining multiple omics data sets in the public domain increases robustness and accuracy

of the classification model that will ultimately improve disease understanding and clinical treat-

ment decisions to benefit patients.

Availability and Implementation: An R package MetaKTSP is available online. (http://tsenglab.bio

stat.pitt.edu/software.htm).
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1 Introduction

High-throughput experimental techniques, including microarray

and massively parallel sequencing, have been widely applied to dis-

cover underlying biological processes and to predict the multi-causes

of complex diseases (e.g. cancer diagnosis, Ramaswamy et al.,

2001), prognosis (van de Vijver et al., 2002) and therapeutic out-

comes, Ma et al., 2004). The associated data analysis has brought

new statistical and bioinformatic challenges and many new methods

have been developed in the past 15 years. In particular, methods for

classification and prediction analysis (a.k.a. supervised machine

learning) are probably the most relevant tools towards translational

and clinical applications. Take breast cancer as an example, many

expression-based biomarker panels have been developed [e.g.

MammaPrint (van ’t Veer et al., 2002), Oncotype DX (Paik et al.,

2004), Breast Cancer Index BCI (Zhang et al., 2013) and PAM50

(Parker et al., 2009)] for classification/prediction of survival, recur-

rence, drug response and disease subtype. Reproducibility analysis

of these markers and classification models has been a major concern

and has drawn significant attention to ensure clinical applicability

of these panels (Garrett-Mayer et al., 2008; Kuo et al., 2006;

MAQC Consortium et al., 2006; Mitchell et al., 2004; Sato et al.,

2009; Marchionni et al., 2013; Ma et al., 2014). Many articles have

focused on normalization, reproducibility of marker detection, in-

ter-lab or inter-platform correlation concordance. For direct clinical

utilities, more attention have shifted towards cross-study validation

or inter-study prediction (i.e. a prediction model is established in

one study and validated independently in a test study (Bernau et al.,

2014; Cheng et al., 2009; Mi et al., 2010; Xu et al., 2008). Such an

issue is critical for translating models from transcriptomic studies

into a practical clinical tool. For example, the training cohort may

have utilized an old Affymetrix U133 platform. A biomarker panel

and a model are constructed and a test study from a different med-

ical center using an RNA-seq platform is available. A successful ma-

chine learning model should retain high prediction accuracy in such

inter-lab and inter-platform validation. We note that many normal-

ization methods have been developed to adjust for systematic biases

across studies, including distance weighted discrimination (Benito

et al., 2004), cross-platform normalization (Shabalin et al., 2008)

and Knorm correlation (Teng et al., 2007). But the normalization

performance largely depends on whether the observed data structure

fits the model assumptions. In most applications, researchers have

applied meta-analysis methods and have avoided relying on effect-

iveness of normalization (Tseng et al., 2012). To compare the meta-

analysis methods with mega-analysis (i.e. normalize across studies

and directly merge data for inference) in this article, we only per-

form simple quantile normalization within each study and then

standardize each sample to mean zero and unit SD before we adopt

mega-analysis.

In addition to the issue of cross-study validation, it’s critical to

select a robust and accurate machine learning method. In the litera-

ture, many supervised machine learning methods have been pro-

posed and applied to high-throughput experimental data. For

example, the CMA package allows easy implementation of 21 popu-

lar classification methods such as linear or quadratic discriminant

analysis, lasso, elastic net, support vector machines (SVMs), random

forest, PAM etc (Slawski et al., 2008). In addition to these popular

methods, the top scoring pair (TSP) method (Afsari et al., 2014;

Geman et al., 2004; Tan et al., 2005) is a straightforward prediction

rule utilizing building blocks of rank-altered gene pairs in case and

control comparison (see Section 2.1 for more details). The method is

mostly rank-based without any model parameter. It is invariant to

monotone data transformation and the feature selection and the

model are more transparent for biological interpretation. Although

TSP and its variant are robust methods that do not require normal-

ization in cross-study validation, we have found that some of the se-

lected TSPs from the training study may not reproduce in the test

study possibly due to platform differences.

Figure 1A illustrates the expression levels of a good TSP gene

pair, ITGAX and XBP1, identified from the first IPF (idiopathic

pulmonary fibrosis) training study Emblom (see data descriptions

in Supplementary Table S1). XBP1 is over-expressed than ITGAX

in control samples but under-expressed in cases. If we use this TSP

to validate in the test study Konishi, we find that XBP1 is over-ex-

pressed than ITGAX in both cases and controls and we obtain 0%

sensitivity and 100% specificity (i.e. Youden index¼ sensitiv-

ityþ specificity � 1¼0). We found similar poor performance

in two other studies Tedrow B and Pardo, showing that the TSP is

likely a false positive. In Figure 1B, GPR160 is over-expressed

than COMP in controls and under-expressed in cases for all

three studies Emblom, Tedrow B and Pardo. It is a more reliable

TSP across three studies and conceptually is less likely a false posi-

tive. Indeed, the cross-study validation in Konishi shows good per-

formance with 80% Youden index. The two real examples in

Figure 1 argue the potential of a meta-analytic approach by com-

bining multiple training transcritomic studies to identify reliable

TSPs so the resulting model has enhanced cross-study validation

performance.

In this article, we propose three meta-analytic approaches for

TSP method (MetaTSP) by combining information across multiple

training studies using (i) averaged TSP scores (ii) combining P-values

via Fisher’s method (Fisher 1925; 1948) (iii) combining P-values via

Stouffers method (Stouffer 1949). To decide the number of TSPs

used for model construction, a classical cross validation (CV)

method and a variance optimization (VO) (Afsari et al., 2014)

method are applied and compared. Simulations and three real omics

data sets (two gene expression data on breast cancer and IPF, and

Fig. 1. Two TSP examples from real data to show advantage of MetaTSP. X-

axis and Y-axis refer to sample indices and gene expression levels, respect-

ively. (A) Gene pair ITGAX/XBP1 has high TSP score (XBP1 > ITGAX in con-

trols but ITGAX > XBP1 in cases) in the training ‘Emblom’ study but fail to

replicate in the testing ‘Konishi’ study as well as the other two Tedrow B and

Pardo studies. (B) Gene pair GPR160/COMP has high TSP scores (GPR160 >

COMP in controls and COMP > GPR160 in cases) in all three training studies

‘Emblom’, ‘Tedrow B’ and ‘Pardo’. The gene pair is successfully validated in

the testing ‘Konishi’ study
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one pan-cancer methylation data) are used to benchmark the cross-

study validation performance.

2 Methods

2.1 TSP algorithm and kTSP
The original TSP algorithm was first proposed by Geman et al.

(2004). Denote by data matrix X ¼ fxgng the gene expression inten-

sity of gene g (1 � g � G) in sample n (1 � n � N) and yn the class

label of sample n. Particularly, we consider yn 2 f0; 1g, representing

controls and cases for binary classification in this article. For any gene

pair i and j (1� i, j�G), define the conditional ordering probability

score Tij ¼ ðCÞ ¼ PrðXi < XjjY ¼ CÞ for C 2 f0; 1g, where Xi and

Xj are gene expression intensities of gene i and j. Intuitively, Tij(0) is

the probability in controls that gene j has larger expression intensity

than that of gene i and similarly Tij(1) is for cases. Given observed ex-

pression profile data matrix X, the probability scores can be estimated

as bT ijðCÞ ¼ ð
PN

n¼1 Iðxin < xjnÞIðyn ¼ CÞÞ=ð
PN

n¼1 Iðyn ¼ CÞÞ, where

I(�) is an indicator function that generates value one if the statement

inside the parenthesis is true and zero otherwise. The discriminant

score of the gene pair is defined as Sij ¼ bT ijð1Þ � bT ijð0Þ. Note that �1

� Sij � 1 always holds. When Sij¼1, expression of gene j is always

greater than that in gene i in cases and expression of gene j is always

smaller than that in gene i among controls. As a result, the ordering of

gene i and gene j expression is predictive to the class label. On the con-

trary, if Sij¼�1, gene j always has a smaller expression than gene i in

cases and the relation is reversed in controls. In summary, the absolute

value of Sij reflects the predictive value of the gene pair. The TSP algo-

rithm seeks the best gene pair ði0; j0Þ ¼ argmaxi 6¼jjSijj as the classifier.

When multiple gene pairs give the same highest absolute score, the

best pair that gives the largest differential magnitude Dij is chosen,

where Dij ¼ jdij(1) � dij (0)j and dijðCÞ¼ð
PN

n¼1ðRin�RjnÞIðyn¼CÞ=
ð
PN

n¼1 Iðyn¼CÞÞ for C2f0;1g, where Rin is the rank of the ith gene

in the nth sample. When a new test sample~xðtestÞ ¼ ðx1
ðtestÞ;...;xG

ðtestÞÞ
is encountered in the future, the class prediction is determined by

bCi0 j0 ð~xðtestÞÞ ¼
1; if Si0 j0 � ðxðtestÞ

i0 � x
ðtestÞ
j0 Þ � 0

0; if Si0 j0 � ðxðtestÞ
i0 � x

ðtestÞ
j0 Þ > 0

8<
:

By construction, the TSP classifier above is based on only one TSP

(two genes) and the method can be very sensitive to slight noise per-

turbations (Geman et al., 2004). To circumvent this issue, Tan et al.

(2005) introduced kTSP to combine multiple TSPs for a more stable

algorithm. The method identified the sorted TSPs similar to above.

Instead of choosing only the best TSP, it selected the top K (K is a

parameter to be tuned) TSPs to construct the model. The TSPs were

selected from the sorted list such that the genes in the TSPs had no

overlap otherwise the latter TSPs containing overlapping genes

would be skipped and the next TSP in the sorted list would be con-

sidered. In other words, the selected top K TSPs always contain 2K

distinct genes. Suppose fði01; j01Þ; . . . ; ði0K; j0KÞg represents the K se-

lected TSPs. The kTSP algorithm makes a prediction for a new test

sample ~xðtestÞ by bCð~xðtestÞÞ ¼ argmaxC

PK
k¼1 Ið bCikjk ð~x

ðtestÞÞ ¼ CÞ. In a

sense, the k-TSP is an ensemble classifier that aggregates multiple

weak classifiers by majority vote (Opitz and Maclin, 1999). To

avoid ties, we usually select odd numbers for K in binary

classification.

The TSP algorithms have the following advantages for omics

prediction analysis: (i) The method is non-parametric since the

method is constructed based on the relative ranking of gene pairs.

Since different transcriptomic studies are usually conducted in

different labs and in different platforms, the applicability of non-

parametric nature facilitates cross-study validation that we aim in

this article. (ii) The method is based on one or a few gene pairs. The

biological interpretation of the model and the translational applica-

tion are more straightforward. It is more likely to succeed by design-

ing a reproducible commercial assay for wider clinical applications,

such as the 21-gene RT-PCR-based Oncotype DX test for breast

cancer (Paik et al., 2004). (iii) Researchers have repeatedly found

that the family of TSP algorithms provides good prediction perform-

ance in many transcriptomic data (Price et al., 2007; Raponi et al.,

2008; Xu et al., 2005).

2.2 Estimate K for kTSP
To estimate the best K in the kTSP algorithm, we will apply and

compare the following two methods.

2.2.1 Cross-validation (CV) method

In Tan et al. (2005), leave-one-out CV was used to determine K in

kTSP. In each iteration, one sample was left out as the test sample.

The remaining samples were used to construct a prediction model

and apply to the test sample. The procedure was repeated until each

sample was left out as the test sample once. The cross-validated

error rates were then calculated for different selections of K and the

best K that produced the smallest CV error rate was chosen.

2.2.2 VO method

Afsari et al. (2014) recently developed a VO method to estimate K

in kTSP. Recall that Sij ¼ bT ijð1Þ � bT ijð0Þ, where bT ijðCÞ ¼
ð
PN

n¼1 xin <xjnÞIðyn ¼ CÞÞ=ð
PN

n¼1 yn ¼ CÞÞ. The kTSP algorithm

searches for the optimized TSPs without overlapping genes:

fði�1; j�1Þ; � � � ; ði�K; j�KÞg ¼ arg maxfði1 ;j1Þ;���;ðiK ;jKÞg
XK

k¼1
Sikjk :

Define the t-statistics of the target function:

tkTSPðKÞ¼
PK

k¼1 Si�
k
j�
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varð
PK

k¼1 IðXi�
k
< Xj�

k
ÞjY¼0ÞþVarð

PK
k¼1 IðXi�

k
< Xj�

k
ÞjY¼1Þ

q :

K is chosen by the value that maximizes tkTSP (i.e. K* ¼ arg

maxKtkTSP). The VO procedure greatly reduced high computational

demand in CV.

2.3 MetaKTSP algorithms
As mentioned in the introduction section, cross-study validation via

MegaKTSP (i.e. naively combine multiple normalized data sets and

apply kTSP) may not be suitable to identify a robust prediction gene

pair. Alternatively, we propose a MetaKTSP framework below.

Denote by XðmÞ ¼ fxðmÞgn g the expression profile of study m, where

x
ðmÞ
gn represents the gene expression intensity of gene g (1 � g � G),

sample n (1 � n � N(m)) in study m (1 � m �M). Let the discrimin-

ant score S
ðmÞ
ij for gene i and j in study m take the difference of two

averages of Bernoulli random variables. We started by developing

three meta-analytic approaches (by Fisher score, Stouffer score and

mean score) to choose the K non-overlapping TSPs for prediction

model construction (denoted as fði�1; j�1Þ; . . . ; ði�K; j�KÞg). When a new

test sample, ~xðtestÞ ¼ ðxðtestÞ
1 ; . . . ; x

ðtestÞ
G Þ is encountered in the future,

the class prediction by the kth TSP and study m is:
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bCðmÞi�
k
;j�

k
ð~xðtestÞÞ ¼

1; if S
ðmÞ
i�
k
;j�

k
� ðxðtestÞ

i�
k
� x

ðtestÞ
j�
k
Þ � 0

0; if S
ðmÞ
i�
k
;j�

k
� ðxðtestÞ

i�
k
� x

ðtestÞ
j�
k
Þ > 0:

8><
>:

The final meta-analyzed class prediction is determined by

bCð~xðtestÞÞ ¼ arg maxC

XM

m¼1

XK

k¼1
Ið bCðmÞi�

k
;j�

k
ð~xðtestÞÞ ¼ CÞ:

Below we introduce the three meta-analytic approaches to select

the top K TSPs. In meta-analysis, test statistics (e.g. it t-statistics)

across studies are not comparable and combining P-values has be-

come a popular practice. Under the null hypothesis that gene i and j

are not discriminant, S
ðmÞ
i;j can be well-approximated by Gaussian dis-

tribution S
ðmÞ
i;j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25

N
ðmÞ
1

þ 0:25

N
ðmÞ
0

q
� Nð0; 1Þ since S

ðmÞ
i;j is the difference of

two averages of independent Bernoulli trials. The two-sided P-value

of S
ðmÞ
i;j is calculated as P

ðmÞ
i;j ¼ 2� 1� U jSðmÞi;j j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25

N
ðmÞ
1

þ 0:25

N
ðmÞ
0

q� �� �
.

Alternatively, one-sided p-values can be calculated as P
ðmÞ;L
i;j ¼

U S
ðmÞ
i;j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25

N
ðmÞ
1

þ 0:25

N
ðmÞ
0

q� �
for left-sided P-value and P

ðmÞ;R
i;j ¼

1� U S
ðmÞ
i;j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25

N
ðmÞ
1

þ 0:25

N
ðmÞ
0

q� �
for right-sided P-value.

2.3.1 Select K TSPs by Fisher’s method

The Fisher’s method combines P-values across studies by

S
ðFisherÞ
ij ¼ �2�

PM
n¼1 logðPðmÞij Þ, where P

ðmÞ
ij is the two-sided P-value

of the discriminant score S
ðmÞ
ij of gene i and j in study m. Under null

hypothesis that gene i and j have no discriminant power in all stud-

ies, T
ðFisherÞ
ij � v2

2M. This classical P-value combination procedure

has a well-known problem that the discriminant scores across stud-

ies may have discordant signs but all with small two-sided P-values

that generate a significant meta-analyzed P-value. To circumvent

this discordant problem, we apply a one-sided test modification

technique discussed in Owen (2009). Define T
ðFisherÞ;L
ij ¼ �2�PM

m¼1 logðPðmÞ;Li;j Þ and T
ðFisherÞ;R
ij ¼ �2�

PM
m¼1 logðPðmÞ;Ri;j Þ, where

P
ðmÞ;L
ij and P

ðmÞ;R
ij are the left and right one-sided P-values of discrim-

inant score S
ðmÞ
ij of gene i and j in study m. The modified one-sided

corrected Fisher’s statistic is T
ðFisherÞ;OC
ij ¼ maxðTðFisherÞ;L

ij ;T
ðFisherÞ;R
ij Þ.

The top K gene pairs with the largest meta-analyzed Fisher score

(i.e. T
ðFisherÞ;OC
ij ) and with no overlapping genes are selected.

2.3.2 Select K TSPs by Stouffer’s method

Instead of using log-transformation in Fisher’s method, Stouffer’s

method applies an inverse normal transformation by T
ðStoufferÞ
ij ¼PM

m¼1 U
�1ðPðmÞ;Lij Þ=

ffiffiffiffiffi
M
p

. Under null hypothesis that gene i and j have

no discriminant power in all studies, Tij � Nð0; 1Þ. The top K gene

pairs with the smallest meta-analyzed two-sided P-values and with

no overlapping genes are selected for prediction. Note that

Stouffer’s method has an advantage over Fisher’s method that one-

sided concordance correction is not necessary if one-sided P-values

are input in the inverse normal transformation.

2.3.3 Select K TSPs by mean score

Because the discriminant score is difference of two conditional prob-

abilities, the scores are directly comparable across studies and can

be directly combined. We define the mean score T
ðmeanÞ
ij ¼PM

m¼1 S
ðmÞ
ij =M to combine M studies. The top K gene pairs with the

largest absolute value of the meta-analyzed scores (i.e. jTðmeanÞ
ij j) and

with no overlapping genes are selected for prediction model con-

struction. In addition, we propose the weighted mean score T
ðmeanÞ
ij

¼
PM

m¼1 S
ðmÞ
ij nðmÞ=

PM
m¼1 nðmÞ

� �
, where nðmÞ is sample size of study

m. It is commonplace that each study has a range of sample size,

and the variance of S(m) is increasingly influenced as sample size

rises. Therefore, it is worth to adjust sample size to the total discrim-

inant score.

2.4 Estimate K for MetaKTSP
Similar to Section 2.2, cross-validation and VO methods can be ex-

tended to estimate K for MetaKTSP.

2.4.1 Cross-validation

Each of the M studies are firstly split into V equal-sized subgroups.

In each cross-validation, one subgroup of samples in each study is

left out as the testing samples. The remaining (V � 1) subgroups are

used as training samples to construct the classifier and then apply to

the test sample. We choose the optimal K such that the highest aver-

age Youden index over M studies is obtained. In this article, we

adopted 5-fold cross-validation.

2.4.2 Variance optimization

Motivated by Afsari et al. (2014), we define the following target

function:

t
ðmetaÞ
kTSP ðKÞ ¼ XM

m¼1

XK

k¼1
S
ðmÞ
i�
k
j�
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var
XM

m¼1

XK

k¼1
IðXðmÞi�

k
< X

ðmÞ
j�
k
ÞjY ¼ 0

� �
þVar

XM

m¼1

XK

k¼1
IðXðmÞi�

k
< X

ðmÞ
j�
k
ÞjY ¼ 1

� �
vuuut

:

K is chosen by the value that maximizes t
ðmetaÞ
kTSP ðKÞ (i.e.

K� ¼ argmaxKt
ðmetaÞ
kTSP ðKÞ. We will show its equal or slightly improved

performance compared with CV in our proposed meta-analytic

scheme and this estimation method will be recommended in

practice.

3 Results

3.1 Simulations
We hypothesize that if gene pairs are consistently identified with

strong TSP scores over multiple training studies such gene pairs out-

perform original TSPs from a single study. We tested this hypothet-

ical argument using simulated data sets. Below we describe

simulated expression profiles under correlated gene structures to

mimic real data sets. We performed a smaller scale of simulation

with G¼200 genes and M¼4 transcriptomic studies, where the

number of samples n
ðmÞ
j is randomly generated; n

ðmÞ
j � POIð40Þ

(n
ðmÞ
1 ¼ n

ðmÞ
2 for study m (1 � m � M ¼ 4) of sample subgroup j (i.e.

j¼1 for controls and j¼2 for cases). Denote expression data matrix

by XðmÞ ¼ fxðmÞg;u g for gene 1 � g � G ¼ 200;1 � u � n
ðmÞ
1 þ n

ðmÞ
2

and 1 �m �M ¼ 4.

3.1.1 Step 1. Simulate consensus predictive genes

(i) Consider consensus predictive genes that are expressed with a

crossover pattern across two subgroups for all studies. For each of

the two clusters c (1 � c � 2) in study m(1 � m � M) that contains

consensus predictive genes, sample gene correlation structure
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R�cjm �W�1ðW; 60Þ for every gene cluster c and sample subgroup j

of study m, where W ¼ 0:5I20�20 þ 0:5J20�20;W
�1 denotes inverse

Wishart distribution, I is the identity matrix, and J is the matrix with

all the entries being 1. Set vector rcjm as the square roots of the diag-

onal elements in R�cjm. Calculate Rcjm such that rcjmRcjmrT
cjm ¼ R�cjm.

(ii) We simulate two clusters of consensus predictive genes, each

containing 20 genes. The first down-regulated gene cluster is gener-

ated from MVN20ðla;R1jmÞ, where sample u belongs to class j in

study m and la ¼ 0:8 for j ¼ 1 (controls) and la ¼ 0:8 for j ¼ 2

(cases). This is a smaller effect size simulation. We also simulate a

strong effect size simulation by la ¼ 1 or � 1 for controls and

cases. Similarly, the second up-regulated gene cluster is simulated

from MVN20ðla;R2jmÞ, where la ¼ �0:8 and 0:8 for controls and

cases in weak signal scenario and la ¼ �1 and 1 in strong signal

scenario. These 40 consensus predictive genes are the basis to aggre-

gate predictive power across studies (red dotted rectangle in

Supplementary Figure S1).

3.1.2 Step 2. Simulate study-specific predictive genes

We next simulate four clusters (m0 ¼ 1,2,3,4) of study specific genes,

each containing 10 genes. Each gene cluster has specific predictive

power to the corresponding study m. The down-regulated genes are

simulated from MVN10ðlb;R2þm0 ;j;mÞ, where m0 ¼ m;R2þm;j;m(1 �
m � 4) are simulated similar to (1) of Step 1 and lb ¼ 4 or –4 for

controls and cases. For up-regulated predictive genes, we randomly

sample from MVN10ðlb;R6þm0 ;j;mÞand lb ¼ �4 or 4 for controls

and cases. When m0 6¼ m, the gene cluster m0 has no predictive

power in study m and is randomly sampled from N(0,1) (blue dotted

rectangle in Supplementary Figure S1). These study-specific genes

are a main source of errors in cross-study validation.

3.1.3 Step 3. Simulate non-informative genes

Finally, the remaining 80 non-informative genes are simulated by

x
ðmÞ
g;u � Nð0; 1Þ for 121 � g � 200.

We repeated simulations for 50 times, and the results are bench-

marked by averaged Youden index. Figure 2 shows the simulation

evaluation for different methods using Youden index, and we tested

MetaKTSP (VOþmean) and MetaTSP (mean). In each meta-ana-

lysis evaluation, we take one study out as the test study, combine the

remaining three studies to select the TSPs and construct the model,

and finally use the model to predict samples in the test study. The re-

sult of Figure 2A in the weaker signal setting (la ¼ 1) shows that the

MetaKTSP (VOþmean) method performed well (Youden

Index¼0.857–0.865). The MetaTSP (mean) performed slightly

worse (Youden Index¼0.734–0.752). In mega-analysis approaches,

the three training studies are normalized and combined into one

study to construct the prediction model and evaluate in the test

study. In single study analysis, the accuracy was evaluated by aver-

aging inter-study accuracy from each of the three training studies to

the test study. The result of Figure 2B (l ¼ 0:8; weak signal scen-

ario) clearly shows inferior performance of MegaKTSP and

MegaTSP approaches, and poor performance of single study KTSP

and TSP approaches. The single study SVM and mega-analysis of

SVM also performed slightly worse than MetaKTSP in Figure 2A

and B. Taken together, this confirms our hypothesis that prediction

model from a single study may not be robust and accurate. Proper

meta-analysis by combining multiple training studies improves the

stability and accuracy of the model to predict an independent test

study. Supplementary Figure S2A and B contain simulation results

of all meta- and mega-analytic methods in strong and weak signal

cases. In the weaker signal case in Supplementary Figure S2B

(la ¼ 0:8), we found that MetaKTSP using Fisher’s selecting ap-

proach often has inferior performance than Stouffer and mean meth-

ods. This is probably because of the nature of heavy tail log-

transformation in the Fisher’s method. A P-value close to 0 (e.g. 1E-

20) can contribute a very large score in Fisher’s method and can eas-

ily dominate the analysis. The inverse transformation in Stouffer’s

method and the mean score approach somewhat alleviated the prob-

lem. From Supplementary Figure S2A and B, it is evidently shown

that MetaKTSP (mean) is superior (or equal at least) to weighted

MetaKTSP (weighted.mean). Interestingly, even if the parameter for

mean (la) decreases in value (1–0.8), the order of Youden Index

largely remains the same. We conclude that MetaKTSP

(VOþmean) generally outperformed the other methods, and so

chose to apply this method in the following real applications.

3.2 Application to genomic data sets
Below we demonstrate application of MetaKTSP methods to three

real omics examples of breast cancer expression profiles (1658 sam-

ples in seven studies), IPF expression profiles (IPF; 291 samples in

six studies) and The Cancer Genome Atlas multi-cancer methylation

profiles (TCGA, http://cancergenome.nih.gov/; 1785 samples in six

studies). Supplementary Table S1 provides detailed data description

of all 19 studies and their data sources. Genes and methylation

probes were matched across studies. Non-expressed and/or non-in-

formative genes were filtered according to the rank sum of mean

intensities and variances across studies. Note that this filtering pro-

cedure has been used in a previous meta-analysis work (Wang et al.,

2012) and the filtering is unbiased in the prediction accuracy esti-

mate since class labels are not used in the procedure. This generated

3035 genes in breast cancer, 3010 genes in IPF and 3061 methyla-

tion probes in TCGA for down-stream prediction analysis.

From simulation, VO feature selection method performed

slightly better than CV method so it was applied to all TSP methods

to determine K in real data. We tested Meta-KTSP (mean), Meta-

KTSP (Stouffer), and single- and mega-variations of KTSP and five

popular machine learning methods, including linear discriminant

analysis, CART, K-nearest-neighbor, random forest and SVMs. The

complete result is shown in Supplementary Table S4. Figure 3 shows

the inter-study prediction performance of selected methods of the

three real examples (A, breast cancer ERþ versus ER� prediction by

Fig. 2. (A,B) show results of inter-study prediction using four simulated data

sets (A: la ¼ 1, B: la ¼ 0:8; n
ðmÞ
1 � POIð40Þ and n

ðmÞ
2 � POIð40Þ; 1 � m � )

Y-axis represents the average Youden index. The bar plots indicate the stand-

ard error of estimated Youden index
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expression profiles; B, IPF versus controls prediction by expression

profiles; C, cancer versus adjacent normal prediction by methyla-

tion profiles). Mega-SVM was the best performer among the five

existing machine learning methods tested so we chose to present

Mega-SVM and Single-SVM in Figure 3. For single study analysis,

we performed all pairs of cross-study validation and averaged the

performance. For mega-analysis, each sample was standardized to

mean zero and unit variance and multiple studies were merged for

analysis. Finally, we aggregated Youden indexes of all studies using

weighted average by sample size (last plot in each row). In Figure 3,

MetaKTSP (VOþmean) obviously best performed inter-study pre-

diction of all three examples, whereas mega-analysis methods had

worse performance and single study analysis without combining in-

formation across studies performed the worst. In the example of

breast- and pan-cancer analysis, the performance of single study

analysis was below random guess (Youden index < 0). This sug-

gests that prediction models from single study analysis mostly re-

flected study-specific (cancer-specific) signature that could not be

generalized to other cancers. In addition, to assess robustness of

MetaKTSP (VO þ mean), we performed 50 simulations of boot-

strapped samples and applied Meta-KTSP and single study kTSP

and calculated the degree of robustness by calculating the number

of overlapping TSPs between bootstrapped data analysis and whole

data analysis divided by the number TSPs detected by whole data

analysis. Supplementary Figure S4 and Supplementary Table S2A

and B clearly showed greater robustness of MetaKTSP than individ-

ual study kTSP analysis in selecting top gene pairs. Supplementary

Figure S6 provides further insight on this concept. In

Supplementary Figure S6A, nine TSPs were selected in individual

training studies (Breast invasive carcinoma, Colon adenocarcinoma,

Kidney renal clear cell carcinoma, Lung adenocarcinoma and

Stomach adenocarcinoma), respectively. When these TSPs were

evaluated in the ovarian cancer (OV) study, the absolute discrimin-

ant scores dropped significantly, many of which dropped from close

to 1 to below 0.5. On the contrary, the nine TSPs selected by meta-

analysis shared universally large discriminant scores for all five

training studies (Supplementary Figure S6B) and the discriminant

scores were mostly maintained in the test OV study. Supplementary

Figure S3A–C provides the full results of all 15 methods compari-

son in the 3 examples.

It is interesting to note that Emblom and Larsson studies in the

IPF examples had almost none predictive value (Youden index near

0), while the other four studies performed well. This argues that the

two studies might have heterogeneous cohorts from the other four

studies or they may have worse experimental quality [see similar

quality control result in (Kang et al., 2012) for the same data sets].

Fig. 3. Three examples of Inter-study prediction with applications to real data sets (A, breast cancer: ERþversus ER�; B, Idiopathic pulmonary fibrosis; C, Six dif-

ferents cancers in TCGA. Y-axis represents the average Youden index

Table 1. The list of nine identified gene pairs of Average MetaKTSP and the existing breast cancer gene signatures

Label Gene1 Gene2 Averaged

scores

References

Pair 1 E2F3 (ER�) GATA3 (ERþ) �0.710 Tordai et al. (2008, E2F3, ER�), Usary et al. (2004, GATA3, ERþ)

Pair 2 ODC1 (ER�) DNALI1 (ERþ) �0.669 Parris et al. (2010, DNALI1, ERþ)

Pair 3 LAD1 (ER�) SCCPDH (ERþ) �0.656 Dvorkin-Gheva and Hassell (2011, SCCPDH, ERþ), Smith et al. (2008, LAD1, ER�)

Pair 4 SRPK1 (ER�) MYB (ERþ) �0.649 van Roosmalen et al. (2015, SRPK1, ER�)

Pair 5 DACH1 (ERþ) FOXC1 (ER�) 0.644 Powe et al. (2014, DACH1, ERþ), Ray et al. (2010, FOXC1, ER�)

Pair 6 WARS (ER�) FBP1 (ERþ) �0.637 van’t Veer et al. (2002, FBP1, ERþ)

Pair 7 RNASEH1 (ER�) MAGED2 (ERþ) �0.632 Thakkar et al. (2010, MAGED2, ERþ)

Pair 8 CDCA8 (ER�) AFF3 (ERþ) �0.629 Thakkar et al. (2010, AFF3, ERþ)

Pair 9 MRFAP1L1 (ERþ) KCMF1 (ER�) 0.625 Symmans et al. (2010, KCMF1, ER�)
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In practice, one may perform such CV to exclude potential ‘outlier’

studies before implementing MetaKTSP.

Below we explore biological validation of detected gene pairs

from MetaKTSP using existing literature. We first applied

MetaKTSP (VOþmean) to all seven breast cancer studies and iden-

tified nine TSPs. For the 18 genes in the 9 detected TSPs, 12 of them

were found to associate with ER expression in previous publications

and all of them had consistent differential expression direction com-

pared with the microarray data (Table 1). For the pan-cancer methy-

lation result, we also identified 9 TSPs and 15 of the 18 genes have

been previously indicated as cancer related (Supplementary Table

S3). For example, the PCDH8 gene from the fourth gene pair was

previously confirmed as a candidate tumor suppressor regulated by

methylation in multiple cancers: (i) Kidney cancer: frequent pro-

moter region methylation (58%) in primary renal cell carcinoma

tumor samples (Morris et al., 2011). (ii) Breast cancer: either muta-

tion or epigenetic silencing in a high fraction of breast carcinomas

inactivates PCDH8 that leads to oncogenesis in cancers (Yu et al.,

2008) (iii) Stomach cancer: tumor suppressor function in gastric

cancer (Zhang et al., 2012).

4 Conclusion and discussion

As high-throughput experimental data become more and more

prevalent and publicly available, integrative methods to fully utilize

information from the abundant multi-lab data sets have become crit-

ical. Generating predictive biomarkers and classification model

from a single study often suffer from limited sample size and pos-

sibly study-specific biases. The resulting models are often found

with poor performance in cross-study validation (Correa and Reis-

Filho, 2009; McShane et al., 2013; Kern, 2012; Reid et al., 2005).

To improve translational and clinical utility of the biomarker dis-

covery and classification model construction, combining informa-

tion from multiple studies provide a promising opportunity. In this

article, we seek to improve a TSP method that is a non-parametric,

accurate and easily interpretable model that likely will succeed in

cross-study validation for clinical applications. We developed three

MetaKTSP approaches that combine multiple omics data sets to im-

prove the credibility of TSP biomarker selection. Using simulations

and real transcriptome and methylome data sets, we demonstrate its

improved performance on cross-study validation. We compared two

methods, CV and VO, to decide the number of TSPs used in the

model construction. The result showed similar performance of the

two model selection methods. Since VO does not involve repeated

subsampling and is computationally faster, we recommend to use

VO for future applications.

There are a few limitations and future directions to consider.

First, our method and evaluation focus on binary case-control clas-

sification. The method could be extended to multi-class classifica-

tion scenario. Second, biological knowledge such as pathways or

known disease relevant genes can be incorporated to enhance the

TSP discovery accuracy. For example, Oncotype DX started with

250 breast cancer related genes to identify the 21 predictive genes

in their panel. Although this runs the risk to miss understudied but

significant biomarkers, this approach can potentially improve

cross-study validation in well-studied diseases. Third, we may take

into account the original differences across platforms to pursue

more accurate meta-analysis. In particular, gene expression plat-

forms may measure different genes on different scales. Therefore, it

is worth to match up genes across platforms by mapping onto iden-

tical exon sites and probes. Finally, the current TSP approaches

may be extended towards module-based prediction scheme where

TSPs of gene modules are sought to provide extra redundancy and

robustness (Mi et al., 2010). The ‘MetaKTSP’ R package is avail-

able on the authors website and is part of MetaOmics, a software

suite for omics data meta-analysis of differentially expressed gene

detection, pathway, prediction, clustering, classification and net-

work analyses.
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